organic compounds
3-Allyl-2-hydroxy-5,6,8-trimethoxynaphthalene-1,4-dione
aDepartment of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
*Correspondence e-mail: m.brimble@auckland.ac.nz
In the 16H16O6, a pair of naphthoquinone rings are linked via O—H⋯O—C hydrogen bonds in a nearly orthogonal arrangement. This dimeric unit is linked to a neighbouring dimer by π–π stacking interactions between the naphthoquinone rings, where the distance between the mean plane of the naphtoquinone backbones is 3.468 Å, and O—H⋯O—C hydrogen bonds.
of the title compound, CRelated literature
For details of the synthesis, see: Brimble et al. (2008). For related syntheses, see: Reissig et al. (2006); Kozlowski et al. (2008). For the biological activity of rubromycins, see: Brockmann et al. (1953, 1966).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808028432/ng2489sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028432/ng2489Isup2.hkl
A mixture of 2-bromo-5,7,8-trimethoxynaphthalene-1,4-dione (500 mg, 1.6 mmol), allyl alcohol (0.5 ml, 10 mmol), copper iodide (46 mg, 0.14 mmol) and caesium carbonate (940 mg, 2.9 mmol) in toluene (3 ml) was heated at 320 K under a nitrogen atmosphere in a sealed tube for 30 min. After allowing the mixture to cool to room temperature, the brownish mixture was filtered through a plug of Celite. The brown filtrate was then irradiated with microwave at 410 K (60 W) for 180 min in a sealed tube (10 ml pressure-rated reaction vial) in a self-tuning single mode irradiating synthesizer (CEM Discover LabMate microwave synthesizer). The resulting solution was then concentrated in vacuo to afford a brown residue. Purification of the crude residue by flash
using ethyl acetate–hexane (2:8) with to neat ethyl acetate afforded the title compound (116 mg, 24%) as a yellow solid. Recrystallization from acetonitrile afforded yellow needles suitable for X-ray diffraction. m.p. 427–431 KHydrogen atoms were placed in calculated positions and refined using the riding model (C—H 0.93–0.97 Å), with Uiso(H) = 1.5 times Ueq(O) and Uiso(H) = 1.2 or 1.5 times Ueq(C).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).C16H16O6 | Dx = 1.462 Mg m−3 |
Mr = 304.29 | Melting point: 429(2) K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.6811 (1) Å | Cell parameters from 3251 reflections |
b = 12.6577 (3) Å | θ = 1.8–27.9° |
c = 23.3392 (5) Å | µ = 0.11 mm−1 |
V = 1382.89 (5) Å3 | T = 89 K |
Z = 4 | Needle, yellow |
F(000) = 640 | 0.28 × 0.09 × 0.06 mm |
Bruker SMART diffractometer with APEXII CCD detector | 1415 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 27.9°, θmin = 1.8° |
ω scans | h = −6→4 |
14372 measured reflections | k = −16→16 |
1914 independent reflections | l = −30→30 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0367P)2 + 0.1796P] where P = (Fo2 + 2Fc2)/3 |
1914 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C16H16O6 | V = 1382.89 (5) Å3 |
Mr = 304.29 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 4.6811 (1) Å | µ = 0.11 mm−1 |
b = 12.6577 (3) Å | T = 89 K |
c = 23.3392 (5) Å | 0.28 × 0.09 × 0.06 mm |
Bruker SMART diffractometer with APEXII CCD detector | 1415 reflections with I > 2σ(I) |
14372 measured reflections | Rint = 0.031 |
1914 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.22 e Å−3 |
1914 reflections | Δρmin = −0.28 e Å−3 |
200 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O16 | −0.4858 (4) | 0.07396 (13) | 0.01234 (6) | 0.0192 (4) | |
H16 | −0.4751 | 0.1330 | −0.0020 | 0.029* | |
O11 | −0.1507 (4) | −0.09214 (12) | 0.17755 (7) | 0.0183 (4) | |
O17 | 0.2562 (4) | −0.00627 (12) | 0.24216 (6) | 0.0150 (4) | |
O19 | 0.2115 (4) | 0.33797 (12) | 0.09662 (7) | 0.0174 (4) | |
O12 | −0.1853 (4) | 0.24133 (13) | 0.03789 (6) | 0.0164 (4) | |
O18 | 0.5482 (4) | 0.16101 (12) | 0.26649 (6) | 0.0162 (4) | |
C5 | 0.0492 (6) | 0.07747 (18) | 0.15754 (9) | 0.0125 (6) | |
C4 | 0.0441 (6) | 0.16715 (18) | 0.12052 (9) | 0.0129 (5) | |
C2 | 0.3969 (6) | 0.25329 (19) | 0.18127 (10) | 0.0141 (6) | |
H2 | 0.5140 | 0.3108 | 0.1891 | 0.017* | |
C6 | 0.2263 (6) | 0.07808 (18) | 0.20552 (9) | 0.0129 (6) | |
C3 | 0.2219 (6) | 0.25382 (18) | 0.13284 (9) | 0.0134 (6) | |
C8 | −0.3187 (6) | 0.06946 (19) | 0.05919 (9) | 0.0148 (6) | |
C21 | 0.7270 (6) | 0.24990 (19) | 0.28100 (10) | 0.0180 (6) | |
H21A | 0.8237 | 0.2360 | 0.3165 | 0.027* | |
H21B | 0.6110 | 0.3120 | 0.2850 | 0.027* | |
H21C | 0.8653 | 0.2608 | 0.2512 | 0.027* | |
C9 | −0.3109 (6) | −0.01717 (18) | 0.09232 (9) | 0.0135 (6) | |
C1 | 0.3956 (6) | 0.16712 (19) | 0.21750 (9) | 0.0130 (6) | |
C7 | −0.1488 (6) | 0.16625 (19) | 0.07100 (9) | 0.0141 (6) | |
C20 | 0.4222 (6) | 0.41995 (19) | 0.10271 (10) | 0.0196 (6) | |
H20A | 0.3889 | 0.4738 | 0.0745 | 0.029* | |
H20B | 0.6093 | 0.3906 | 0.0973 | 0.029* | |
H20C | 0.4089 | 0.4502 | 0.1403 | 0.029* | |
C10 | −0.1373 (6) | −0.01652 (19) | 0.14485 (9) | 0.0134 (6) | |
C14 | −0.2956 (7) | −0.2026 (2) | 0.05618 (11) | 0.0214 (7) | |
H14 | −0.2007 | −0.1904 | 0.0218 | 0.026* | |
C22 | 0.0511 (6) | −0.00647 (18) | 0.28793 (9) | 0.0175 (6) | |
H22A | 0.0825 | −0.0669 | 0.3120 | 0.026* | |
H22B | −0.1383 | −0.0095 | 0.2722 | 0.026* | |
H22C | 0.0719 | 0.0568 | 0.3102 | 0.026* | |
C15 | −0.2583 (7) | −0.2953 (2) | 0.08090 (11) | 0.0288 (8) | |
H15A | −0.3497 | −0.3104 | 0.1153 | 0.035* | |
H15B | −0.1405 | −0.3455 | 0.0639 | 0.035* | |
C13 | −0.4799 (6) | −0.11548 (17) | 0.07933 (10) | 0.0155 (6) | |
H13A | −0.5731 | −0.1396 | 0.1141 | 0.019* | |
H13B | −0.6273 | −0.0988 | 0.0516 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O16 | 0.0252 (12) | 0.0179 (9) | 0.0146 (8) | −0.0020 (10) | −0.0054 (9) | 0.0036 (7) |
O11 | 0.0207 (11) | 0.0155 (9) | 0.0185 (8) | −0.0029 (9) | −0.0019 (8) | 0.0038 (7) |
O17 | 0.0168 (10) | 0.0133 (8) | 0.0148 (8) | 0.0008 (9) | 0.0016 (9) | 0.0044 (7) |
O19 | 0.0200 (11) | 0.0132 (8) | 0.0190 (9) | −0.0049 (9) | −0.0026 (9) | 0.0042 (7) |
O12 | 0.0164 (10) | 0.0170 (9) | 0.0157 (8) | −0.0003 (9) | 0.0003 (9) | 0.0024 (7) |
O18 | 0.0178 (10) | 0.0136 (8) | 0.0171 (8) | −0.0029 (9) | −0.0039 (9) | 0.0014 (7) |
C5 | 0.0116 (15) | 0.0122 (11) | 0.0136 (11) | 0.0032 (12) | 0.0041 (12) | −0.0012 (9) |
C4 | 0.0125 (14) | 0.0135 (11) | 0.0127 (11) | −0.0004 (12) | 0.0021 (12) | 0.0010 (9) |
C2 | 0.0120 (15) | 0.0130 (12) | 0.0172 (12) | −0.0016 (12) | 0.0018 (12) | −0.0018 (10) |
C6 | 0.0130 (15) | 0.0137 (12) | 0.0121 (11) | 0.0032 (13) | 0.0011 (12) | 0.0010 (9) |
C3 | 0.0133 (15) | 0.0118 (12) | 0.0149 (11) | 0.0030 (13) | 0.0032 (13) | 0.0023 (9) |
C8 | 0.0130 (15) | 0.0191 (13) | 0.0122 (11) | 0.0008 (13) | 0.0000 (12) | −0.0005 (10) |
C21 | 0.0190 (17) | 0.0171 (13) | 0.0179 (12) | −0.0043 (14) | −0.0045 (14) | −0.0024 (10) |
C9 | 0.0118 (15) | 0.0152 (12) | 0.0136 (11) | −0.0009 (12) | −0.0013 (12) | −0.0013 (10) |
C1 | 0.0102 (15) | 0.0166 (12) | 0.0120 (11) | 0.0051 (12) | 0.0004 (11) | −0.0014 (10) |
C7 | 0.0135 (15) | 0.0149 (12) | 0.0140 (11) | 0.0009 (13) | 0.0056 (12) | 0.0011 (10) |
C20 | 0.0220 (17) | 0.0168 (13) | 0.0198 (12) | −0.0052 (13) | 0.0005 (13) | −0.0011 (11) |
C10 | 0.0118 (15) | 0.0139 (12) | 0.0144 (11) | 0.0033 (11) | 0.0039 (12) | 0.0001 (10) |
C14 | 0.0233 (18) | 0.0216 (14) | 0.0193 (12) | −0.0058 (14) | −0.0010 (14) | −0.0031 (10) |
C22 | 0.0211 (15) | 0.0171 (13) | 0.0142 (11) | −0.0003 (13) | 0.0024 (13) | 0.0034 (10) |
C15 | 0.036 (2) | 0.0226 (15) | 0.0275 (14) | 0.0036 (16) | 0.0000 (17) | −0.0033 (12) |
C13 | 0.0155 (16) | 0.0153 (12) | 0.0156 (11) | −0.0041 (12) | −0.0031 (14) | 0.0027 (10) |
O16—C8 | 1.346 (3) | C8—C7 | 1.486 (3) |
O16—H16 | 0.8200 | C21—H21A | 0.9600 |
O11—C10 | 1.226 (3) | C21—H21B | 0.9600 |
O17—C6 | 1.375 (3) | C21—H21C | 0.9600 |
O17—C22 | 1.436 (3) | C9—C10 | 1.471 (3) |
O19—C3 | 1.361 (3) | C9—C13 | 1.505 (3) |
O19—C20 | 1.439 (3) | C20—H20A | 0.9600 |
O12—C7 | 1.237 (3) | C20—H20B | 0.9600 |
O18—C1 | 1.350 (3) | C20—H20C | 0.9600 |
O18—C21 | 1.443 (3) | C14—C15 | 1.318 (4) |
C5—C6 | 1.394 (3) | C14—C13 | 1.501 (4) |
C5—C4 | 1.427 (3) | C14—H14 | 0.9300 |
C5—C10 | 1.505 (3) | C22—H22A | 0.9600 |
C4—C3 | 1.407 (3) | C22—H22B | 0.9600 |
C4—C7 | 1.467 (3) | C22—H22C | 0.9600 |
C2—C1 | 1.380 (3) | C15—H15A | 0.9300 |
C2—C3 | 1.396 (3) | C15—H15B | 0.9300 |
C2—H2 | 0.9300 | C13—H13A | 0.9700 |
C6—C1 | 1.406 (3) | C13—H13B | 0.9700 |
C8—C9 | 1.342 (3) | ||
C8—O16—H16 | 109.5 | O18—C1—C6 | 114.9 (2) |
C6—O17—C22 | 113.32 (18) | C2—C1—C6 | 120.9 (2) |
C3—O19—C20 | 118.60 (19) | O12—C7—C4 | 124.8 (2) |
C1—O18—C21 | 117.46 (18) | O12—C7—C8 | 116.3 (2) |
C6—C5—C4 | 119.5 (2) | C4—C7—C8 | 118.8 (2) |
C6—C5—C10 | 120.5 (2) | O19—C20—H20A | 109.5 |
C4—C5—C10 | 120.0 (2) | O19—C20—H20B | 109.5 |
C3—C4—C5 | 119.1 (2) | H20A—C20—H20B | 109.5 |
C3—C4—C7 | 122.1 (2) | O19—C20—H20C | 109.5 |
C5—C4—C7 | 118.8 (2) | H20A—C20—H20C | 109.5 |
C1—C2—C3 | 119.8 (2) | H20B—C20—H20C | 109.5 |
C1—C2—H2 | 120.1 | O11—C10—C9 | 119.1 (2) |
C3—C2—H2 | 120.1 | O11—C10—C5 | 121.6 (2) |
O17—C6—C5 | 123.8 (2) | C9—C10—C5 | 119.3 (2) |
O17—C6—C1 | 116.2 (2) | C15—C14—C13 | 124.9 (3) |
C5—C6—C1 | 120.0 (2) | C15—C14—H14 | 117.5 |
O19—C3—C2 | 121.9 (2) | C13—C14—H14 | 117.5 |
O19—C3—C4 | 117.5 (2) | O17—C22—H22A | 109.5 |
C2—C3—C4 | 120.6 (2) | O17—C22—H22B | 109.5 |
C9—C8—O16 | 121.2 (2) | H22A—C22—H22B | 109.5 |
C9—C8—C7 | 123.5 (2) | O17—C22—H22C | 109.5 |
O16—C8—C7 | 115.26 (19) | H22A—C22—H22C | 109.5 |
O18—C21—H21A | 109.5 | H22B—C22—H22C | 109.5 |
O18—C21—H21B | 109.5 | C14—C15—H15A | 120.0 |
H21A—C21—H21B | 109.5 | C14—C15—H15B | 120.0 |
O18—C21—H21C | 109.5 | H15A—C15—H15B | 120.0 |
H21A—C21—H21C | 109.5 | C14—C13—C9 | 112.2 (2) |
H21B—C21—H21C | 109.5 | C14—C13—H13A | 109.2 |
C8—C9—C10 | 119.4 (2) | C9—C13—H13A | 109.2 |
C8—C9—C13 | 123.0 (2) | C14—C13—H13B | 109.2 |
C10—C9—C13 | 117.6 (2) | C9—C13—H13B | 109.2 |
O18—C1—C2 | 124.2 (2) | H13A—C13—H13B | 107.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···O12 | 0.82 | 2.14 | 2.612 (2) | 117 |
O16—H16···O12i | 0.82 | 2.05 | 2.777 (2) | 148 |
O16—H16···O19i | 0.82 | 2.40 | 2.926 (2) | 122 |
Symmetry code: (i) x−1/2, −y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | C16H16O6 |
Mr | 304.29 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 89 |
a, b, c (Å) | 4.6811 (1), 12.6577 (3), 23.3392 (5) |
V (Å3) | 1382.89 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.28 × 0.09 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART diffractometer with APEXII CCD detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14372, 1914, 1415 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.085, 1.09 |
No. of reflections | 1914 |
No. of parameters | 200 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.28 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O16—H16···O12 | 0.82 | 2.14 | 2.612 (2) | 116.5 |
O16—H16···O12i | 0.82 | 2.05 | 2.777 (2) | 147.6 |
O16—H16···O19i | 0.82 | 2.40 | 2.926 (2) | 122.4 |
Symmetry code: (i) x−1/2, −y+1/2, −z. |
Acknowledgements
The authors thank Tania Groutso for her help with the data collection and the New Zealand Tertiary Education Commission for the award of Bright Future Top Achiever Doctoral Scholarships (DCKR and KYT).
References
Brimble, M. A., Rathwell, D. C. K. & Tsang, K. Y. (2008). In preparation. Google Scholar
Brockmann, H., Lenk, W., Schwantje, A. & Zeeck, A. (1966). Tetrahedron Lett. 30, 3525–3530. CrossRef CAS PubMed Google Scholar
Brockmann, H. & Renneberg, K. H. (1953). Naturwissenschaften, 40, 59–60. CrossRef CAS Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kozlowski, M. C., Lowell, A. N. & Fennie, M. W. (2008). J. Org. Chem. 73, 1911–1918. Web of Science PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Reissig, H. U., Sörgel, S. & Azap, C. (2006). Eur. J. Org. Chem. pp. 4405–4418. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The rubromycins are a structurally related family of antibiotics that exhibit a wide range of biological activity (Brockmann et al., 1953, 1966). The common structural features of this family of antibiotics consists of a naphthoquinone and an isocoumarin ring linked through a bis-benzannelated-5,6-spiroacetal ring system. Our recent synthetic efforts have focused on the synthesis of the naphthoquinone units of the rubromycins and its regioisomeric counterpart. The tandem Ullman coupling–Claisen rearrangement has been successfully employed to access the regioisomeric naphthoquinones in which the title compound was isolated as a minor isomer. The newly introduced hydroxyl and allyl groups were established by X-ray crystallography to be at C8 and C9, respectively (Fig. 1). The crystal packing is dominated by intermolecular hydrogen bonds and π–π interactions (Table 1, Fig. 2). Further detailed analysis revealed that a pair of naphthoquinone rings are linked via O—H···O—C hydrogen bonding in a near orthogonal arrangement with respect to each other. This dimeric unit stacks on top of a neighbouring dimer with π–π stacking interactions between the naphthoquinone rings and O—H···O—C hydrogen bonding (Table 1, Fig. 2).