organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2′,4′-Di­fluoro­bi­phenyl-4-yl)ethanone

aInstitute of Coordination Catalysis, Yichun University, Yichun, Jiangxi, 336000, People's Republic of China, and bCollege of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, 336000, People's Republic of China
*Correspondence e-mail: zhong_dichang@yahoo.com.cn

(Received 12 July 2008; accepted 6 September 2008; online 13 September 2008)

In the crystal structure of the title compound, C14H10F2O, the dihedral angles between the benzene rings in the two crystallographically independent mol­ecules are 46.9 (2) and 47.6 (2)°. The mol­ecules are linked into dimers by C—H⋯F inter­actions and these dimers are further stacked into columns along the b axis by ππ inter­actions between the benzene rings [centroid–centroid distance = 3.8221 Å; the dihedral angle between the planes of these rings is 4.87 (2)°]. In addition, C—F⋯π interactions also contribute to the crystal packing (C⋯centroid distance = 3.5919 Å).

Related literature

For general background, see: William & Ruyle (1973[William, V. & Ruyle, W. (1973). US Patent 3 714 226.]). For related structures, see:Kuchar et al. (1997[Kuchar, M., Poppova, M., Jandera, A., Panajotovova, V., Zunova, H., Budesinsky, M., Tomkova, H., Jegorov, A. & Taimr, J. (1997). Collect. Czech. Chem. Commun. 62, 498-509.]); Jegorov et al. (1995[Jegorov, A., Sedmera, P., Havlicek, V., Husak, M., Pakhomova, S., Kratochvil, B., Kuchar, M. & Bulej, P. (1995). J. Fluorine Chem. 73, 213-219.], 1997[Jegorov, A., Husak, M., Ondracek, J., Kratochvil, B., Kuchar, M., Bulej, P., Gilar, M. & Tesarova, E. (1997). J. Fluorine Chem. 83, 111-116.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10F2O

  • Mr = 232.22

  • Orthorhombic, P c a 21

  • a = 13.092 (7) Å

  • b = 6.102 (3) Å

  • c = 27.719 (15) Å

  • V = 2214 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.46 × 0.32 × 0.25 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: none

  • 15497 measured reflections

  • 2576 independent reflections

  • 2219 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.207

  • S = 1.13

  • 2576 reflections

  • 309 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯F2i 0.93 2.46 3.369 (6) 167
C22—H22⋯F4ii 0.93 2.40 3.318 (6) 167
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Table 2
C—F⋯π interactions (Å, °)

C—F⋯Cga F⋯Cg C⋯Cg γb C—F⋯Cg
C1—F1⋯Cg(C7→C12)iii 3.8358 3.5919 27.36 69
C15—F3⋯Cg(C21→C26)iv 3.8814 3.5966 27.14 68
Notes: Cga = centre of gravity of the six-membered ring. γb = angle defined by a line connecting the centre of gravity of the six-membered ring with H atom and the normal to the six-membered ring. Symmetry codes: (iii) [x+{\script{1\over 2}}, 1-y, z]; (IV) [x+{\script{1\over 2}}, -y, z].

Table 3
ππ interactions (Å, °)

ππ contacts CgCg(Å) αa(°) βb(°) Cg⋯Plane(Å)
Cg(C1→C6)⋯Cg(C7→C12)iii 3.8221 4.87 27.32 3.616
Cg(C15→C20)⋯Cg(C21→C26)iv 3.8284 5.68 23.57 3.642
Notes: αa = angle between planes of two aromatic rings. βb = angle between CgCg line and normal to the plane of the first aromatic ring. Symmetry codes: (iii) [x+{\script{1\over 2}}, 1-y, z]; (IV) [x+{\script{1\over 2}}, -y, z].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the title compound was determined as a part of a project on the synthesis of 1-(2',4'-difluorobiphenyl-4-yl)ethanone, which have excellent activity against various bacteria, antifebrile and abirritation (William et al., 1973; Kuchar et al., 1997; Jegorov, Husak et al., 1997; Jegorov, Sedmera et al., 1995). The title compound is an intermediate in this synthesis.

The asymmetric unit of (I) contains two crystallographically indepedent molecules of the same stereochemical configuration (Fig. 1). The dihedral angle between aromatic ring C1-C6 and C7-C12 amount to 46.8 (2) ° and between ring C15-C20 and C21-C26 it is 47.6 (2) ° (Fig. 1). The molecules are connected into dimers via C—H···F interactions (Table 1). There also exist ππ stacking interactions between the benzene rings of adjacent molecules. The distances of the centroids of the rings C1-C6 and C7-C12 as well as rings C15-C20 and C21-C26) amount to 3.8821 and 3.8284 /%A, respectively. In the direction of the b-axis, the molecules shows a herringbone like arrangement.

Related literature top

For related literature, see: William & Ruyle (1973); Kuchar et al. (1997); Jegorov, Husak et al. (1997); Jegorov, Sedmera et al. (1995).

Experimental top

0.1892 g (1 mmol) 1-(4-bromophenyl)ethanone, 0.2385 g (1.5 mmol) 2,4-difluorophenylboronic acid, 0.2123 g (2 mmol) Na2CO3 and 0.2255 g (1 mmol) Pd(OAc)2 were dissolved in a water-acetone mixture (1:1 v/v; 50 ml). After stirring for 20 min at 308 K, the mixture were extracted using diethylether for four times. Then the resultant diethylether solution were dried over magnesium sulfate and concentrated in vacuo. Well shaped light yellow crystals suitable for X-ray structure analysis were obtained by recrystalling the crude product from ethanol.

Refinement top

Hydrogen atoms attached to carbon atoms were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.93 Å . The absolute structure cannot be determined because no strong anomalous scattering atoms are present. Therefore, the Friedel opposites have been merged in the refinement.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound showing 30% probability displacement ellipsoids and the atom-labeling scheme.
1-(2',4'-Difluorobiphenyl-4-yl)ethanone top
Crystal data top
C14H10F2OF(000) = 960
Mr = 232.22Dx = 1.393 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2398 reflections
a = 13.092 (7) Åθ = 2.9–27.5°
b = 6.102 (3) ŵ = 0.11 mm1
c = 27.719 (15) ÅT = 293 K
V = 2214 (2) Å3Block, colorless
Z = 80.46 × 0.32 × 0.25 mm
Data collection top
Bruker P4
diffractometer
2219 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ω scansh = 1616
15497 measured reflectionsk = 77
2576 independent reflectionsl = 3526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.135P)2 + 0.237P]
where P = (Fo2 + 2Fc2)/3
2576 reflections(Δ/σ)max = 0.045
309 parametersΔρmax = 0.80 e Å3
1 restraintΔρmin = 0.33 e Å3
Crystal data top
C14H10F2OV = 2214 (2) Å3
Mr = 232.22Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 13.092 (7) ŵ = 0.11 mm1
b = 6.102 (3) ÅT = 293 K
c = 27.719 (15) Å0.46 × 0.32 × 0.25 mm
Data collection top
Bruker P4
diffractometer
2219 reflections with I > 2σ(I)
15497 measured reflectionsRint = 0.033
2576 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.207H-atom parameters constrained
S = 1.13Δρmax = 0.80 e Å3
2576 reflectionsΔρmin = 0.33 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.3975 (2)0.4954 (5)1.02287 (16)0.0734 (10)
F20.7101 (3)0.2074 (5)0.97293 (14)0.0819 (10)
O11.0793 (3)0.8318 (7)0.83509 (19)0.0858 (13)
C10.4849 (4)0.5145 (8)0.9977 (2)0.0567 (13)
C20.5545 (4)0.3442 (8)0.99906 (18)0.0582 (11)
H2A0.54310.21901.01740.070*
C30.6420 (3)0.3703 (7)0.97159 (18)0.0529 (10)
C40.6630 (3)0.5529 (7)0.94406 (16)0.0456 (8)
C50.5892 (4)0.7202 (7)0.94479 (17)0.0535 (10)
H5A0.60030.84630.92670.064*
C60.5003 (3)0.7029 (8)0.9717 (2)0.0582 (11)
H6A0.45250.81560.97210.070*
C70.7577 (3)0.5771 (6)0.91542 (15)0.0451 (8)
C80.7929 (3)0.4063 (7)0.88590 (18)0.0546 (10)
H8A0.75630.27610.88400.065*
C90.8827 (3)0.4311 (7)0.85932 (18)0.0545 (10)
H9A0.90590.31670.84000.065*
C100.9376 (3)0.6252 (7)0.86148 (15)0.0497 (9)
C110.9034 (3)0.7916 (7)0.89094 (19)0.0560 (10)
H11A0.94090.92080.89300.067*
C120.8149 (3)0.7706 (7)0.91747 (17)0.0526 (10)
H12A0.79310.88580.93690.063*
C131.0342 (4)0.6569 (9)0.83342 (18)0.0613 (12)
C141.0706 (5)0.4727 (13)0.8035 (3)0.089 (2)
H14A1.13690.50690.79080.133*
H14B1.02380.44860.77740.133*
H14C1.07490.34270.82290.133*
F30.3553 (3)1.0087 (6)1.04498 (16)0.0822 (11)
F40.0411 (2)1.2848 (4)1.09719 (14)0.0734 (9)
O20.3281 (3)0.6449 (6)1.2310 (2)0.0821 (11)
C150.2688 (3)0.9868 (7)1.0722 (2)0.0526 (12)
C160.1987 (4)1.1521 (7)1.07165 (18)0.0580 (11)
H160.20961.27881.05370.070*
C170.1123 (3)1.1255 (6)1.09822 (17)0.0500 (9)
C180.0917 (3)0.9397 (7)1.12637 (16)0.0450 (8)
C190.1654 (3)0.7758 (7)1.12533 (19)0.0538 (10)
H190.15470.64811.14290.065*
C200.2550 (4)0.7983 (7)1.0985 (2)0.0578 (10)
H200.30420.68831.09850.069*
C210.0043 (3)0.9146 (6)1.15438 (15)0.0445 (8)
C220.0595 (3)0.7189 (7)1.15141 (18)0.0540 (10)
H220.03620.60671.13150.065*
C230.1482 (3)0.6900 (7)1.17769 (17)0.0537 (10)
H230.18370.55851.17520.064*
C240.1853 (3)0.8548 (7)1.20778 (15)0.0465 (8)
C250.1292 (4)1.0488 (8)1.21097 (18)0.0539 (10)
H250.15181.16061.23110.065*
C260.0409 (3)1.0768 (7)1.18471 (16)0.0506 (9)
H260.00501.20781.18740.061*
C270.2822 (4)0.8178 (8)1.23485 (19)0.0593 (11)
C280.3252 (4)0.9976 (11)1.2659 (2)0.0748 (16)
H28A0.39500.96461.27380.112*
H28B0.32231.13401.24870.112*
H28C0.28601.00891.29500.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0568 (18)0.080 (2)0.084 (2)0.0068 (13)0.0293 (18)0.0080 (16)
F20.087 (2)0.0644 (18)0.094 (2)0.0219 (15)0.021 (2)0.0117 (18)
O10.066 (2)0.085 (3)0.107 (3)0.003 (2)0.025 (2)0.009 (2)
C10.056 (3)0.063 (3)0.051 (3)0.0082 (19)0.008 (2)0.011 (2)
C20.065 (3)0.058 (2)0.051 (2)0.005 (2)0.009 (2)0.003 (2)
C30.051 (2)0.049 (2)0.059 (3)0.0048 (16)0.000 (2)0.008 (2)
C40.0427 (19)0.0438 (18)0.050 (2)0.0015 (16)0.0015 (17)0.0036 (18)
C50.055 (2)0.051 (2)0.054 (2)0.0113 (17)0.0037 (19)0.005 (2)
C60.043 (2)0.066 (3)0.066 (3)0.0130 (18)0.004 (2)0.004 (2)
C70.0453 (19)0.0434 (18)0.047 (2)0.0043 (15)0.0014 (16)0.0040 (18)
C80.052 (2)0.048 (2)0.064 (3)0.0013 (17)0.004 (2)0.013 (2)
C90.055 (2)0.055 (2)0.053 (2)0.005 (2)0.008 (2)0.009 (2)
C100.049 (2)0.057 (2)0.0430 (19)0.0049 (17)0.0023 (17)0.0005 (19)
C110.052 (2)0.051 (2)0.065 (3)0.0007 (18)0.004 (2)0.002 (2)
C120.055 (2)0.0459 (19)0.057 (2)0.0044 (17)0.008 (2)0.006 (2)
C130.055 (2)0.071 (3)0.059 (3)0.009 (2)0.004 (2)0.016 (2)
C140.068 (4)0.107 (4)0.091 (5)0.005 (3)0.036 (4)0.008 (4)
F30.070 (2)0.090 (2)0.086 (3)0.0063 (16)0.028 (2)0.0042 (19)
F40.0778 (19)0.0526 (13)0.090 (2)0.0200 (13)0.0111 (16)0.0100 (15)
O20.064 (2)0.073 (2)0.109 (3)0.0153 (18)0.018 (2)0.004 (2)
C150.039 (2)0.063 (2)0.056 (3)0.0044 (16)0.009 (2)0.007 (2)
C160.066 (3)0.050 (2)0.058 (2)0.0070 (19)0.004 (2)0.001 (2)
C170.052 (2)0.0434 (19)0.055 (2)0.0069 (15)0.0025 (19)0.0022 (18)
C180.0430 (19)0.0475 (19)0.044 (2)0.0043 (16)0.0007 (16)0.0034 (18)
C190.045 (2)0.051 (2)0.065 (3)0.0059 (17)0.0014 (19)0.002 (2)
C200.048 (2)0.061 (2)0.065 (3)0.0073 (19)0.006 (2)0.005 (2)
C210.0419 (18)0.0474 (19)0.044 (2)0.0023 (15)0.0027 (16)0.0017 (18)
C220.057 (2)0.0421 (19)0.063 (3)0.0021 (16)0.002 (2)0.0096 (19)
C230.051 (2)0.048 (2)0.062 (3)0.0059 (16)0.0004 (19)0.0085 (19)
C240.0408 (18)0.0514 (19)0.047 (2)0.0007 (15)0.0013 (17)0.0041 (17)
C250.052 (2)0.057 (2)0.053 (2)0.001 (2)0.0037 (19)0.013 (2)
C260.0461 (19)0.050 (2)0.055 (2)0.0055 (16)0.0019 (18)0.0084 (19)
C270.050 (2)0.069 (3)0.058 (3)0.0011 (19)0.000 (2)0.002 (2)
C280.070 (3)0.094 (4)0.060 (3)0.005 (3)0.025 (3)0.006 (3)
Geometric parameters (Å, º) top
F1—C11.345 (6)F3—C151.366 (6)
F2—C31.335 (5)F4—C171.347 (5)
O1—C131.221 (7)O2—C271.219 (6)
C1—C21.382 (7)C15—C201.375 (7)
C1—C61.372 (8)C15—C161.364 (7)
C2—C31.385 (7)C16—C171.359 (7)
C2—H2A0.9300C16—H160.9300
C3—C41.378 (6)C17—C181.402 (6)
C4—C51.407 (6)C18—C191.390 (5)
C4—C71.479 (6)C18—C211.486 (5)
C5—C61.386 (6)C19—C201.396 (6)
C5—H5A0.9300C19—H190.9300
C6—H6A0.9300C20—H200.9300
C7—C81.403 (5)C21—C261.384 (5)
C7—C121.399 (6)C21—C221.398 (5)
C8—C91.395 (6)C22—C231.383 (6)
C8—H8A0.9300C22—H220.9300
C9—C101.387 (6)C23—C241.394 (6)
C9—H9A0.9300C23—H230.9300
C10—C111.377 (6)C24—C251.396 (6)
C10—C131.497 (6)C24—C271.491 (6)
C11—C121.378 (6)C25—C261.377 (6)
C11—H11A0.9300C25—H250.9300
C12—H12A0.9300C26—H260.9300
C13—C141.476 (9)C27—C281.504 (8)
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
F1—C1—C2118.8 (5)C20—C15—F3118.9 (4)
F1—C1—C6118.0 (4)C20—C15—C16122.4 (4)
C2—C1—C6123.2 (5)F3—C15—C16118.7 (5)
C1—C2—C3116.4 (5)C17—C16—C15117.8 (4)
C1—C2—H2A121.8C17—C16—H16121.1
C3—C2—H2A121.8C15—C16—H16121.1
F2—C3—C4118.9 (4)F4—C17—C16118.6 (4)
F2—C3—C2116.9 (4)F4—C17—C18117.6 (4)
C4—C3—C2124.2 (4)C16—C17—C18123.9 (4)
C3—C4—C5116.2 (4)C19—C18—C17116.0 (4)
C3—C4—C7123.1 (4)C19—C18—C21121.6 (4)
C5—C4—C7120.7 (4)C17—C18—C21122.4 (3)
C6—C5—C4122.0 (4)C18—C19—C20121.6 (4)
C6—C5—H5A119.0C18—C19—H19119.2
C4—C5—H5A119.0C20—C19—H19119.2
C1—C6—C5118.0 (4)C15—C20—C19118.4 (4)
C1—C6—H6A121.0C15—C20—H20120.8
C5—C6—H6A121.0C19—C20—H20120.8
C8—C7—C12118.3 (4)C26—C21—C22117.9 (4)
C8—C7—C4120.9 (4)C26—C21—C18122.4 (3)
C12—C7—C4120.7 (4)C22—C21—C18119.6 (4)
C9—C8—C7120.3 (4)C23—C22—C21120.8 (4)
C9—C8—H8A119.8C23—C22—H22119.6
C7—C8—H8A119.8C21—C22—H22119.6
C10—C9—C8120.4 (4)C22—C23—C24121.1 (4)
C10—C9—H9A119.8C22—C23—H23119.5
C8—C9—H9A119.8C24—C23—H23119.5
C11—C10—C9119.2 (4)C23—C24—C25117.8 (4)
C11—C10—C13119.2 (4)C23—C24—C27119.2 (4)
C9—C10—C13121.7 (4)C25—C24—C27123.0 (4)
C12—C11—C10121.4 (4)C26—C25—C24120.9 (4)
C12—C11—H11A119.3C26—C25—H25119.5
C10—C11—H11A119.3C24—C25—H25119.5
C11—C12—C7120.5 (4)C25—C26—C21121.5 (4)
C11—C12—H12A119.8C25—C26—H26119.2
C7—C12—H12A119.8C21—C26—H26119.2
O1—C13—C14122.0 (5)O2—C27—C24120.4 (5)
O1—C13—C10120.1 (5)O2—C27—C28119.8 (5)
C14—C13—C10117.8 (5)C24—C27—C28119.8 (5)
C13—C14—H14A109.5C27—C28—H28A109.5
C13—C14—H14B109.5C27—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C13—C14—H14C109.5C27—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···F2i0.932.463.369 (6)167
C22—H22···F4ii0.932.403.318 (6)167
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC14H10F2O
Mr232.22
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)13.092 (7), 6.102 (3), 27.719 (15)
V3)2214 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.46 × 0.32 × 0.25
Data collection
DiffractometerBruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15497, 2576, 2219
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.207, 1.13
No. of reflections2576
No. of parameters309
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.33

Computer programs: SMART (Bruker, 2004), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···F2i0.932.463.369 (6)167
C22—H22···F4ii0.932.403.318 (6)167
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
C—F···π interactions (Å, °) top
C—F···CgaF···CgC···CgγbC—F···Cg
C1—F1···Cg(C7C12)iii3.83583.591927.3669
C15—F3···Cg(C21C26)iv3.88143.596627.1468
Notes: Cga = centre of gravity of the six-membered ring. γb = angle defined by a line connecting centre of gravity of the six-membered ring with H atom and the normal to the six-membered ring. Symmetry codes: (iii) x+1/2, 1-y, z ; (IV) x+1/2, -y, z.
π···π interactions (Å, °) top
π···π contactsCg···Cg(Å)αa(°)βb(°)Cg···Plane(Å)
Cg(C1C6)···Cg(C7C12)iii3.82214.8727.323.616
Cg(C15C20)···Cg(C21C26)iv3.82845.6823.573.642
Notes: αa = angle between planes of two aromatic rings. βb = angle between Cg···Cg line and normal to the plane of the first aromatic ring. Symmetry codes: (iii) x+1/2, 1-y, z ; (IV) x+1/2, -y, z.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 20763008) and the Key Science & Technology Plan of Yichun City (No. [2006] 56).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJegorov, A., Husak, M., Ondracek, J., Kratochvil, B., Kuchar, M., Bulej, P., Gilar, M. & Tesarova, E. (1997). J. Fluorine Chem. 83, 111–116.  CSD CrossRef CAS Web of Science Google Scholar
First citationJegorov, A., Sedmera, P., Havlicek, V., Husak, M., Pakhomova, S., Kratochvil, B., Kuchar, M. & Bulej, P. (1995). J. Fluorine Chem. 73, 213–219.  CSD CrossRef CAS Web of Science Google Scholar
First citationKuchar, M., Poppova, M., Jandera, A., Panajotovova, V., Zunova, H., Budesinsky, M., Tomkova, H., Jegorov, A. & Taimr, J. (1997). Collect. Czech. Chem. Commun. 62, 498–509.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliam, V. & Ruyle, W. (1973). US Patent 3 714 226.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds