inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

R-Ferrite-type barium cobalt stannate, BaCo2Sn4O11

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aobaku, Sendai 980-8577, Japan, and bCenter for Interdisciplinary Research, Tohoku University, Aramaki Aza-Aoba, Aobaku, Sendai 980-8578, Japan
*Correspondence e-mail: yamane@tagen.tohoku.ac.jp

(Received 10 September 2008; accepted 23 September 2008; online 27 September 2008)

BaCo2Sn4O11 is isotypic with R-ferrite, BaTi2Fe4O11. The Co atoms fully occupy trigonal–bipyramidal sites ([\overline 6 m2]) and are disordered with Sn atoms in octa­hedral sites (.2/m symmetry), as represented in the formula BaCoSn2(Co0.34Sn0.66)4O11. Ba atoms are situated in a 12-fold coordinated site ([\=6m2] symmetry).

Related literature

For reports on R-ferrite structures, BaTi2Fe4O11, see: Haberey & Velicescu (1974[Haberey, F. & Velicescu, M. (1974). Acta Cryst. B30, 1507-1510.]); Obradors et al. (1983[Obradors, X., Collomb, A., Pannetier, J., Isalgué, A., Tejada, J. & Joubert, J. C. (1983). Mater. Res. Bull. 18, 1543-1553.]); Cadée & Ijdo (1984[Cadée, M. C. & Ijdo, D. J. (1984). J. Solid State Chem. 52, 302-312.]); Sosnowska et al. (1996[Sosnowska, I., Przeniosło, R., Shiojiri, M. & Fischer, P. (1996). J. Magn. Magn. Mater. 160, 382-383.]). For reports on R-ferrite structure with other compositions, see: Cadée & Ijdo (1984[Cadée, M. C. & Ijdo, D. J. (1984). J. Solid State Chem. 52, 302-312.]); Kanke et al. (1992[Kanke, Y., Kato, K., Takayama-Muromachi, E. & Isobe, M. (1992). Acta Cryst. C48, 1376-1380.]); Martínez et al. (1993[Martínez, B., Sandiumenge, F., Golosovski, I., Galí, S., Labarta, A. & Obradors, X. (1993). Phys. Rev. B, 48, 16440-16448.]); Foo et al. (2006[Foo, M. L., Huang, Q., Lynn, J. W., Lee, W.-L., Klimczuk, T., Hagemann, I. S., Ong, N. P. & Cava, R. J. (2006). J. Solid State Chem. 179, 563-572.]). Sosnowska et al. (1996[Sosnowska, I., Przeniosło, R., Shiojiri, M. & Fischer, P. (1996). J. Magn. Magn. Mater. 160, 382-383.]). For Ba3SnCo10O20, another phase in the Ba–Co–Sn–O system, see: Sonne & Müller-Buschbaum (1993[Sonne, P. & Müller-Buschbaum, Hk. (1993). J. Alloys Compd, 201, 235-237.]).

Experimental

Crystal data
  • BaCo2Sn4O11

  • Mr = 905.96

  • Hexagonal, P 63 /m m c

  • a = 6.0880 (2) Å

  • c = 14.1049 (6) Å

  • V = 452.74 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 18.76 mm−1

  • T = 293 (2) K

  • 0.06 × 0.04 × 0.03 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.524, Tmax = 0.801

  • 3945 measured reflections

  • 230 independent reflections

  • 215 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.041

  • S = 1.13

  • 230 reflections

  • 28 parameters

  • 1 restraint

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.81 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ba1—O1 2.918 (3)
Ba1—O2 3.051 (6)
Sn1—O3 2.068 (3)
Sn2—O1 2.040 (3)
Sn2—O2 2.127 (3)
Co2—O2 1.969 (4)
Co2—O3 2.437 (6)
O3—Sn1—O3iv 180
O3—Sn1—O1v 94.67 (11)
O3iv—Sn1—O1v 85.33 (11)
O1ii—Sn2—O1 101.38 (11)
O1ii—Sn2—O2 163.32 (12)
O1—Sn2—O2 89.07 (8)
O2v—Co2—O2iii 120
O2v—Co2—O3 90
O3—Co2—O3i 180
Symmetry codes: (i) [x, y, -z+{\script{1\over 2}}]; (ii) -y, x-y, z; (iii) -x+y+1, -x+1, z; (iv) -x+1, -y, -z; (v) -y+1, x-y, z.

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005[Rigaku/MSC (2005). PROCESS-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). PROCESS-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

BaTi2Fe4O11 crystallizes in a six-layer hexagonal structure (R-type, space group P63/mmc) (Haberey & Velicescu, 1974; Obradors et al., 1983; Cadée & Ijdo, 1984; Sosnowska et al., 1996) that is adopted by many multinary iron oxides and transition metal oxides exhibiting complex magnetic behavior (Cadée & Ijdo, 1984; Kanke et al., 1992; Martínez et al., 1993; Foo et al., 2006). BaCo2Sn4O11 has been indicated to be the end member in a solid solution series BaFe4-2xSn2+xCoxO11, where the distribution of Fe, Co, and Sn cations was determined by combined powder X-ray and neutron diffraction (Martínez et al., 1993). However, no crystallographic information (cell parameters and atomic positions) was reported except for the Co and Sn site occupancies in BaCo2Sn4O11. The present paper reports the detailed structure of BaCo2Sn4O11 determined by single-crystal X-ray diffraction.

The structure of BaCo2Sn4O11 can be described in terms of cation-centered oxygen polyhedra (Fig. 1). The disorder within the octahedral 6g site (occupancies of 0.664 (7) Sn1 and 0.336 (7) Co1) agrees with results reported by Martínez et al. (1993) (0.7 Sn1 and 0.3 Co1). These Sn1/Co1-centered octahedra share edges to form layers perpendicular to the c axis. Located between these layers are pillars of two face-sharing Sn2-centered octahedra stacked along the c axis. The trigonal bipyramidal 2d site is occupied exclusively by Co2 atoms and exhibits a displacement ellipsoid elongated along the c direction (Fig. 2). Ba atoms are situated in a 12-fold coordination site (2c).

Related literature top

For R-ferrite structures, see: Haberey & Velicescu (1974); Obradors et al. (1983). For BaTi2Fe4O11, see: Cadée & Ijdo (1984); Sosnowska et al. (1996). For Ba3SnCo10O20, another phase in the Ba–Co–Sn–O system, see: Sonne & Müller-Buschbaum (1993). For further related literature, see: Martínez et al. (1993); Kanke et al. (1992); Foo et al. (2006). [Please check re-arranged text]

Experimental top

A mixture of BaCO3 (99.99%, Wako Pure Chemical Ind.), Co3O4 (99.95%, Kanto Chemical Co. Inc.), and SnO2 (99.9%, Rare Metallic Co. Ltd.) powders in a molar ratio of Ba:Co:Sn = 1:2:4 was ground together and pressed into a pellet. The pellet was placed on a platinum plate and heated in air for 1 h at 1473 K or 1823 K in an electric furnace. The pellet was melted at 1823 K and green transparent single crystals of BaCo2Sn4O11 were obtained. The chemical analysis of the polycrystalline single phase BaCo2Sn4O11 prepared at 1473 K was carried out by inductively coupled plasma (ICP) emission spectrometry for Ba, Co and Sn, and by the He carrier melting-infrared absorption method (TC-436, LECO) for O. The results of the chemical analysis (Ba 14.9 (5), Co 13.8 (5), Sn 52.9 (8), and O 19.1 (8) wt%) agreed with the ideal contents (Ba 15.2, Co 13.4, Sn 51.9, O 19.5 wt%).

The magnetic susceptibility of BaCo2Sn4O11 was measured with a superconducting quantum interference device (SQUID) magnetometer (Quantum Design, MPMS XL) from 5 to 400 K under a magnetic field of 5 kOe. The polycrystalline sample followed the Curie–Weiss law above the Neel temperature (TN). The TN of 7 K, the Weiss temperature (Θ) of -42 K, and the magnetic momenteff) of 4.7 µB per Co measured for the sample were consistent with the values reported by Martínez et al. (1993) (TN = 9 K, Θ = -44 K, µeff = 4.4 µB).

Refinement top

In the structure analysis using powder X-ray and neutron diffraction data for BaTi2Fe4O11 and BaSn2Fe4O11 (Obradors et al., 1983; Cadée & Ijdo,1984; Martínez et al., 1993), the 2d site of Fe atoms was statistically split into two site (4f). We applied this split site model and refined the positional parameter of z for the Co2 site, but it converged into 0.250 within an estimated deviation. Thus, we fixed the position at 2d site for the final refinement.

Computing details top

Data collection: PROCESS-AUTO (Rigaku/MSC, 2005); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2005); data reduction: CrystalStructure (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of BaCo2Sn4O11 in terms of cation-centered oxygen polyhedra.
[Figure 2] Fig. 2. The O-atom coordination around the cation sites of BaCo2Sn4O11 (symmetry codes as in Table 1). Displacement ellipsoids are drawn at the 99% probability level.
barium cobalt stannate top
Crystal data top
BaCo2Sn4O11Dx = 6.646 Mg m3
Mr = 905.96Mo Kα radiation, λ = 0.71075 Å
Hexagonal, P63/mmcCell parameters from 3536 reflections
Hall symbol: -P 6c 2cθ = 7.7–54.7°
a = 6.0880 (2) ŵ = 18.76 mm1
c = 14.1049 (6) ÅT = 293 K
V = 452.74 (3) Å3Block, green
Z = 20.06 × 0.04 × 0.03 mm
F(000) = 796
Data collection top
Rigaku R-AXIS RAPID
diffractometer
230 independent reflections
Radiation source: fine-focus sealed tube215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.9°
ω scansh = 77
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 77
Tmin = 0.524, Tmax = 0.801l = 1818
3945 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + 0.8941P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.73 e Å3
230 reflectionsΔρmin = 1.81 e Å3
28 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0041 (4)
Crystal data top
BaCo2Sn4O11Z = 2
Mr = 905.96Mo Kα radiation
Hexagonal, P63/mmcµ = 18.76 mm1
a = 6.0880 (2) ÅT = 293 K
c = 14.1049 (6) Å0.06 × 0.04 × 0.03 mm
V = 452.74 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
230 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
215 reflections with I > 2σ(I)
Tmin = 0.524, Tmax = 0.801Rint = 0.072
3945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01828 parameters
wR(F2) = 0.0411 restraint
S = 1.13Δρmax = 0.73 e Å3
230 reflectionsΔρmin = 1.81 e Å3
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.33330.66670.25000.0147 (2)
Sn10.50000.00000.00000.0112 (3)0.664 (7)
Co10.50000.00000.00000.0112 (3)0.336 (7)
Sn20.00000.00000.14643 (4)0.0096 (2)
Co20.66670.33330.25000.0203 (4)
O10.1728 (3)0.3456 (5)0.0815 (2)0.0118 (7)
O20.2933 (8)0.1466 (4)0.25000.0129 (10)
O30.66670.33330.0772 (4)0.0136 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0169 (3)0.0169 (3)0.0103 (4)0.00844 (15)0.0000.000
Sn10.0139 (4)0.0110 (4)0.0076 (4)0.0055 (2)0.00013 (10)0.0003 (2)
Co10.0139 (4)0.0110 (4)0.0076 (4)0.0055 (2)0.00013 (10)0.0003 (2)
Sn20.0113 (3)0.0113 (3)0.0062 (3)0.00563 (14)0.0000.000
Co20.0086 (5)0.0086 (5)0.0436 (13)0.0043 (3)0.0000.000
O10.0139 (12)0.0132 (17)0.0080 (17)0.0066 (8)0.0015 (6)0.0030 (13)
O20.010 (2)0.0174 (18)0.009 (2)0.0051 (11)0.0000.000
O30.0159 (18)0.0159 (18)0.009 (3)0.0080 (9)0.0000.000
Geometric parameters (Å, º) top
Ba1—O1i2.918 (3)Sn2—O2xii2.127 (3)
Ba1—O1ii2.918 (3)Sn2—Sn2v2.9217 (11)
Ba1—O1iii2.918 (3)Sn2—O3xvi3.6479 (15)
Ba1—O12.918 (3)Sn2—O3xvii3.6479 (15)
Ba1—O1iv2.918 (3)Sn2—O33.6479 (15)
Ba1—O1v2.918 (3)Sn2—Ba1xviii3.8064 (2)
Ba1—O2ii3.051 (6)Sn2—Co2xvi3.8064 (2)
Ba1—O2vi3.051 (6)Co2—O2x1.969 (4)
Ba1—O2vii3.051 (6)Co2—O2viii1.969 (4)
Ba1—O2iv3.051 (6)Co2—O21.969 (4)
Ba1—O23.051 (6)Co2—O32.437 (6)
Ba1—O2viii3.051 (6)Co2—O3v2.437 (6)
Sn1—O32.068 (3)Co2—Ba1xix3.5149 (1)
Sn1—O3ix2.068 (3)O1—Co1viii2.074 (2)
Sn1—O1x2.074 (2)O1—Sn1viii2.074 (2)
Sn1—O1xi2.074 (2)O1—Co1vi2.074 (2)
Sn1—O1xii2.074 (2)O1—Sn1vi2.074 (2)
Sn1—O1xiii2.074 (2)O1—O3xx2.806 (5)
Sn1—Sn1x3.0440 (1)O1—O33.045 (2)
Sn1—Sn1xiv3.0440 (1)O1—O3xvi3.045 (2)
Sn1—Co1x3.0440 (1)O1—Co2xvi3.8627 (19)
Sn1—Co1xiv3.0440 (1)O2—Sn2v2.127 (3)
Sn1—Sn1xv3.0440 (1)O2—Ba1xviii3.052 (3)
Sn1—Co1xv3.0440 (1)O2—O3v3.133 (5)
Sn2—O1vi2.040 (3)O2—O33.133 (5)
Sn2—O12.040 (3)O3—Co1x2.068 (3)
Sn2—O1xii2.040 (3)O3—Sn1x2.068 (3)
Sn2—O22.127 (3)O3—Co1viii2.068 (3)
Sn2—O2vi2.127 (3)O3—Sn1viii2.068 (3)
O1i—Ba1—O1ii109.09 (11)O2—Sn2—Sn2v46.63 (8)
O1i—Ba1—O1iii60.31 (9)O2vi—Sn2—Sn2v46.63 (8)
O1ii—Ba1—O1iii146.28 (5)O2xii—Sn2—Sn2v46.63 (8)
O1i—Ba1—O1146.28 (5)O1vi—Sn2—O3xvi56.59 (3)
O1ii—Ba1—O160.31 (9)O1—Sn2—O3xvi56.59 (3)
O1iii—Ba1—O1146.28 (5)O1xii—Sn2—O3xvi137.79 (12)
O1i—Ba1—O1iv146.28 (5)O2—Sn2—O3xvi122.27 (6)
O1ii—Ba1—O1iv60.31 (9)O2vi—Sn2—O3xvi58.89 (11)
O1iii—Ba1—O1iv109.09 (12)O2xii—Sn2—O3xvi122.27 (6)
O1—Ba1—O1iv60.31 (9)Sn2v—Sn2—O3xvi105.52 (8)
O1i—Ba1—O1v60.31 (9)O1vi—Sn2—O3xvii56.59 (3)
O1ii—Ba1—O1v146.28 (5)O1—Sn2—O3xvii137.79 (12)
O1iii—Ba1—O1v60.31 (9)O1xii—Sn2—O3xvii56.59 (3)
O1—Ba1—O1v109.09 (11)O2—Sn2—O3xvii122.27 (6)
O1iv—Ba1—O1v146.28 (5)O2vi—Sn2—O3xvii122.27 (6)
O1i—Ba1—O2ii58.59 (5)O2xii—Sn2—O3xvii58.89 (11)
O1ii—Ba1—O2ii58.59 (5)Sn2v—Sn2—O3xvii105.52 (8)
O1iii—Ba1—O2ii118.76 (5)O3xvi—Sn2—O3xvii113.12 (7)
O1—Ba1—O2ii92.30 (4)O1vi—Sn2—O3137.79 (12)
O1iv—Ba1—O2ii118.76 (5)O1—Sn2—O356.59 (3)
O1v—Ba1—O2ii92.30 (5)O1xii—Sn2—O356.59 (3)
O1i—Ba1—O2vi92.30 (4)O2—Sn2—O358.89 (11)
O1ii—Ba1—O2vi92.30 (4)O2vi—Sn2—O3122.27 (6)
O1iii—Ba1—O2vi118.76 (5)O2xii—Sn2—O3122.27 (6)
O1—Ba1—O2vi58.59 (5)Sn2v—Sn2—O3105.52 (8)
O1iv—Ba1—O2vi118.76 (5)O3xvi—Sn2—O3113.12 (7)
O1v—Ba1—O2vi58.59 (5)O3xvii—Sn2—O3113.12 (7)
O2ii—Ba1—O2vi67.94 (15)O1vi—Sn2—Ba1xviii125.796 (15)
O1i—Ba1—O2vii58.59 (5)O1—Sn2—Ba1xviii125.796 (15)
O1ii—Ba1—O2vii58.59 (5)O1xii—Sn2—Ba1xviii49.26 (9)
O1iii—Ba1—O2vii92.30 (4)O2—Sn2—Ba1xviii53.189 (6)
O1—Ba1—O2vii118.76 (5)O2vi—Sn2—Ba1xviii114.06 (8)
O1iv—Ba1—O2vii92.30 (4)O2xii—Sn2—Ba1xviii53.189 (6)
O1v—Ba1—O2vii118.76 (5)Sn2v—Sn2—Ba1xviii67.432 (8)
O2ii—Ba1—O2vii52.06 (15)O3xvi—Sn2—Ba1xviii172.95 (8)
O2vi—Ba1—O2vii120.000 (1)O3xvii—Sn2—Ba1xviii69.99 (4)
O1i—Ba1—O2iv92.30 (4)O3—Sn2—Ba1xviii69.99 (4)
O1ii—Ba1—O2iv92.30 (4)O1vi—Sn2—Co2xvi76.11 (5)
O1iii—Ba1—O2iv58.59 (5)O1—Sn2—Co2xvi76.11 (5)
O1—Ba1—O2iv118.76 (5)O1xii—Sn2—Co2xvi175.88 (9)
O1iv—Ba1—O2iv58.59 (5)O2—Sn2—Co2xvi94.13 (5)
O1v—Ba1—O2iv118.76 (5)O2vi—Sn2—Co2xvi20.80 (8)
O2ii—Ba1—O2iv120.0O2xii—Sn2—Co2xvi94.13 (5)
O2vi—Ba1—O2iv172.06 (15)Sn2v—Sn2—Co2xvi67.432 (8)
O2vii—Ba1—O2iv67.94 (15)O3xvi—Sn2—Co2xvi38.09 (8)
O1i—Ba1—O2118.76 (5)O3xvii—Sn2—Co2xvi123.20 (2)
O1ii—Ba1—O2118.76 (5)O3—Sn2—Co2xvi123.20 (2)
O1iii—Ba1—O292.30 (4)Ba1xviii—Sn2—Co2xvi134.863 (15)
O1—Ba1—O258.59 (5)O2x—Co2—O2viii120.000 (1)
O1iv—Ba1—O292.30 (4)O2x—Co2—O2120.0
O1v—Ba1—O258.59 (5)O2viii—Co2—O2120.0
O2ii—Ba1—O2120.0O2x—Co2—O390.0
O2vi—Ba1—O252.06 (15)O2viii—Co2—O390.000 (1)
O2vii—Ba1—O2172.06 (15)O2—Co2—O390.0
O2iv—Ba1—O2120.0O2x—Co2—O3v90.0
O1i—Ba1—O2viii118.76 (5)O2viii—Co2—O3v90.0
O1ii—Ba1—O2viii118.76 (5)O2—Co2—O3v90.0
O1iii—Ba1—O2viii58.59 (5)O3—Co2—O3v180.0
O1—Ba1—O2viii92.30 (4)O2x—Co2—Ba1xix60.0
O1iv—Ba1—O2viii58.59 (5)O2viii—Co2—Ba1xix60.0
O1v—Ba1—O2viii92.30 (4)O2—Co2—Ba1xix180.0
O2ii—Ba1—O2viii172.06 (15)O3—Co2—Ba1xix90.0
O2vi—Ba1—O2viii120.0O3v—Co2—Ba1xix90.0
O2vii—Ba1—O2viii120.0Sn2—O1—Co1viii126.84 (8)
O2iv—Ba1—O2viii52.06 (15)Sn2—O1—Sn1viii126.84 (8)
O2—Ba1—O2viii67.94 (15)Co1viii—O1—Sn1viii0.0
O3—Sn1—O3ix180.0 (3)Sn2—O1—Co1vi126.84 (8)
O3—Sn1—O1x94.67 (11)Co1viii—O1—Co1vi94.45 (12)
O3ix—Sn1—O1x85.33 (11)Sn1viii—O1—Co1vi94.45 (12)
O3—Sn1—O1xi85.33 (11)Sn2—O1—Sn1vi126.84 (8)
O3ix—Sn1—O1xi94.67 (11)Co1viii—O1—Sn1vi94.45 (12)
O1x—Sn1—O1xi180.00 (14)Sn1viii—O1—Sn1vi94.45 (12)
O3—Sn1—O1xii94.67 (11)Co1vi—O1—Sn1vi0.0
O3ix—Sn1—O1xii85.33 (11)Sn2—O1—O3xx153.78 (16)
O1x—Sn1—O1xii89.97 (16)Co1viii—O1—O3xx47.25 (6)
O1xi—Sn1—O1xii90.03 (16)Sn1viii—O1—O3xx47.25 (6)
O3—Sn1—O1xiii85.33 (11)Co1vi—O1—O3xx47.25 (6)
O3ix—Sn1—O1xiii94.67 (11)Sn1vi—O1—O3xx47.25 (6)
O1x—Sn1—O1xiii90.03 (16)Sn2—O1—Ba198.77 (12)
O1xi—Sn1—O1xiii89.97 (16)Co1viii—O1—Ba1102.93 (9)
O1xii—Sn1—O1xiii180.00 (14)Sn1viii—O1—Ba1102.93 (9)
O3—Sn1—Sn1x42.60 (9)Co1vi—O1—Ba1102.93 (9)
O3ix—Sn1—Sn1x137.40 (9)Sn1vi—O1—Ba1102.93 (9)
O1x—Sn1—Sn1x91.55 (7)O3xx—O1—Ba1107.45 (11)
O1xi—Sn1—Sn1x88.45 (7)Sn2—O1—O389.42 (7)
O1xii—Sn1—Sn1x137.22 (6)Co1viii—O1—O342.59 (8)
O1xiii—Sn1—Sn1x42.78 (6)Sn1viii—O1—O342.59 (8)
O3—Sn1—Sn1xiv137.40 (9)Co1vi—O1—O3136.98 (15)
O3ix—Sn1—Sn1xiv42.60 (9)Sn1vi—O1—O3136.98 (15)
O1x—Sn1—Sn1xiv88.45 (7)O3xx—O1—O389.84 (10)
O1xi—Sn1—Sn1xiv91.55 (7)Ba1—O1—O391.63 (10)
O1xii—Sn1—Sn1xiv42.78 (6)Sn2—O1—O3xvi89.42 (7)
O1xiii—Sn1—Sn1xiv137.22 (6)Co1viii—O1—O3xvi136.98 (15)
Sn1x—Sn1—Sn1xiv180.0Sn1viii—O1—O3xvi136.98 (15)
O3—Sn1—Co1x42.60 (9)Co1vi—O1—O3xvi42.59 (8)
O3ix—Sn1—Co1x137.40 (9)Sn1vi—O1—O3xvi42.59 (8)
O1x—Sn1—Co1x91.55 (7)O3xx—O1—O3xvi89.84 (10)
O1xi—Sn1—Co1x88.45 (7)Ba1—O1—O3xvi91.63 (10)
O1xii—Sn1—Co1x137.22 (6)O3—O1—O3xvi176.68 (18)
O1xiii—Sn1—Co1x42.78 (6)Sn2—O1—Co273.06 (6)
Sn1x—Sn1—Co1x0.0Co1viii—O1—Co276.66 (3)
Sn1xiv—Sn1—Co1x180.0Sn1viii—O1—Co276.66 (3)
O3—Sn1—Co1xiv137.40 (9)Co1vi—O1—Co2157.83 (12)
O3ix—Sn1—Co1xiv42.60 (9)Sn1vi—O1—Co2157.83 (12)
O1x—Sn1—Co1xiv88.45 (7)O3xx—O1—Co2120.06 (6)
O1xi—Sn1—Co1xiv91.55 (7)Ba1—O1—Co260.56 (4)
O1xii—Sn1—Co1xiv42.78 (6)O3—O1—Co239.11 (11)
O1xiii—Sn1—Co1xiv137.22 (6)O3xvi—O1—Co2143.08 (14)
Sn1x—Sn1—Co1xiv180.0Sn2—O1—Co2xvi73.06 (6)
Sn1xiv—Sn1—Co1xiv0.0Co1viii—O1—Co2xvi157.83 (12)
Co1x—Sn1—Co1xiv180.0Sn1viii—O1—Co2xvi157.83 (12)
O3—Sn1—Sn1xv137.40 (9)Co1vi—O1—Co2xvi76.66 (3)
O3ix—Sn1—Sn1xv42.60 (9)Sn1vi—O1—Co2xvi76.66 (3)
O1x—Sn1—Sn1xv42.78 (6)O3xx—O1—Co2xvi120.06 (6)
O1xi—Sn1—Sn1xv137.22 (6)Ba1—O1—Co2xvi60.56 (4)
O1xii—Sn1—Sn1xv88.45 (7)O3—O1—Co2xvi143.08 (14)
O1xiii—Sn1—Sn1xv91.55 (7)O3xvi—O1—Co2xvi39.11 (11)
Sn1x—Sn1—Sn1xv120.0Co2—O1—Co2xvi104.01 (7)
Sn1xiv—Sn1—Sn1xv60.0Co2—O2—Sn2136.63 (8)
Co1x—Sn1—Sn1xv120.0Co2—O2—Sn2v136.63 (8)
Co1xiv—Sn1—Sn1xv60.0Sn2—O2—Sn2v86.75 (15)
O3—Sn1—Co1xv137.40 (9)Co2—O2—Ba1xviii86.03 (8)
O3ix—Sn1—Co1xv42.60 (9)Sn2—O2—Ba1xviii92.88 (5)
O1x—Sn1—Co1xv42.78 (6)Sn2v—O2—Ba1xviii92.88 (5)
O1xi—Sn1—Co1xv137.22 (6)Co2—O2—Ba186.03 (8)
O1xii—Sn1—Co1xv88.45 (7)Sn2—O2—Ba192.88 (5)
O1xiii—Sn1—Co1xv91.55 (7)Sn2v—O2—Ba192.88 (5)
Sn1x—Sn1—Co1xv120.0Ba1xviii—O2—Ba1172.06 (15)
Sn1xiv—Sn1—Co1xv60.0Co2—O2—O3v51.07 (9)
Co1x—Sn1—Co1xv120.0Sn2—O2—O3v172.31 (15)
Co1xiv—Sn1—Co1xv60.0Sn2v—O2—O3v85.56 (7)
Sn1xv—Sn1—Co1xv0.0Ba1xviii—O2—O3v87.51 (5)
O1vi—Sn2—O1101.38 (11)Ba1—O2—O3v87.51 (5)
O1vi—Sn2—O1xii101.38 (11)Co2—O2—O351.07 (9)
O1—Sn2—O1xii101.38 (11)Sn2—O2—O385.56 (7)
O1vi—Sn2—O2163.32 (12)Sn2v—O2—O3172.31 (15)
O1—Sn2—O289.07 (8)Ba1xviii—O2—O387.51 (5)
O1xii—Sn2—O289.07 (8)Ba1—O2—O387.51 (5)
O1vi—Sn2—O2vi89.07 (8)O3v—O2—O3102.13 (17)
O1—Sn2—O2vi89.07 (8)Sn1—O3—Co1x94.80 (17)
O1xii—Sn2—O2vi163.32 (12)Sn1—O3—Sn1x94.80 (17)
O2—Sn2—O2vi78.03 (12)Co1x—O3—Sn1x0.0
O1vi—Sn2—O2xii89.07 (8)Sn1—O3—Co1viii94.80 (17)
O1—Sn2—O2xii163.32 (12)Co1x—O3—Co1viii94.80 (17)
O1xii—Sn2—O2xii89.07 (8)Sn1x—O3—Co1viii94.80 (17)
O2—Sn2—O2xii78.03 (12)Sn1—O3—Sn1viii94.80 (17)
O2vi—Sn2—O2xii78.03 (12)Co1x—O3—Sn1viii94.80 (17)
O1vi—Sn2—Sn2v116.69 (9)Sn1x—O3—Sn1viii94.80 (17)
O1—Sn2—Sn2v116.69 (9)Co1viii—O3—Sn1viii0.0
O1xii—Sn2—Sn2v116.69 (9)
Symmetry codes: (i) x+y, x+1, z+1/2; (ii) x+y, x+1, z; (iii) y+1, xy+1, z+1/2; (iv) y+1, xy+1, z; (v) x, y, z+1/2; (vi) y, xy, z; (vii) x, y+1, z; (viii) x+y+1, x+1, z; (ix) x+1, y, z; (x) y+1, xy, z; (xi) y, x+y, z; (xii) x+y, x, z; (xiii) xy+1, x, z; (xiv) y, xy1, z; (xv) x+y+1, x, z; (xvi) x1, y, z; (xvii) x1, y1, z; (xviii) x, y1, z; (xix) x+1, y, z; (xx) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaBaCo2Sn4O11
Mr905.96
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)293
a, c (Å)6.0880 (2), 14.1049 (6)
V3)452.74 (3)
Z2
Radiation typeMo Kα
µ (mm1)18.76
Crystal size (mm)0.06 × 0.04 × 0.03
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.524, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
3945, 230, 215
Rint0.072
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.041, 1.13
No. of reflections230
No. of parameters28
No. of restraints1
Δρmax, Δρmin (e Å3)0.73, 1.81

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2005), CrystalStructure (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), VESTA (Momma & Izumi, 2008).

Selected geometric parameters (Å, º) top
Ba1—O1i2.918 (3)Sn1—O1xi2.074 (2)
Ba1—O1ii2.918 (3)Sn1—O1xii2.074 (2)
Ba1—O1iii2.918 (3)Sn1—O1xiii2.074 (2)
Ba1—O12.918 (3)Sn2—O1vi2.040 (3)
Ba1—O1iv2.918 (3)Sn2—O12.040 (3)
Ba1—O1v2.918 (3)Sn2—O1xii2.040 (3)
Ba1—O2ii3.051 (6)Sn2—O22.127 (3)
Ba1—O2vi3.051 (6)Sn2—O2vi2.127 (3)
Ba1—O2vii3.051 (6)Sn2—O2xii2.127 (3)
Ba1—O2iv3.051 (6)Sn2—Sn2v2.9217 (11)
Ba1—O23.051 (6)Co2—O2x1.969 (4)
Ba1—O2viii3.051 (6)Co2—O2viii1.969 (4)
Sn1—O32.068 (3)Co2—O21.969 (4)
Sn1—O3ix2.068 (3)Co2—O32.437 (6)
Sn1—O1x2.074 (2)Co2—O3v2.437 (6)
O3—Sn1—O3ix180.0 (3)O1—Sn2—O289.07 (8)
O3—Sn1—O1x94.67 (11)O2x—Co2—O2viii120.000 (1)
O3ix—Sn1—O1x85.33 (11)O2x—Co2—O390.0
O1vi—Sn2—O1101.38 (11)O3—Co2—O3v180.0
O1vi—Sn2—O2163.32 (12)
Symmetry codes: (i) x+y, x+1, z+1/2; (ii) x+y, x+1, z; (iii) y+1, xy+1, z+1/2; (iv) y+1, xy+1, z; (v) x, y, z+1/2; (vi) y, xy, z; (vii) x, y+1, z; (viii) x+y+1, x+1, z; (ix) x+1, y, z; (x) y+1, xy, z; (xi) y, x+y, z; (xii) x+y, x, z; (xiii) xy+1, x, z.
 

Acknowledgements

This work was supported in part by Special Coordination Funds from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationCadée, M. C. & Ijdo, D. J. (1984). J. Solid State Chem. 52, 302–312.  Google Scholar
First citationFoo, M. L., Huang, Q., Lynn, J. W., Lee, W.-L., Klimczuk, T., Hagemann, I. S., Ong, N. P. & Cava, R. J. (2006). J. Solid State Chem. 179, 563–572.  Web of Science CrossRef CAS Google Scholar
First citationHaberey, F. & Velicescu, M. (1974). Acta Cryst. B30, 1507–1510.  CrossRef IUCr Journals Web of Science Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKanke, Y., Kato, K., Takayama-Muromachi, E. & Isobe, M. (1992). Acta Cryst. C48, 1376–1380.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMartínez, B., Sandiumenge, F., Golosovski, I., Galí, S., Labarta, A. & Obradors, X. (1993). Phys. Rev. B, 48, 16440–16448.  Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationObradors, X., Collomb, A., Pannetier, J., Isalgué, A., Tejada, J. & Joubert, J. C. (1983). Mater. Res. Bull. 18, 1543–1553.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). PROCESS-AUTO and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonne, P. & Müller-Buschbaum, Hk. (1993). J. Alloys Compd, 201, 235–237.  CrossRef CAS Web of Science Google Scholar
First citationSosnowska, I., Przeniosło, R., Shiojiri, M. & Fischer, P. (1996). J. Magn. Magn. Mater. 160, 382–383.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds