organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2036-o2037

2-{3-Cyano-5,5-di­methyl-4-[6-(pyrrol­i­din-1-yl)hexa-1,3,5-trien­yl]-2,5-di­hydro-2-furyl­idene}malono­nitrile

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 17 July 2008; accepted 3 September 2008; online 27 September 2008)

The title compound, C20H20N4O, is packed into a three-dimensional `herringbone' matrix using two different types of attractive C—H⋯N(cyano) inter­actions. The bond-length alternation, caused by delocalization of charge between the donor N atoms and the cyano acceptor groups, is compared with related compounds.

Related literature

For general background, see: Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]). For related literature, see: Gainsford et al. (2007[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008a[Gainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Spek, A. L. (2008a). Acta Cryst. E64, o503.],b[Gainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Robinson, W. T. (2008b). Acta Cryst. E64, o1715.]); Marder et al. (1993[Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524-2526.]); Li et al. (2005[Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093-o2095.]). For a similar herringbone structure, see: Desiraju & Gavezzotti (1989[Desiraju, G. R. & Gavezzotti, A. (1989). J. Chem. Soc. Chem. Commun. pp. 621-623.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N4O

  • Mr = 332.40

  • Orthorhombic, P b c a

  • a = 12.6766 (13) Å

  • b = 11.7603 (13) Å

  • c = 24.164 (3) Å

  • V = 3602.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 116 (2) K

  • 0.32 × 0.25 × 0.07 mm

Data collection
  • Bruker Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.494, Tmax = 1.0 (expected range = 0.491–0.995)

  • 20272 measured reflections

  • 3641 independent reflections

  • 2078 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 0.98

  • 3641 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N3i 0.95 2.49 3.379 (3) 156
C17—H17A⋯N1ii 0.99 2.61 3.402 (3) 137
C20—H20B⋯N2ii 0.99 2.56 3.316 (3) 133
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Selected bond lengths and angles (Å,°) in the title compound and related compounds

Compound (I) is the title compound, (II) is the closely related buta-1,3-dienyl equivalent (Gainsford et al., 2008c), (III) is the piperidin-1-yl equivalent of (II) (Gainsford et al., 2008b[Gainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Robinson, W. T. (2008b). Acta Cryst. E64, o1715.]) and (IV) is the starting acceptor molecule 2-dicyanomethylene-4,5,5-trimethyl-2,5-dihydro-furan-3-carbonitrile (Li et al., 2005[Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093-o2095.])

  (I) (II)a (III)b (IV)
C2—C6 1.388 (3) 1.388 (5) 1.389 (6) 1.359 (4)
C6—C7 1.401 (3) 1.412 (5) 1.390 (5) 1.445 (4)
C4—C7 1.417 (3) 1.402 (5) 1.426 (6) 1.343 (4)
C4—C11 1.374 (3) 1.405 (5) 1.366 (5) 1.472 (4)
C11—C12 1.410 (3) 1.397 (5) 1.402 (6)
C12—C13 1.369 (3) 1.384 (5) 1.381 (5)
C13—C14 1.407 (3) 1.397 (5) 1.396 (6)
C14—C15 1.369 (3)
C15—C16 1.404 (3)
N4—CTc 1.306 (2) 1.317 (4) 1.315 (5)
C6—O1 1.351 (2) 1.341 (4) 1.360 (4) 1.333 (3)
C5—O1 1.486 (2) 1.482 (4) 1.489 (8) 1.481 (4)
C4—C7—C6 109.84 (18) 108.7 (3) 109.7 (4) 109.4 (2)
C7—C6—C2 132.3 (2) 131.7 (3) 133.7 (4) 131.3 (3)
C11—C4—C7 126.6 (2) 125.2 (3) 126.6 (4) 128.6 (3)
C4—C11—C12—C13 179.6 (2) −177.4 (4) 178.1 (4)
Notes: (a) Larger s.u. values reflect crystal quality; (b) Average of two independent molecules; (c) CT is the terminal atom of the polyene chain.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97, PLATON and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

We have previously reported on the synthesis of a number of high figure of merit chromophores for nonlinear optics (Kay et al., 2004), and the X-ray crystallographic and structural properties of crucial dye precursors used [Gainsford et al., 2007; Gainsford et al., 2008a (hereafter III); Gainsford et al., 2008b (hereafter II)]. We report here the crystallographic data of another molecule derived from a chromophore precursor and summarize the structural details of this and closely related compounds.

The asymmetric unit contents of the title compound (I) is shown in Fig. 1. The molecule possesses approximately planar geometry with a major tilt between the pendant planar dicyanomethylene groups (N1,N2,C1–C3) and the "CDFP" 5-membered ring plane (O1, C4—C7) of 11.56 (14)°. The polyene chain atoms (C4,C11–C16), which are coplanar with r.m.s. deviations of 0.026 (2) Å, make an angle of 2.07 (15)° to the "CDFP" ring plane. The pyrrolidin-1-yl ring adopts an envelope configuration with C19 the flap atom at 0.551 (2) Å out of plane (Spek, 2003).

Selected geometrical values for (I), the closely related buta-1,3-dienyl equivalent (II) (Gainsford et al., 2008c), the piperidin-1-yl equivalent of II (III) (Gainsford et al., 2008b) and the starting acceptor molecule 2-dicyanomethylene-4,5,5-trimethyl-2,5-dihydro-furan-3-carbonitrile (IV) (Li et al., 2005) are collected in Table 2. Delocalization is apparent through the polyene chain and CDFP fragment (e.g. compare C4—C7 & C4—C11 bond lengths). Bond length alternation (BLA) calculations (Marder et al., 1993) confirm the similarities of (I) to (II) & (III) with values of -0.027 (I), 0.005 (II) and -0.027 (III) Å compared with the value of 0.108Å in (IV). The similar values for (I) & (III) also confirm the equivalent donor strengths of the pyrolidine & piperidine N-donors.

The molecules are arranged in planes (Fig. 2) with the well known "herringbone" motif (Desiraju & Gavezzotti, 1989). The polyene C—H attractive interactions with adjacent cyano nitrogen atom N3 (principally entry 1, Table 1), commonly observed for these molecules (Gainsford et al., 2008a), link adjacent molecules which lie parallel to each other and the 0,1,-2 plane. The other two main methylene H···N (cyano) interactions (entries 3 & 4, Table 2) link to the other (herringbone) planes which are parallel to the 0,1,2 plane.

Related literature top

For general background, see: Kay et al. (2004). For related literature, see: Gainsford et al. (2007, 2008a,b); Marder et al. (1993); Li et al. (2005). For a similar herringbone structure, see: Desiraju & Gavezzotti (1989).

Experimental top

To a solution of 5.8 mmole of {4-(4-Acetanilido-trans,trans-1,3,5-hexatrienyl) -3-cyano-5,5-dimethyl-2(5H)-furanylidene}propanedinitrile (Compound 11c, Kay et al., 2004) in 30 ml of ethanol was added an equimolar quantity of pyrrolidine. The solution was refluxed 1 h, cooled and the product collected by filtration and washed with ethanol. λmax 645 nm (pyridine); 630 nm (DMF) log10ε 5.11. Final crystallization was from dichloromethane.

Refinement top

All methyl and other H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom using riding models. All non-hydrogen atoms were refined with anisotropic thermal parameters.

Computing details top

Data collection: APEX2 (Bruker,2005); cell refinement: APEX2 (Bruker,2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Partial packing diagram of the cell (I) (Mercury; Macrae et al., 2006) viewed approximately down the a axis. Only H atoms involved in selected C—H···N hydrogen bonds (dashed lines) are shown. Atom labels indicate the three main interactions (see text & Table 1). Colours: Nitrogen, blue; Oxygen, red; Carbon, black.
2-{3-Cyano-5,5-dimethyl-4-[6-(pyrrolidin-1-yl)hexa-1,3,5-trienyl]-2,5-dihydro- 2-furylidene}malononitrile top
Crystal data top
C20H20N4OF(000) = 1408
Mr = 332.40Dx = 1.226 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6328 reflections
a = 12.6766 (13) Åθ = 2.5–25.0°
b = 11.7603 (13) ŵ = 0.08 mm1
c = 24.164 (3) ÅT = 116 K
V = 3602.4 (7) Å3Plate, brown
Z = 80.32 × 0.25 × 0.07 mm
Data collection top
Bruker Nonius APEXII CCD area-detector
diffractometer
3641 independent reflections
Radiation source: fine-focus sealed tube2078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 3.4°
ϕ and ω scansh = 1015
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.494, Tmax = 1.0l = 3027
20272 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3641 reflectionsΔρmax = 0.26 e Å3
229 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0124 (13)
Crystal data top
C20H20N4OV = 3602.4 (7) Å3
Mr = 332.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.6766 (13) ŵ = 0.08 mm1
b = 11.7603 (13) ÅT = 116 K
c = 24.164 (3) Å0.32 × 0.25 × 0.07 mm
Data collection top
Bruker Nonius APEXII CCD area-detector
diffractometer
3641 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2078 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 1.0Rint = 0.081
20272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 0.98Δρmax = 0.26 e Å3
3641 reflectionsΔρmin = 0.27 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. An extinction parameter was refined. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18457 (11)0.09182 (12)0.41943 (5)0.0312 (4)
N10.10627 (17)0.09427 (19)0.33366 (8)0.0476 (6)
N20.24246 (16)0.08511 (17)0.31039 (8)0.0447 (5)
N30.18623 (16)0.14659 (16)0.40666 (7)0.0371 (5)
N40.07598 (13)0.73470 (14)0.71061 (6)0.0276 (4)
C10.02458 (19)0.05836 (19)0.34560 (8)0.0331 (6)
C20.07610 (17)0.01503 (19)0.36100 (8)0.0289 (5)
C30.16705 (19)0.05488 (19)0.33319 (8)0.0331 (6)
C40.06334 (17)0.20694 (18)0.46776 (7)0.0262 (5)
C50.17947 (17)0.17853 (18)0.46411 (7)0.0272 (5)
C60.08595 (16)0.06720 (18)0.40190 (8)0.0271 (5)
C70.01165 (16)0.13485 (17)0.42942 (8)0.0258 (5)
C80.24674 (17)0.27708 (18)0.44398 (8)0.0330 (5)
H8A0.31610.24870.43260.049*
H8B0.25540.33240.47400.049*
H8C0.21210.31370.41240.049*
C90.22067 (17)0.11865 (18)0.51558 (8)0.0321 (5)
H9A0.17290.05640.52550.048*
H9B0.22450.17300.54630.048*
H9C0.29120.08800.50820.048*
C100.09674 (19)0.13888 (18)0.41677 (8)0.0274 (5)
C110.01687 (17)0.28779 (18)0.50081 (8)0.0294 (5)
H110.05720.29700.49710.035*
C120.06770 (18)0.35851 (18)0.53967 (8)0.0292 (5)
H120.14180.34930.54370.035*
C130.02036 (17)0.43921 (18)0.57211 (8)0.0290 (5)
H130.05390.44900.56980.035*
C140.07818 (17)0.50812 (18)0.60878 (7)0.0277 (5)
H140.15230.49640.61000.033*
C150.03820 (17)0.59043 (18)0.64288 (8)0.0284 (5)
H150.03580.60310.64430.034*
C160.10612 (18)0.65628 (18)0.67577 (8)0.0282 (5)
H160.17970.64270.67240.034*
C170.03553 (16)0.75976 (18)0.72429 (8)0.0305 (5)
H17A0.07170.69100.73830.037*
H17B0.07390.78820.69140.037*
C180.02940 (18)0.85123 (19)0.76908 (9)0.0363 (6)
H18A0.08280.83760.79820.044*
H18B0.04100.92770.75310.044*
C190.08212 (17)0.84082 (19)0.79260 (8)0.0358 (6)
H19A0.10610.91390.80860.043*
H19B0.08550.78130.82150.043*
C200.14812 (18)0.80835 (18)0.74275 (8)0.0340 (6)
H20A0.16890.87640.72120.041*
H20B0.21240.76650.75400.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0281 (9)0.0392 (9)0.0264 (7)0.0026 (7)0.0026 (6)0.0084 (6)
N10.0432 (14)0.0531 (14)0.0466 (12)0.0001 (11)0.0019 (10)0.0186 (11)
N20.0464 (14)0.0491 (13)0.0385 (11)0.0012 (11)0.0056 (10)0.0111 (10)
N30.0351 (13)0.0421 (13)0.0342 (10)0.0013 (9)0.0022 (9)0.0045 (9)
N40.0303 (11)0.0320 (10)0.0205 (8)0.0010 (8)0.0004 (7)0.0002 (8)
C10.0395 (15)0.0351 (14)0.0248 (11)0.0029 (11)0.0006 (10)0.0078 (10)
C20.0336 (13)0.0321 (13)0.0209 (10)0.0020 (10)0.0007 (9)0.0024 (9)
C30.0420 (16)0.0339 (13)0.0235 (11)0.0008 (11)0.0009 (10)0.0051 (10)
C40.0301 (13)0.0298 (12)0.0189 (10)0.0005 (10)0.0019 (9)0.0018 (9)
C50.0296 (13)0.0311 (12)0.0209 (10)0.0003 (10)0.0004 (9)0.0043 (9)
C60.0302 (13)0.0322 (13)0.0190 (10)0.0019 (10)0.0025 (9)0.0019 (9)
C70.0266 (13)0.0306 (13)0.0201 (10)0.0006 (9)0.0002 (9)0.0015 (9)
C80.0336 (13)0.0380 (13)0.0272 (11)0.0014 (11)0.0024 (10)0.0029 (10)
C90.0370 (14)0.0325 (13)0.0267 (11)0.0030 (10)0.0020 (10)0.0019 (10)
C100.0343 (15)0.0283 (13)0.0197 (10)0.0018 (10)0.0042 (10)0.0035 (9)
C110.0291 (13)0.0382 (14)0.0211 (10)0.0005 (10)0.0004 (9)0.0017 (10)
C120.0308 (13)0.0356 (13)0.0212 (10)0.0004 (10)0.0017 (9)0.0004 (9)
C130.0328 (13)0.0339 (13)0.0204 (10)0.0013 (10)0.0011 (9)0.0007 (9)
C140.0337 (13)0.0308 (12)0.0186 (10)0.0008 (10)0.0022 (9)0.0030 (9)
C150.0336 (13)0.0327 (13)0.0190 (10)0.0002 (10)0.0015 (9)0.0008 (9)
C160.0341 (13)0.0303 (12)0.0200 (10)0.0023 (10)0.0048 (9)0.0029 (9)
C170.0330 (14)0.0359 (13)0.0225 (10)0.0031 (10)0.0002 (9)0.0008 (9)
C180.0490 (16)0.0341 (13)0.0258 (11)0.0033 (11)0.0010 (11)0.0045 (10)
C190.0451 (16)0.0352 (13)0.0270 (11)0.0002 (11)0.0043 (10)0.0071 (10)
C200.0440 (15)0.0324 (13)0.0257 (11)0.0062 (11)0.0058 (10)0.0020 (10)
Geometric parameters (Å, º) top
O1—C61.351 (2)C9—H9C0.9800
O1—C51.486 (2)C11—C121.410 (3)
N1—C11.155 (3)C11—H110.9500
N2—C31.159 (3)C12—C131.369 (3)
N3—C101.164 (3)C12—H120.9500
N4—C161.306 (2)C13—C141.407 (3)
N4—C201.480 (3)C13—H130.9500
N4—C171.481 (3)C14—C151.369 (3)
C1—C21.424 (3)C14—H140.9500
C2—C61.388 (3)C15—C161.404 (3)
C2—C31.414 (3)C15—H150.9500
C4—C111.374 (3)C16—H160.9500
C4—C71.417 (3)C17—C181.528 (3)
C4—C51.512 (3)C17—H17A0.9900
C5—C81.519 (3)C17—H17B0.9900
C5—C91.522 (3)C18—C191.529 (3)
C6—C71.401 (3)C18—H18A0.9900
C7—C101.408 (3)C18—H18B0.9900
C8—H8A0.9800C19—C201.516 (3)
C8—H8B0.9800C19—H19A0.9900
C8—H8C0.9800C19—H19B0.9900
C9—H9A0.9800C20—H20A0.9900
C9—H9B0.9800C20—H20B0.9900
C6—O1—C5109.54 (15)C13—C12—C11126.1 (2)
C16—N4—C20124.81 (18)C13—C12—H12116.9
C16—N4—C17124.30 (17)C11—C12—H12116.9
C20—N4—C17110.87 (16)C12—C13—C14122.1 (2)
N1—C1—C2179.2 (2)C12—C13—H13118.9
C6—C2—C3119.7 (2)C14—C13—H13118.9
C6—C2—C1121.06 (19)C15—C14—C13126.4 (2)
C3—C2—C1119.22 (19)C15—C14—H14116.8
N2—C3—C2178.5 (2)C13—C14—H14116.8
C11—C4—C7126.6 (2)C14—C15—C16120.2 (2)
C11—C4—C5127.16 (18)C14—C15—H15119.9
C7—C4—C5106.25 (17)C16—C15—H15119.9
O1—C5—C4103.67 (15)N4—C16—C15125.1 (2)
O1—C5—C8105.46 (15)N4—C16—H16117.5
C4—C5—C8113.37 (17)C15—C16—H16117.5
O1—C5—C9105.15 (16)N4—C17—C18104.45 (16)
C4—C5—C9112.87 (16)N4—C17—H17A110.9
C8—C5—C9114.97 (17)C18—C17—H17A110.9
O1—C6—C2117.11 (18)N4—C17—H17B110.9
O1—C6—C7110.58 (17)C18—C17—H17B110.9
C2—C6—C7132.3 (2)H17A—C17—H17B108.9
C6—C7—C10124.89 (18)C17—C18—C19104.71 (17)
C6—C7—C4109.84 (18)C17—C18—H18A110.8
C10—C7—C4124.96 (18)C19—C18—H18A110.8
C5—C8—H8A109.5C17—C18—H18B110.8
C5—C8—H8B109.5C19—C18—H18B110.8
H8A—C8—H8B109.5H18A—C18—H18B108.9
C5—C8—H8C109.5C20—C19—C18103.61 (17)
H8A—C8—H8C109.5C20—C19—H19A111.0
H8B—C8—H8C109.5C18—C19—H19A111.0
C5—C9—H9A109.5C20—C19—H19B111.0
C5—C9—H9B109.5C18—C19—H19B111.0
H9A—C9—H9B109.5H19A—C19—H19B109.0
C5—C9—H9C109.5N4—C20—C19102.91 (17)
H9A—C9—H9C109.5N4—C20—H20A111.2
H9B—C9—H9C109.5C19—C20—H20A111.2
N3—C10—C7177.4 (2)N4—C20—H20B111.2
C4—C11—C12126.8 (2)C19—C20—H20B111.2
C4—C11—H11116.6H20A—C20—H20B109.1
C12—C11—H11116.6
C6—O1—C5—C43.51 (19)C5—C4—C7—C61.4 (2)
C6—O1—C5—C8122.90 (17)C11—C4—C7—C103.6 (3)
C6—O1—C5—C9115.19 (17)C5—C4—C7—C10175.33 (18)
C11—C4—C5—O1176.05 (18)C7—C4—C11—C12178.9 (2)
C7—C4—C5—O12.9 (2)C5—C4—C11—C122.4 (3)
C11—C4—C5—C862.2 (3)C4—C11—C12—C13179.6 (2)
C7—C4—C5—C8116.70 (18)C11—C12—C13—C14178.23 (19)
C11—C4—C5—C970.7 (3)C12—C13—C14—C15179.8 (2)
C7—C4—C5—C9110.35 (18)C13—C14—C15—C16177.29 (19)
C5—O1—C6—C2178.33 (17)C20—N4—C16—C15176.28 (19)
C5—O1—C6—C72.8 (2)C17—N4—C16—C155.4 (3)
C3—C2—C6—O110.6 (3)C14—C15—C16—N4178.18 (19)
C1—C2—C6—O1170.85 (18)C16—N4—C17—C18176.39 (18)
C3—C2—C6—C7168.0 (2)C20—N4—C17—C182.2 (2)
C1—C2—C6—C710.6 (3)N4—C17—C18—C1920.2 (2)
O1—C6—C7—C10173.07 (18)C17—C18—C19—C2034.8 (2)
C2—C6—C7—C105.5 (4)C16—N4—C20—C19154.84 (18)
O1—C6—C7—C40.9 (2)C17—N4—C20—C1923.7 (2)
C2—C6—C7—C4179.5 (2)C18—C19—C20—N435.4 (2)
C11—C4—C7—C6177.55 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.952.493.379 (3)156
C17—H17A···N1ii0.992.613.402 (3)137
C20—H20B···N2ii0.992.563.316 (3)133
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H20N4O
Mr332.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)116
a, b, c (Å)12.6766 (13), 11.7603 (13), 24.164 (3)
V3)3602.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.25 × 0.07
Data collection
DiffractometerBruker Nonius APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.494, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
20272, 3641, 2078
Rint0.081
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 0.98
No. of reflections3641
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27

Computer programs: APEX2 (Bruker,2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.952.493.379 (3)156
C17—H17A···N1ii0.992.613.402 (3)137
C20—H20B···N2ii0.992.563.316 (3)133
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+1/2.
Selected bond lengths and angles (Å,°) in the title compound and related compounds top
Compound (I) is the title compound, (II) is the closely related buta-1,3-dienyl equivalent (Gainsford et al., 2008c), (III) is the piperidin-1-yl equivalent of (II) (Gainsford et al., 2008b) and (IV) is the starting acceptor molecule 2-dicyanomethylene-4,5,5-trimethyl-2,5-dihydro-furan-3-carbonitrile (Li et al., 2005)
?s(I)(II)a(III)b(IV)
C2—C61.388 (3)1.388 (5)1.389 (6)1.359 (4)
C6—C71.401 (3)1.412 (5)1.390 (5)1.445 (4)
C4—C71.417 (3)1.402 (5)1.426 (6)1.343 (4)
C4—C111.374 (3)1.405 (5)1.366 (5)1.472 (4)
C11—C121.410 (3)1.397 (5)1.402 (6)
C12—C131.369 (3)1.384 (5)1.381 (5)
C13—C141.407 (3)1.397 (5)1.396 (6)
C14—C151.369 (3)
C15—C161.404 (3)
N4—CTc1.306 (2)1.317 (4)1.315 (5)
C6—O11.351 (2)1.341 (4)1.360 (4)1.333 (3)
C5—O11.486 (2)1.482 (4)1.489 (8)1.481 (4)
C4—C7—C6109.84 (18)108.7 (3)109.7 (4)109.4 (2)
C7—C6—C2132.3 (2)131.7 (3)133.7 (4)131.3 (3)
C11—C4—C7126.6 (2)125.2 (3)126.6 (4)128.6 (3)
C4—C11—C12—C13179.6 (2)-177.4 (4)178.1 (4)
Notes: (a) Larger s.u. values reflect crystal quality; (b) Average of two independent molecules; (c) CT is the terminal atom of the polyene chain.
 

Acknowledgements

We thank Dr J. Wikaira and Dr C. Fitchett of the University of Canterbury, New Zealand, for their assistance with the data collection.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Gavezzotti, A. (1989). J. Chem. Soc. Chem. Commun. pp. 621–623.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Spek, A. L. (2008a). Acta Cryst. E64, o503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H., Kay, A. J. & Robinson, W. T. (2008b). Acta Cryst. E64, o1715.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citationLi, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o2036-o2037
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds