inorganic compounds
R-Ferrite-type barium cobalt stannate, BaCo2Sn4O11
aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577, Japan, and bCenter for Interdisciplinary Research, Tohoku University, Aramaki Aza-Aoba, Aobaku, Sendai 980-8578, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp
BaCo2Sn4O11 is isotypic with R-ferrite, BaTi2Fe4O11. The Co atoms fully occupy trigonal–bipyramidal sites () and are disordered with Sn atoms in octahedral sites (.2/m symmetry), as represented in the formula BaCoSn2(Co0.34Sn0.66)4O11. Ba atoms are situated in a 12-fold coordinated site ( symmetry).
Related literature
For reports on R-ferrite structures, BaTi2Fe4O11, see: Haberey & Velicescu (1974); Obradors et al. (1983); Cadée & Ijdo (1984); Sosnowska et al. (1996). For reports on R-ferrite structure with other compositions, see: Cadée & Ijdo (1984); Kanke et al. (1992); Martínez et al. (1993); Foo et al. (2006). Sosnowska et al. (1996). For Ba3SnCo10O20, another phase in the Ba–Co–Sn–O system, see: Sonne & Müller-Buschbaum (1993).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808030572/mg2057sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030572/mg2057Isup2.hkl
A mixture of BaCO3 (99.99%, Wako Pure Chemical Ind.), Co3O4 (99.95%, Kanto Chemical Co. Inc.), and SnO2 (99.9%, Rare Metallic Co. Ltd.) powders in a molar ratio of Ba:Co:Sn = 1:2:4 was ground together and pressed into a pellet. The pellet was placed on a platinum plate and heated in air for 1 h at 1473 K or 1823 K in an electric furnace. The pellet was melted at 1823 K and green transparent single crystals of BaCo2Sn4O11 were obtained. The chemical analysis of the polycrystalline single phase BaCo2Sn4O11 prepared at 1473 K was carried out by inductively coupled plasma (ICP) emission spectrometry for Ba, Co and Sn, and by the He carrier melting-infrared absorption method (TC-436, LECO) for O. The results of the chemical analysis (Ba 14.9 (5), Co 13.8 (5), Sn 52.9 (8), and O 19.1 (8) wt%) agreed with the ideal contents (Ba 15.2, Co 13.4, Sn 51.9, O 19.5 wt%).
The Θ) of -42 K, and the (µeff) of 4.7 µB per Co measured for the sample were consistent with the values reported by Martínez et al. (1993) (TN = 9 K, Θ = -44 K, µeff = 4.4 µB).
of BaCo2Sn4O11 was measured with a superconducting quantum interference device (SQUID) magnetometer (Quantum Design, MPMS XL) from 5 to 400 K under a magnetic field of 5 kOe. The polycrystalline sample followed the Curie–Weiss law above the Neel temperature (TN). The TN of 7 K, the Weiss temperature (In the structure analysis using powder X-ray and neutron diffraction data for BaTi2Fe4O11 and BaSn2Fe4O11 (Obradors et al., 1983; Cadée & Ijdo,1984; Martínez et al., 1993), the 2d site of Fe atoms was statistically split into two site (4f). We applied this split site model and refined the positional parameter of z for the Co2 site, but it converged into 0.250 within an estimated deviation. Thus, we fixed the position at 2d site for the final refinement.
Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell
PROCESS-AUTO (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Structure of BaCo2Sn4O11 in terms of cation-centered oxygen polyhedra. | |
Fig. 2. The O-atom coordination around the cation sites of BaCo2Sn4O11 (symmetry codes as in Table 1). Displacement ellipsoids are drawn at the 99% probability level. |
BaCo2Sn4O11 | Dx = 6.646 Mg m−3 |
Mr = 905.96 | Mo Kα radiation, λ = 0.71075 Å |
Hexagonal, P63/mmc | Cell parameters from 3536 reflections |
Hall symbol: -P 6c 2c | θ = 7.7–54.7° |
a = 6.0880 (2) Å | µ = 18.76 mm−1 |
c = 14.1049 (6) Å | T = 293 K |
V = 452.74 (3) Å3 | Block, green |
Z = 2 | 0.06 × 0.04 × 0.03 mm |
F(000) = 796 |
Rigaku R-AXIS RAPID diffractometer | 230 independent reflections |
Radiation source: fine-focus sealed tube | 215 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.072 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.4°, θmin = 3.9° |
ω scans | h = −7→7 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −7→7 |
Tmin = 0.524, Tmax = 0.801 | l = −18→18 |
3945 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + 0.8941P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.041 | (Δ/σ)max < 0.001 |
S = 1.13 | Δρmax = 0.73 e Å−3 |
230 reflections | Δρmin = −1.81 e Å−3 |
28 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0041 (4) |
BaCo2Sn4O11 | Z = 2 |
Mr = 905.96 | Mo Kα radiation |
Hexagonal, P63/mmc | µ = 18.76 mm−1 |
a = 6.0880 (2) Å | T = 293 K |
c = 14.1049 (6) Å | 0.06 × 0.04 × 0.03 mm |
V = 452.74 (3) Å3 |
Rigaku R-AXIS RAPID diffractometer | 230 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 215 reflections with I > 2σ(I) |
Tmin = 0.524, Tmax = 0.801 | Rint = 0.072 |
3945 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 28 parameters |
wR(F2) = 0.041 | 1 restraint |
S = 1.13 | Δρmax = 0.73 e Å−3 |
230 reflections | Δρmin = −1.81 e Å−3 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ba1 | 0.3333 | 0.6667 | 0.2500 | 0.0147 (2) | |
Sn1 | 0.5000 | 0.0000 | 0.0000 | 0.0112 (3) | 0.664 (7) |
Co1 | 0.5000 | 0.0000 | 0.0000 | 0.0112 (3) | 0.336 (7) |
Sn2 | 0.0000 | 0.0000 | 0.14643 (4) | 0.0096 (2) | |
Co2 | 0.6667 | 0.3333 | 0.2500 | 0.0203 (4) | |
O1 | 0.1728 (3) | 0.3456 (5) | 0.0815 (2) | 0.0118 (7) | |
O2 | 0.2933 (8) | 0.1466 (4) | 0.2500 | 0.0129 (10) | |
O3 | 0.6667 | 0.3333 | 0.0772 (4) | 0.0136 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0169 (3) | 0.0169 (3) | 0.0103 (4) | 0.00844 (15) | 0.000 | 0.000 |
Sn1 | 0.0139 (4) | 0.0110 (4) | 0.0076 (4) | 0.0055 (2) | 0.00013 (10) | 0.0003 (2) |
Co1 | 0.0139 (4) | 0.0110 (4) | 0.0076 (4) | 0.0055 (2) | 0.00013 (10) | 0.0003 (2) |
Sn2 | 0.0113 (3) | 0.0113 (3) | 0.0062 (3) | 0.00563 (14) | 0.000 | 0.000 |
Co2 | 0.0086 (5) | 0.0086 (5) | 0.0436 (13) | 0.0043 (3) | 0.000 | 0.000 |
O1 | 0.0139 (12) | 0.0132 (17) | 0.0080 (17) | 0.0066 (8) | 0.0015 (6) | 0.0030 (13) |
O2 | 0.010 (2) | 0.0174 (18) | 0.009 (2) | 0.0051 (11) | 0.000 | 0.000 |
O3 | 0.0159 (18) | 0.0159 (18) | 0.009 (3) | 0.0080 (9) | 0.000 | 0.000 |
Ba1—O1i | 2.918 (3) | Sn2—O2xii | 2.127 (3) |
Ba1—O1ii | 2.918 (3) | Sn2—Sn2v | 2.9217 (11) |
Ba1—O1iii | 2.918 (3) | Sn2—O3xvi | 3.6479 (15) |
Ba1—O1 | 2.918 (3) | Sn2—O3xvii | 3.6479 (15) |
Ba1—O1iv | 2.918 (3) | Sn2—O3 | 3.6479 (15) |
Ba1—O1v | 2.918 (3) | Sn2—Ba1xviii | 3.8064 (2) |
Ba1—O2ii | 3.051 (6) | Sn2—Co2xvi | 3.8064 (2) |
Ba1—O2vi | 3.051 (6) | Co2—O2x | 1.969 (4) |
Ba1—O2vii | 3.051 (6) | Co2—O2viii | 1.969 (4) |
Ba1—O2iv | 3.051 (6) | Co2—O2 | 1.969 (4) |
Ba1—O2 | 3.051 (6) | Co2—O3 | 2.437 (6) |
Ba1—O2viii | 3.051 (6) | Co2—O3v | 2.437 (6) |
Sn1—O3 | 2.068 (3) | Co2—Ba1xix | 3.5149 (1) |
Sn1—O3ix | 2.068 (3) | O1—Co1viii | 2.074 (2) |
Sn1—O1x | 2.074 (2) | O1—Sn1viii | 2.074 (2) |
Sn1—O1xi | 2.074 (2) | O1—Co1vi | 2.074 (2) |
Sn1—O1xii | 2.074 (2) | O1—Sn1vi | 2.074 (2) |
Sn1—O1xiii | 2.074 (2) | O1—O3xx | 2.806 (5) |
Sn1—Sn1x | 3.0440 (1) | O1—O3 | 3.045 (2) |
Sn1—Sn1xiv | 3.0440 (1) | O1—O3xvi | 3.045 (2) |
Sn1—Co1x | 3.0440 (1) | O1—Co2xvi | 3.8627 (19) |
Sn1—Co1xiv | 3.0440 (1) | O2—Sn2v | 2.127 (3) |
Sn1—Sn1xv | 3.0440 (1) | O2—Ba1xviii | 3.052 (3) |
Sn1—Co1xv | 3.0440 (1) | O2—O3v | 3.133 (5) |
Sn2—O1vi | 2.040 (3) | O2—O3 | 3.133 (5) |
Sn2—O1 | 2.040 (3) | O3—Co1x | 2.068 (3) |
Sn2—O1xii | 2.040 (3) | O3—Sn1x | 2.068 (3) |
Sn2—O2 | 2.127 (3) | O3—Co1viii | 2.068 (3) |
Sn2—O2vi | 2.127 (3) | O3—Sn1viii | 2.068 (3) |
O1i—Ba1—O1ii | 109.09 (11) | O2—Sn2—Sn2v | 46.63 (8) |
O1i—Ba1—O1iii | 60.31 (9) | O2vi—Sn2—Sn2v | 46.63 (8) |
O1ii—Ba1—O1iii | 146.28 (5) | O2xii—Sn2—Sn2v | 46.63 (8) |
O1i—Ba1—O1 | 146.28 (5) | O1vi—Sn2—O3xvi | 56.59 (3) |
O1ii—Ba1—O1 | 60.31 (9) | O1—Sn2—O3xvi | 56.59 (3) |
O1iii—Ba1—O1 | 146.28 (5) | O1xii—Sn2—O3xvi | 137.79 (12) |
O1i—Ba1—O1iv | 146.28 (5) | O2—Sn2—O3xvi | 122.27 (6) |
O1ii—Ba1—O1iv | 60.31 (9) | O2vi—Sn2—O3xvi | 58.89 (11) |
O1iii—Ba1—O1iv | 109.09 (12) | O2xii—Sn2—O3xvi | 122.27 (6) |
O1—Ba1—O1iv | 60.31 (9) | Sn2v—Sn2—O3xvi | 105.52 (8) |
O1i—Ba1—O1v | 60.31 (9) | O1vi—Sn2—O3xvii | 56.59 (3) |
O1ii—Ba1—O1v | 146.28 (5) | O1—Sn2—O3xvii | 137.79 (12) |
O1iii—Ba1—O1v | 60.31 (9) | O1xii—Sn2—O3xvii | 56.59 (3) |
O1—Ba1—O1v | 109.09 (11) | O2—Sn2—O3xvii | 122.27 (6) |
O1iv—Ba1—O1v | 146.28 (5) | O2vi—Sn2—O3xvii | 122.27 (6) |
O1i—Ba1—O2ii | 58.59 (5) | O2xii—Sn2—O3xvii | 58.89 (11) |
O1ii—Ba1—O2ii | 58.59 (5) | Sn2v—Sn2—O3xvii | 105.52 (8) |
O1iii—Ba1—O2ii | 118.76 (5) | O3xvi—Sn2—O3xvii | 113.12 (7) |
O1—Ba1—O2ii | 92.30 (4) | O1vi—Sn2—O3 | 137.79 (12) |
O1iv—Ba1—O2ii | 118.76 (5) | O1—Sn2—O3 | 56.59 (3) |
O1v—Ba1—O2ii | 92.30 (5) | O1xii—Sn2—O3 | 56.59 (3) |
O1i—Ba1—O2vi | 92.30 (4) | O2—Sn2—O3 | 58.89 (11) |
O1ii—Ba1—O2vi | 92.30 (4) | O2vi—Sn2—O3 | 122.27 (6) |
O1iii—Ba1—O2vi | 118.76 (5) | O2xii—Sn2—O3 | 122.27 (6) |
O1—Ba1—O2vi | 58.59 (5) | Sn2v—Sn2—O3 | 105.52 (8) |
O1iv—Ba1—O2vi | 118.76 (5) | O3xvi—Sn2—O3 | 113.12 (7) |
O1v—Ba1—O2vi | 58.59 (5) | O3xvii—Sn2—O3 | 113.12 (7) |
O2ii—Ba1—O2vi | 67.94 (15) | O1vi—Sn2—Ba1xviii | 125.796 (15) |
O1i—Ba1—O2vii | 58.59 (5) | O1—Sn2—Ba1xviii | 125.796 (15) |
O1ii—Ba1—O2vii | 58.59 (5) | O1xii—Sn2—Ba1xviii | 49.26 (9) |
O1iii—Ba1—O2vii | 92.30 (4) | O2—Sn2—Ba1xviii | 53.189 (6) |
O1—Ba1—O2vii | 118.76 (5) | O2vi—Sn2—Ba1xviii | 114.06 (8) |
O1iv—Ba1—O2vii | 92.30 (4) | O2xii—Sn2—Ba1xviii | 53.189 (6) |
O1v—Ba1—O2vii | 118.76 (5) | Sn2v—Sn2—Ba1xviii | 67.432 (8) |
O2ii—Ba1—O2vii | 52.06 (15) | O3xvi—Sn2—Ba1xviii | 172.95 (8) |
O2vi—Ba1—O2vii | 120.000 (1) | O3xvii—Sn2—Ba1xviii | 69.99 (4) |
O1i—Ba1—O2iv | 92.30 (4) | O3—Sn2—Ba1xviii | 69.99 (4) |
O1ii—Ba1—O2iv | 92.30 (4) | O1vi—Sn2—Co2xvi | 76.11 (5) |
O1iii—Ba1—O2iv | 58.59 (5) | O1—Sn2—Co2xvi | 76.11 (5) |
O1—Ba1—O2iv | 118.76 (5) | O1xii—Sn2—Co2xvi | 175.88 (9) |
O1iv—Ba1—O2iv | 58.59 (5) | O2—Sn2—Co2xvi | 94.13 (5) |
O1v—Ba1—O2iv | 118.76 (5) | O2vi—Sn2—Co2xvi | 20.80 (8) |
O2ii—Ba1—O2iv | 120.0 | O2xii—Sn2—Co2xvi | 94.13 (5) |
O2vi—Ba1—O2iv | 172.06 (15) | Sn2v—Sn2—Co2xvi | 67.432 (8) |
O2vii—Ba1—O2iv | 67.94 (15) | O3xvi—Sn2—Co2xvi | 38.09 (8) |
O1i—Ba1—O2 | 118.76 (5) | O3xvii—Sn2—Co2xvi | 123.20 (2) |
O1ii—Ba1—O2 | 118.76 (5) | O3—Sn2—Co2xvi | 123.20 (2) |
O1iii—Ba1—O2 | 92.30 (4) | Ba1xviii—Sn2—Co2xvi | 134.863 (15) |
O1—Ba1—O2 | 58.59 (5) | O2x—Co2—O2viii | 120.000 (1) |
O1iv—Ba1—O2 | 92.30 (4) | O2x—Co2—O2 | 120.0 |
O1v—Ba1—O2 | 58.59 (5) | O2viii—Co2—O2 | 120.0 |
O2ii—Ba1—O2 | 120.0 | O2x—Co2—O3 | 90.0 |
O2vi—Ba1—O2 | 52.06 (15) | O2viii—Co2—O3 | 90.000 (1) |
O2vii—Ba1—O2 | 172.06 (15) | O2—Co2—O3 | 90.0 |
O2iv—Ba1—O2 | 120.0 | O2x—Co2—O3v | 90.0 |
O1i—Ba1—O2viii | 118.76 (5) | O2viii—Co2—O3v | 90.0 |
O1ii—Ba1—O2viii | 118.76 (5) | O2—Co2—O3v | 90.0 |
O1iii—Ba1—O2viii | 58.59 (5) | O3—Co2—O3v | 180.0 |
O1—Ba1—O2viii | 92.30 (4) | O2x—Co2—Ba1xix | 60.0 |
O1iv—Ba1—O2viii | 58.59 (5) | O2viii—Co2—Ba1xix | 60.0 |
O1v—Ba1—O2viii | 92.30 (4) | O2—Co2—Ba1xix | 180.0 |
O2ii—Ba1—O2viii | 172.06 (15) | O3—Co2—Ba1xix | 90.0 |
O2vi—Ba1—O2viii | 120.0 | O3v—Co2—Ba1xix | 90.0 |
O2vii—Ba1—O2viii | 120.0 | Sn2—O1—Co1viii | 126.84 (8) |
O2iv—Ba1—O2viii | 52.06 (15) | Sn2—O1—Sn1viii | 126.84 (8) |
O2—Ba1—O2viii | 67.94 (15) | Co1viii—O1—Sn1viii | 0.0 |
O3—Sn1—O3ix | 180.0 (3) | Sn2—O1—Co1vi | 126.84 (8) |
O3—Sn1—O1x | 94.67 (11) | Co1viii—O1—Co1vi | 94.45 (12) |
O3ix—Sn1—O1x | 85.33 (11) | Sn1viii—O1—Co1vi | 94.45 (12) |
O3—Sn1—O1xi | 85.33 (11) | Sn2—O1—Sn1vi | 126.84 (8) |
O3ix—Sn1—O1xi | 94.67 (11) | Co1viii—O1—Sn1vi | 94.45 (12) |
O1x—Sn1—O1xi | 180.00 (14) | Sn1viii—O1—Sn1vi | 94.45 (12) |
O3—Sn1—O1xii | 94.67 (11) | Co1vi—O1—Sn1vi | 0.0 |
O3ix—Sn1—O1xii | 85.33 (11) | Sn2—O1—O3xx | 153.78 (16) |
O1x—Sn1—O1xii | 89.97 (16) | Co1viii—O1—O3xx | 47.25 (6) |
O1xi—Sn1—O1xii | 90.03 (16) | Sn1viii—O1—O3xx | 47.25 (6) |
O3—Sn1—O1xiii | 85.33 (11) | Co1vi—O1—O3xx | 47.25 (6) |
O3ix—Sn1—O1xiii | 94.67 (11) | Sn1vi—O1—O3xx | 47.25 (6) |
O1x—Sn1—O1xiii | 90.03 (16) | Sn2—O1—Ba1 | 98.77 (12) |
O1xi—Sn1—O1xiii | 89.97 (16) | Co1viii—O1—Ba1 | 102.93 (9) |
O1xii—Sn1—O1xiii | 180.00 (14) | Sn1viii—O1—Ba1 | 102.93 (9) |
O3—Sn1—Sn1x | 42.60 (9) | Co1vi—O1—Ba1 | 102.93 (9) |
O3ix—Sn1—Sn1x | 137.40 (9) | Sn1vi—O1—Ba1 | 102.93 (9) |
O1x—Sn1—Sn1x | 91.55 (7) | O3xx—O1—Ba1 | 107.45 (11) |
O1xi—Sn1—Sn1x | 88.45 (7) | Sn2—O1—O3 | 89.42 (7) |
O1xii—Sn1—Sn1x | 137.22 (6) | Co1viii—O1—O3 | 42.59 (8) |
O1xiii—Sn1—Sn1x | 42.78 (6) | Sn1viii—O1—O3 | 42.59 (8) |
O3—Sn1—Sn1xiv | 137.40 (9) | Co1vi—O1—O3 | 136.98 (15) |
O3ix—Sn1—Sn1xiv | 42.60 (9) | Sn1vi—O1—O3 | 136.98 (15) |
O1x—Sn1—Sn1xiv | 88.45 (7) | O3xx—O1—O3 | 89.84 (10) |
O1xi—Sn1—Sn1xiv | 91.55 (7) | Ba1—O1—O3 | 91.63 (10) |
O1xii—Sn1—Sn1xiv | 42.78 (6) | Sn2—O1—O3xvi | 89.42 (7) |
O1xiii—Sn1—Sn1xiv | 137.22 (6) | Co1viii—O1—O3xvi | 136.98 (15) |
Sn1x—Sn1—Sn1xiv | 180.0 | Sn1viii—O1—O3xvi | 136.98 (15) |
O3—Sn1—Co1x | 42.60 (9) | Co1vi—O1—O3xvi | 42.59 (8) |
O3ix—Sn1—Co1x | 137.40 (9) | Sn1vi—O1—O3xvi | 42.59 (8) |
O1x—Sn1—Co1x | 91.55 (7) | O3xx—O1—O3xvi | 89.84 (10) |
O1xi—Sn1—Co1x | 88.45 (7) | Ba1—O1—O3xvi | 91.63 (10) |
O1xii—Sn1—Co1x | 137.22 (6) | O3—O1—O3xvi | 176.68 (18) |
O1xiii—Sn1—Co1x | 42.78 (6) | Sn2—O1—Co2 | 73.06 (6) |
Sn1x—Sn1—Co1x | 0.0 | Co1viii—O1—Co2 | 76.66 (3) |
Sn1xiv—Sn1—Co1x | 180.0 | Sn1viii—O1—Co2 | 76.66 (3) |
O3—Sn1—Co1xiv | 137.40 (9) | Co1vi—O1—Co2 | 157.83 (12) |
O3ix—Sn1—Co1xiv | 42.60 (9) | Sn1vi—O1—Co2 | 157.83 (12) |
O1x—Sn1—Co1xiv | 88.45 (7) | O3xx—O1—Co2 | 120.06 (6) |
O1xi—Sn1—Co1xiv | 91.55 (7) | Ba1—O1—Co2 | 60.56 (4) |
O1xii—Sn1—Co1xiv | 42.78 (6) | O3—O1—Co2 | 39.11 (11) |
O1xiii—Sn1—Co1xiv | 137.22 (6) | O3xvi—O1—Co2 | 143.08 (14) |
Sn1x—Sn1—Co1xiv | 180.0 | Sn2—O1—Co2xvi | 73.06 (6) |
Sn1xiv—Sn1—Co1xiv | 0.0 | Co1viii—O1—Co2xvi | 157.83 (12) |
Co1x—Sn1—Co1xiv | 180.0 | Sn1viii—O1—Co2xvi | 157.83 (12) |
O3—Sn1—Sn1xv | 137.40 (9) | Co1vi—O1—Co2xvi | 76.66 (3) |
O3ix—Sn1—Sn1xv | 42.60 (9) | Sn1vi—O1—Co2xvi | 76.66 (3) |
O1x—Sn1—Sn1xv | 42.78 (6) | O3xx—O1—Co2xvi | 120.06 (6) |
O1xi—Sn1—Sn1xv | 137.22 (6) | Ba1—O1—Co2xvi | 60.56 (4) |
O1xii—Sn1—Sn1xv | 88.45 (7) | O3—O1—Co2xvi | 143.08 (14) |
O1xiii—Sn1—Sn1xv | 91.55 (7) | O3xvi—O1—Co2xvi | 39.11 (11) |
Sn1x—Sn1—Sn1xv | 120.0 | Co2—O1—Co2xvi | 104.01 (7) |
Sn1xiv—Sn1—Sn1xv | 60.0 | Co2—O2—Sn2 | 136.63 (8) |
Co1x—Sn1—Sn1xv | 120.0 | Co2—O2—Sn2v | 136.63 (8) |
Co1xiv—Sn1—Sn1xv | 60.0 | Sn2—O2—Sn2v | 86.75 (15) |
O3—Sn1—Co1xv | 137.40 (9) | Co2—O2—Ba1xviii | 86.03 (8) |
O3ix—Sn1—Co1xv | 42.60 (9) | Sn2—O2—Ba1xviii | 92.88 (5) |
O1x—Sn1—Co1xv | 42.78 (6) | Sn2v—O2—Ba1xviii | 92.88 (5) |
O1xi—Sn1—Co1xv | 137.22 (6) | Co2—O2—Ba1 | 86.03 (8) |
O1xii—Sn1—Co1xv | 88.45 (7) | Sn2—O2—Ba1 | 92.88 (5) |
O1xiii—Sn1—Co1xv | 91.55 (7) | Sn2v—O2—Ba1 | 92.88 (5) |
Sn1x—Sn1—Co1xv | 120.0 | Ba1xviii—O2—Ba1 | 172.06 (15) |
Sn1xiv—Sn1—Co1xv | 60.0 | Co2—O2—O3v | 51.07 (9) |
Co1x—Sn1—Co1xv | 120.0 | Sn2—O2—O3v | 172.31 (15) |
Co1xiv—Sn1—Co1xv | 60.0 | Sn2v—O2—O3v | 85.56 (7) |
Sn1xv—Sn1—Co1xv | 0.0 | Ba1xviii—O2—O3v | 87.51 (5) |
O1vi—Sn2—O1 | 101.38 (11) | Ba1—O2—O3v | 87.51 (5) |
O1vi—Sn2—O1xii | 101.38 (11) | Co2—O2—O3 | 51.07 (9) |
O1—Sn2—O1xii | 101.38 (11) | Sn2—O2—O3 | 85.56 (7) |
O1vi—Sn2—O2 | 163.32 (12) | Sn2v—O2—O3 | 172.31 (15) |
O1—Sn2—O2 | 89.07 (8) | Ba1xviii—O2—O3 | 87.51 (5) |
O1xii—Sn2—O2 | 89.07 (8) | Ba1—O2—O3 | 87.51 (5) |
O1vi—Sn2—O2vi | 89.07 (8) | O3v—O2—O3 | 102.13 (17) |
O1—Sn2—O2vi | 89.07 (8) | Sn1—O3—Co1x | 94.80 (17) |
O1xii—Sn2—O2vi | 163.32 (12) | Sn1—O3—Sn1x | 94.80 (17) |
O2—Sn2—O2vi | 78.03 (12) | Co1x—O3—Sn1x | 0.0 |
O1vi—Sn2—O2xii | 89.07 (8) | Sn1—O3—Co1viii | 94.80 (17) |
O1—Sn2—O2xii | 163.32 (12) | Co1x—O3—Co1viii | 94.80 (17) |
O1xii—Sn2—O2xii | 89.07 (8) | Sn1x—O3—Co1viii | 94.80 (17) |
O2—Sn2—O2xii | 78.03 (12) | Sn1—O3—Sn1viii | 94.80 (17) |
O2vi—Sn2—O2xii | 78.03 (12) | Co1x—O3—Sn1viii | 94.80 (17) |
O1vi—Sn2—Sn2v | 116.69 (9) | Sn1x—O3—Sn1viii | 94.80 (17) |
O1—Sn2—Sn2v | 116.69 (9) | Co1viii—O3—Sn1viii | 0.0 |
O1xii—Sn2—Sn2v | 116.69 (9) |
Symmetry codes: (i) −x+y, −x+1, −z+1/2; (ii) −x+y, −x+1, z; (iii) −y+1, x−y+1, −z+1/2; (iv) −y+1, x−y+1, z; (v) x, y, −z+1/2; (vi) −y, x−y, z; (vii) x, y+1, z; (viii) −x+y+1, −x+1, z; (ix) −x+1, −y, −z; (x) −y+1, x−y, z; (xi) y, −x+y, −z; (xii) −x+y, −x, z; (xiii) x−y+1, x, −z; (xiv) −y, x−y−1, z; (xv) −x+y+1, −x, z; (xvi) x−1, y, z; (xvii) x−1, y−1, z; (xviii) x, y−1, z; (xix) x+1, y, z; (xx) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | BaCo2Sn4O11 |
Mr | 905.96 |
Crystal system, space group | Hexagonal, P63/mmc |
Temperature (K) | 293 |
a, c (Å) | 6.0880 (2), 14.1049 (6) |
V (Å3) | 452.74 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 18.76 |
Crystal size (mm) | 0.06 × 0.04 × 0.03 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.524, 0.801 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3945, 230, 215 |
Rint | 0.072 |
(sin θ/λ)max (Å−1) | 0.647 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.041, 1.13 |
No. of reflections | 230 |
No. of parameters | 28 |
No. of restraints | 1 |
Δρmax, Δρmin (e Å−3) | 0.73, −1.81 |
Computer programs: PROCESS-AUTO (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), VESTA (Momma & Izumi, 2008).
Ba1—O1i | 2.918 (3) | Sn1—O1xi | 2.074 (2) |
Ba1—O1ii | 2.918 (3) | Sn1—O1xii | 2.074 (2) |
Ba1—O1iii | 2.918 (3) | Sn1—O1xiii | 2.074 (2) |
Ba1—O1 | 2.918 (3) | Sn2—O1vi | 2.040 (3) |
Ba1—O1iv | 2.918 (3) | Sn2—O1 | 2.040 (3) |
Ba1—O1v | 2.918 (3) | Sn2—O1xii | 2.040 (3) |
Ba1—O2ii | 3.051 (6) | Sn2—O2 | 2.127 (3) |
Ba1—O2vi | 3.051 (6) | Sn2—O2vi | 2.127 (3) |
Ba1—O2vii | 3.051 (6) | Sn2—O2xii | 2.127 (3) |
Ba1—O2iv | 3.051 (6) | Sn2—Sn2v | 2.9217 (11) |
Ba1—O2 | 3.051 (6) | Co2—O2x | 1.969 (4) |
Ba1—O2viii | 3.051 (6) | Co2—O2viii | 1.969 (4) |
Sn1—O3 | 2.068 (3) | Co2—O2 | 1.969 (4) |
Sn1—O3ix | 2.068 (3) | Co2—O3 | 2.437 (6) |
Sn1—O1x | 2.074 (2) | Co2—O3v | 2.437 (6) |
O3—Sn1—O3ix | 180.0 (3) | O1—Sn2—O2 | 89.07 (8) |
O3—Sn1—O1x | 94.67 (11) | O2x—Co2—O2viii | 120.000 (1) |
O3ix—Sn1—O1x | 85.33 (11) | O2x—Co2—O3 | 90.0 |
O1vi—Sn2—O1 | 101.38 (11) | O3—Co2—O3v | 180.0 |
O1vi—Sn2—O2 | 163.32 (12) |
Symmetry codes: (i) −x+y, −x+1, −z+1/2; (ii) −x+y, −x+1, z; (iii) −y+1, x−y+1, −z+1/2; (iv) −y+1, x−y+1, z; (v) x, y, −z+1/2; (vi) −y, x−y, z; (vii) x, y+1, z; (viii) −x+y+1, −x+1, z; (ix) −x+1, −y, −z; (x) −y+1, x−y, z; (xi) y, −x+y, −z; (xii) −x+y, −x, z; (xiii) x−y+1, x, −z. |
Acknowledgements
This work was supported in part by Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
References
Cadée, M. C. & Ijdo, D. J. (1984). J. Solid State Chem. 52, 302–312. Google Scholar
Foo, M. L., Huang, Q., Lynn, J. W., Lee, W.-L., Klimczuk, T., Hagemann, I. S., Ong, N. P. & Cava, R. J. (2006). J. Solid State Chem. 179, 563–572. Web of Science CrossRef CAS Google Scholar
Haberey, F. & Velicescu, M. (1974). Acta Cryst. B30, 1507–1510. CrossRef IUCr Journals Web of Science Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kanke, Y., Kato, K., Takayama-Muromachi, E. & Isobe, M. (1992). Acta Cryst. C48, 1376–1380. CrossRef CAS Web of Science IUCr Journals Google Scholar
Martínez, B., Sandiumenge, F., Golosovski, I., Galí, S., Labarta, A. & Obradors, X. (1993). Phys. Rev. B, 48, 16440–16448. Google Scholar
Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658. Web of Science CrossRef CAS IUCr Journals Google Scholar
Obradors, X., Collomb, A., Pannetier, J., Isalgué, A., Tejada, J. & Joubert, J. C. (1983). Mater. Res. Bull. 18, 1543–1553. CrossRef CAS Web of Science Google Scholar
Rigaku/MSC (2005). PROCESS-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sonne, P. & Müller-Buschbaum, Hk. (1993). J. Alloys Compd, 201, 235–237. CrossRef CAS Web of Science Google Scholar
Sosnowska, I., Przeniosło, R., Shiojiri, M. & Fischer, P. (1996). J. Magn. Magn. Mater. 160, 382–383. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
BaTi2Fe4O11 crystallizes in a six-layer hexagonal structure (R-type, space group P63/mmc) (Haberey & Velicescu, 1974; Obradors et al., 1983; Cadée & Ijdo, 1984; Sosnowska et al., 1996) that is adopted by many multinary iron oxides and transition metal oxides exhibiting complex magnetic behavior (Cadée & Ijdo, 1984; Kanke et al., 1992; Martínez et al., 1993; Foo et al., 2006). BaCo2Sn4O11 has been indicated to be the end member in a solid solution series BaFe4-2xSn2+xCoxO11, where the distribution of Fe, Co, and Sn cations was determined by combined powder X-ray and neutron diffraction (Martínez et al., 1993). However, no crystallographic information (cell parameters and atomic positions) was reported except for the Co and Sn site occupancies in BaCo2Sn4O11. The present paper reports the detailed structure of BaCo2Sn4O11 determined by single-crystal X-ray diffraction.
The structure of BaCo2Sn4O11 can be described in terms of cation-centered oxygen polyhedra (Fig. 1). The disorder within the octahedral 6g site (occupancies of 0.664 (7) Sn1 and 0.336 (7) Co1) agrees with results reported by Martínez et al. (1993) (0.7 Sn1 and 0.3 Co1). These Sn1/Co1-centered octahedra share edges to form layers perpendicular to the c axis. Located between these layers are pillars of two face-sharing Sn2-centered octahedra stacked along the c axis. The trigonal bipyramidal 2d site is occupied exclusively by Co2 atoms and exhibits a displacement ellipsoid elongated along the c direction (Fig. 2). Ba atoms are situated in a 12-fold coordination site (2c).