metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1351-m1352

catena-Poly[[[aqua­cadmium(II)]bis­­(μ-4-hy­droxy­pyridine-2,6-di­carboxyl­ato)[aqua­cadmium(II)]di-μ-aqua] tetra­hydrate]

aFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, bFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cFaculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: haghabozorg@yahoo.com

(Received 16 August 2008; accepted 24 September 2008; online 30 September 2008)

The title polymeric compound, {[Cd2(C7H3NO5)2(H2O)4]·4H2O}n or {[Cd2(hypydc)2(H2O)4]·4H2O}n (where hypydcH2 is 4-hydroxy­pyridine-2,6-dicarboxylic acid), was synthesized by the reaction of cadmium(II) nitrate hexa­hydrate with 4-hydroxy­pyridine-2,6-dicarboxylic acid and propane-1,3-diamine, in a 1:2:2 molar ratio in aqueous solution. The compound is a seven-coordinate binuclear polymeric complex with distorted penta­gonal bipyramidal geometry around CdII [Cd—O = 2.247 (4)–2.474 (3) Å]. In the binuclear monomeric units, the central atoms join together by O atoms of two bridging tridentate (hypydc)2− ligands, and the polymer propagates via two bridging water mol­ecules that link each CdII centre of one monomer to the adjacent neighbour. Propane-1,3-diamine (pn) does not appear in the product but plays a role as a base. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, and ππ stacking inter­actions, with distances of 3.725 (3) and 3.766 (3) Å, connect the various components.

Related literature

For a review of proton-transfer compounds, see: Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related compounds, see: Aghabozorg et al. (2007[Aghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007). Acta Cryst. E63, m1917-m1918.]); Aghabozorg, Motyeian et al. (2008[Aghabozorg, H., Motyeian, E., Khadivi, R., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m320-m321.]); Aghabozorg, Roshan et al. (2008[Aghabozorg, H., Roshan, L., Firoozi, N., Ghadermazi, M. & Bagheri, S. (2008). Acta Cryst. E64, m1208-m1209.]); Fu et al. (2004[Fu, A.-Y., Wang, D.-Q. & Liu, A.-Z. (2004). Acta Cryst. E60, m1372-m1373.]); Odoko et al. (2002[Odoko, M., Kusano, A. & Okabe, N. (2002). Acta Cryst. E58, m25-m27.]); Ranjbar et al. (2002[Ranjbar, M., Aghabozorg, H. & Moghimi, A. (2002). Acta Cryst. E58, m304-m306.]); Wu et al. (2007[Wu, H.-F., Chen, X.-D. & Du, M. (2007). Acta Cryst. E63, m126-m128.]). For the isostructural Mn compound, see: Ghosh et al. (2005[Ghosh, S. K., Ribas, J., El Fallah, M. S. & Bharadwaj, P. K. (2005). Inorg. Chem. 44, 3856-3862.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C7H3NO5)2(H2O)4]·4H2O

  • Mr = 731.14

  • Triclinic, [P \overline 1]

  • a = 9.4499 (6) Å

  • b = 10.8633 (7) Å

  • c = 11.2086 (9) Å

  • α = 87.910 (3)°

  • β = 74.239 (2)°

  • γ = 80.478 (2)°

  • V = 1092.08 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 100 (2) K

  • 0.15 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.749, Tmax = 0.854

  • 14393 measured reflections

  • 6313 independent reflections

  • 4460 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.091

  • S = 1.00

  • 6313 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O9i 0.85 1.74 2.536 (5) 156
O6—H6A⋯O4ii 0.85 1.86 2.665 (5) 156
O6—H6B⋯O17 0.85 1.83 2.677 (8) 177
O7—H7A⋯O11iii 0.85 2.06 2.871 (5) 158
O7—H7B⋯O1iv 0.85 1.84 2.639 (5) 156
O8—H8A⋯O12v 0.85 1.88 2.687 (5) 159
O8—H8B⋯O15 0.85 1.83 2.679 (5) 176
O11—H11O⋯O5iii 0.85 1.76 2.547 (5) 153
O14—H14A⋯O18vi 0.85 1.94 2.747 (7) 159
O14—H14B⋯O16v 0.85 1.82 2.663 (6) 169
O15—H15A⋯O17vii 0.85 1.96 2.802 (7) 169
O15—H15B⋯O3i 0.85 2.03 2.790 (5) 149
O16—H16A⋯O18viii 0.85 2.30 3.013 (6) 142
O16—H16A⋯O14ix 0.85 2.50 3.228 (6) 143
O16—H16B⋯O15ix 0.85 1.97 2.791 (6) 161
O18—H18A⋯O9ii 0.85 1.88 2.719 (5) 170
O18—H18B⋯O12x 0.85 2.20 2.819 (6) 129
C11—H11A⋯O4iii 0.95 2.31 3.224 (6) 161
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1; (vi) x+1, y-1, z; (vii) x+1, y, z; (viii) x, y-1, z; (ix) x-1, y, z; (x) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We have reported a number of cases in which a proton is transferred from a carboxylic acid to an amine to form some novel organic compounds. This work was recently reviewed (Aghabozorg, Manteghi & Sheshmani, 2008). With the use of these organic proton transfer compounds as starting materials, several metal organic compounds were prepared. Recently, we have combined the acid, amine and metallic salt in a one-pot reaction, including the title compound in this article, [Cd2(hypydc)2(H2O)4]}n.4nH2O (where hypydcH2 is 4-hydroxypyridine-2,6-dicarboxylic acid). A search of the literature shows that there are similar compounds to the title compound using pydc (pydcH2 = pyridine-2,6-dicarboxylic acid) as ligand to CdII such as (enH2)2[Cd(pydc)3].6H2O, 1 (Fu et al., 2004), or [Cd2(pydc)2(H2O)6].2pydcH2, 2(Odoko et al., 2002), [Cd2(pydc)2(CH3OH)2(H2O)]n, 3 (Wu et al., 2007), [Cd(pydc)(H2O)3]2.2H2pydc, 4 (Ranjbar et al., 2002), [Cd(py-2,3-dc)(H2O)3]n, 5, py-2,3-dc is pyridine-2,3-dicarboxylate, (Aghabozorg, Motyeian et al., 2008) or hypydc as ligand to different metals such as (pydaH)[Cr(hypydc)2].2H2O (Aghabozorg, Roshan, et al., 2008), [Ni(hypydc)(H2O)3].1.5H2O (Aghabozorg, Ghadermazi, et al., 2007).

The molecular structure, coordination polyhedra, ππ stacking, packing diagram and water cluster of the title compound are shown in Figs. 1–5. The extensive hydrogen bonding geometry is given in Table 1. Each of the two CdII atoms in the asymmetric unit is seven-coordinate. The coordination environment is distorted pentagonal bipyramidal, with two O and one N atoms of the (hypydc)2- group as well as one O atom of an inversion-related (hypydc)2- group and a bridging water O atom forming the pentagonal plane. The other bridging water O and one terminal O atom of a coordinated water form the apical groups (Figs. 1 and 2). The sums of the bond angles in the pentagonal plane around Cd1 and Cd2 are 362.05° and 362.89°, respectively. As shown in Fig. 1, the Cd1 and Cd2 atoms join together by O atoms of two bridging water molecules (O7 and O8), and the O atoms of tridentate (hypydc)2- ligands (O2 and O13) bridge Cd1 to Cd1A and Cd2 to Cd2B to make a polymeric feature. The compound is isostructural to {[Mn2(hypydc)2(H2O)4]}n.4nH2O which has been described as propagating in a one-dimensional staircase model (Ghosh et al., 2005).

Compared with the similar structures mentioned above and listed in Table 2, with various coordination numbers of six, seven and nine, the Cd—O distances of the title compound (average 2.388 Å) lie in the same range as compounds 2, 3, and 4 and far from compounds 1 and 5. However, the Cd—N distances (average 2.273 Å) are obviously shorter than all five compounds. Moreover, in the polymeric compound 3, the binuclear units are connected via carboxylate O atoms to build a one-dimensional polymeric chain, and in 5, the chain propagates via linking two oxygen atoms of (py-2,3-dc)2- to cadmium centers, while in the title compound, the bridging water molecules cause propagation of the binuclear unit.

An outstanding feature of the title compound is the presence of ππ stacking interactions between aromatic rings, Cg1–Cg2 (Cg1: N1/C1–C5; Cg2: N2/C8–C12) with distances of 3.725 (3) Å (x, 1 + y, z) and Cg2–Cg2 with distances of 3.767 (3) Å (1 - x, -y, -z), as shown in Fig. 3. Intermolecular O—H···O and C—H···O hydrogen bonds with D···A ranging from 2.534 (5) Å to 3.225 (6) Å (Table 1), ion pairing and ππ stacking interactions are observed. The arrangement of water molecules in the structure consists of an R6 motif coupled to a branched C10 motif as shown in Fig. 5.

Related literature top

For a review of proton-transfer compounds, see: Aghabozorg, Manteghi & Sheshmani (2008). For related compounds, see: Aghabozorg et al. (2007); Aghabozorg, Motyeian, et al. (2008); Aghabozorg, Roshan, et al. (2008); Fu et al. (2004); Odoko et al. (2002); Ranjbar et al. (2002); Wu et al. (2007). For the isostructural Mn compound, see: Ghosh et al. (2005).

Experimental top

A solution of Cd(NO3)2.6H2O (172 mg, 0.5 mmol) in water (10 ml) was added to an aqueous solution of propane-1,3-diamine(74 mg, 1 mmol) and 4-hydroxypyridine-2,6-dicarboxylic acid (167 mg, 1 mmol) in water (10 ml) in a 1:2:2 molar ratio and heated for two hours. Colourless crystals of the title compound were obtained after allowing the mixture to stand for four months at room temperature.

Refinement top

The H atoms of the OH-groups and the water molecules were located in the difference Fourier map and all O—H distancies were normalized at 0.85 Å. The H(O) atoms were refined in rigid model with fixed thermal (Uiso(H) = 1.2Ueq(O)) parameters. The H(C) atoms were placed in calculated positions with r(C—H) = 0.95 Å and refined in riding model with fixed thermal parameters (Uiso(H) = 1.2Ueq(C)). The Ueq(O or C) are the equivalent thermal parameters of the oxygen and carbon atoms, respectively, to which corresponding H atoms are bonded.

There is a high positive residual density of 1.03 e Å-3 near the Cd2 center (0.77 Å) due to considerable absorption effects which could not be completely corrected.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound as a fragment of the polymeric chain. Displacement ellipsoids are drawn at 50% probability level. Symmetry codes to generate atoms with labels: A: -x + 1,-y + 1,-z + 1; B: -x + 1, -y, -z + 1.
[Figure 2] Fig. 2. Coordination polyhedron of the title compound [i: (1 - x, 1 - y, 1 - z) and ii: (1 - x, -y, 1 - z)]
[Figure 3] Fig. 3. ππ Stacking interactions of Cg1–Cg2 (Cg1: N1/C1–C5; Cg2: N2/C8–C12) and Cg2–Cg2 of the title compound. The average distances between the planes are 3.725 (3) Å (x, 1 + y, z) and 3.766 (3) Å (1 - x, -y, -z), respectively.
[Figure 4] Fig. 4. The crystal packing of the title compound along a crystal axis. Hydrogen bonds are shown as dashed lines.
[Figure 5] Fig. 5. A perspective view of the water cluster arranged in the structure.
catena-Poly[[[aquacadmium(II)]bis(µ-4-hydroxypyridine-2,6- dicarboxylato)[aquacadmium(II)]di-µ-aqua] tetrahydrate] top
Crystal data top
[Cd2(C7H3NO5)2(H2O)4]·4H2OZ = 2
Mr = 731.14F(000) = 720
Triclinic, P1Dx = 2.223 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4499 (6) ÅCell parameters from 1712 reflections
b = 10.8633 (7) Åθ = 2.3–26.6°
c = 11.2086 (9) ŵ = 2.04 mm1
α = 87.910 (3)°T = 100 K
β = 74.239 (2)°Prism, colourless
γ = 80.478 (2)°0.15 × 0.12 × 0.08 mm
V = 1092.08 (13) Å3
Data collection top
Bruker SMART APEXII
diffractometer
6313 independent reflections
Radiation source: fine-focus sealed tube4460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.749, Tmax = 0.854k = 1515
14393 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.091H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.020P)2 + 3.P]
where P = (Fo2 + 2Fc2)/3
6313 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
[Cd2(C7H3NO5)2(H2O)4]·4H2Oγ = 80.478 (2)°
Mr = 731.14V = 1092.08 (13) Å3
Triclinic, P1Z = 2
a = 9.4499 (6) ÅMo Kα radiation
b = 10.8633 (7) ŵ = 2.04 mm1
c = 11.2086 (9) ÅT = 100 K
α = 87.910 (3)°0.15 × 0.12 × 0.08 mm
β = 74.239 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
6313 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4460 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.854Rint = 0.060
14393 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.00Δρmax = 1.03 e Å3
6313 reflectionsΔρmin = 1.01 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.52233 (4)0.41267 (3)0.34288 (3)0.01222 (9)
Cd20.64542 (4)0.07117 (3)0.36831 (3)0.01104 (9)
O10.7671 (4)0.7051 (4)0.4236 (3)0.0213 (9)
O20.6031 (4)0.5739 (3)0.4480 (3)0.0148 (8)
O30.9775 (4)0.7024 (3)0.0481 (3)0.0161 (8)
H3O0.99610.76870.02190.019*
O40.6494 (4)0.3865 (3)0.0651 (3)0.0176 (8)
O50.5617 (4)0.3419 (3)0.1337 (3)0.0168 (8)
O60.3269 (5)0.5374 (4)0.2974 (4)0.0362 (12)
H6A0.35540.54470.21910.043*
H6B0.23430.53400.32250.043*
O70.4213 (4)0.2185 (3)0.3620 (3)0.0125 (7)
H7A0.38380.21560.30150.015*
H7B0.35090.22400.42840.015*
O80.6944 (4)0.2700 (3)0.4137 (3)0.0131 (7)
H8A0.69430.26180.48940.016*
H8B0.78380.27950.37890.016*
O90.8938 (4)0.1332 (3)0.0142 (3)0.0154 (7)
O100.8252 (4)0.1290 (4)0.1920 (3)0.0189 (8)
O110.6211 (4)0.1986 (3)0.1198 (3)0.0154 (8)
H11O0.57120.25830.10670.018*
O120.3580 (4)0.2089 (3)0.3456 (3)0.0146 (7)
O130.4717 (4)0.0785 (3)0.4216 (3)0.0141 (7)
O140.8487 (4)0.0278 (4)0.4192 (4)0.0261 (9)
H14A0.91370.07940.36970.031*
H14B0.85400.05800.48920.031*
N10.6853 (5)0.5189 (4)0.2066 (4)0.0119 (4)
N20.6319 (4)0.0249 (4)0.1969 (4)0.0104 (4)
C10.7505 (5)0.6044 (5)0.2457 (4)0.0119 (4)
C20.8515 (5)0.6687 (4)0.1641 (4)0.0119 (4)
H2A0.89790.72720.19450.014*
C30.8838 (5)0.6462 (5)0.0370 (4)0.0119 (4)
C40.8116 (5)0.5594 (4)0.0030 (4)0.0119 (4)
H4A0.82860.54360.08900.014*
C50.7155 (5)0.4969 (4)0.0840 (4)0.0119 (4)
C60.7047 (6)0.6299 (5)0.3840 (5)0.0149 (10)
C70.6364 (5)0.4018 (5)0.0464 (4)0.0107 (9)
C80.7203 (5)0.0014 (4)0.0849 (4)0.0104 (4)
C90.7187 (5)0.0582 (4)0.0220 (4)0.0104 (4)
H9A0.78240.03950.09960.012*
C100.6223 (5)0.1432 (4)0.0149 (4)0.0104 (4)
C110.5281 (5)0.1673 (4)0.1005 (4)0.0104 (4)
H11A0.45950.22380.10760.012*
C120.5376 (5)0.1068 (4)0.2040 (4)0.0104 (4)
C130.8203 (6)0.0931 (5)0.0898 (5)0.0121 (10)
C140.4476 (6)0.1331 (5)0.3343 (4)0.0113 (10)
O150.9715 (4)0.3122 (4)0.3047 (3)0.0203 (8)
H15A0.98660.37600.33810.024*
H15B0.95820.33020.23370.024*
O160.1500 (5)0.0936 (4)0.3498 (4)0.0355 (11)
H16A0.09450.04510.33540.043*
H16B0.11500.16470.32670.043*
O170.0340 (6)0.5346 (5)0.3824 (6)0.0617 (17)
H17A0.00110.57320.32660.074*
H17B0.00980.58840.44070.074*
O180.1026 (5)0.8506 (6)0.2576 (4)0.0601 (18)
H18A0.10700.84580.18110.072*
H18B0.15610.79040.28320.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0173 (2)0.0132 (2)0.00806 (18)0.00777 (16)0.00365 (15)0.00109 (14)
Cd20.01285 (19)0.01276 (19)0.00844 (18)0.00532 (15)0.00244 (15)0.00044 (14)
O10.031 (2)0.028 (2)0.0082 (17)0.0200 (18)0.0008 (16)0.0055 (15)
O20.0185 (19)0.0151 (19)0.0115 (18)0.0074 (15)0.0024 (15)0.0002 (14)
O30.0175 (19)0.0163 (19)0.0130 (18)0.0089 (15)0.0024 (15)0.0004 (14)
O40.027 (2)0.019 (2)0.0095 (17)0.0118 (16)0.0043 (15)0.0014 (14)
O50.026 (2)0.0194 (19)0.0077 (17)0.0168 (16)0.0011 (15)0.0009 (14)
O60.025 (2)0.063 (3)0.013 (2)0.016 (2)0.0060 (18)0.002 (2)
O70.0106 (17)0.0196 (19)0.0072 (16)0.0046 (14)0.0003 (13)0.0022 (13)
O80.0149 (18)0.0188 (19)0.0068 (16)0.0053 (14)0.0036 (14)0.0015 (13)
O90.0179 (19)0.0188 (19)0.0115 (17)0.0097 (15)0.0034 (14)0.0001 (14)
O100.025 (2)0.025 (2)0.0087 (17)0.0142 (17)0.0024 (15)0.0027 (15)
O110.022 (2)0.0192 (19)0.0074 (16)0.0142 (15)0.0021 (14)0.0031 (14)
O120.022 (2)0.0134 (18)0.0091 (17)0.0050 (15)0.0028 (15)0.0040 (13)
O130.0194 (19)0.0139 (18)0.0114 (17)0.0098 (15)0.0038 (15)0.0016 (14)
O140.027 (2)0.032 (2)0.018 (2)0.0006 (19)0.0072 (18)0.0077 (17)
N10.0120 (10)0.0121 (10)0.0104 (9)0.0027 (7)0.0003 (7)0.0008 (7)
N20.0103 (9)0.0122 (10)0.0084 (9)0.0023 (7)0.0017 (7)0.0000 (7)
C10.0120 (10)0.0121 (10)0.0104 (9)0.0027 (7)0.0003 (7)0.0008 (7)
C20.0120 (10)0.0121 (10)0.0104 (9)0.0027 (7)0.0003 (7)0.0008 (7)
C30.0120 (10)0.0121 (10)0.0104 (9)0.0027 (7)0.0003 (7)0.0008 (7)
C40.0120 (10)0.0121 (10)0.0104 (9)0.0027 (7)0.0003 (7)0.0008 (7)
C50.0120 (10)0.0121 (10)0.0104 (9)0.0027 (7)0.0003 (7)0.0008 (7)
C60.016 (3)0.010 (2)0.017 (3)0.004 (2)0.000 (2)0.0035 (19)
C70.007 (2)0.014 (2)0.010 (2)0.0031 (18)0.0009 (18)0.0028 (18)
C80.0103 (9)0.0122 (10)0.0084 (9)0.0023 (7)0.0017 (7)0.0000 (7)
C90.0103 (9)0.0122 (10)0.0084 (9)0.0023 (7)0.0017 (7)0.0000 (7)
C100.0103 (9)0.0122 (10)0.0084 (9)0.0023 (7)0.0017 (7)0.0000 (7)
C110.0103 (9)0.0122 (10)0.0084 (9)0.0023 (7)0.0017 (7)0.0000 (7)
C120.0103 (9)0.0122 (10)0.0084 (9)0.0023 (7)0.0017 (7)0.0000 (7)
C130.013 (2)0.013 (2)0.014 (2)0.0096 (19)0.0051 (19)0.0017 (18)
C140.013 (2)0.011 (2)0.011 (2)0.0052 (19)0.0050 (19)0.0063 (18)
O150.0175 (19)0.033 (2)0.0114 (18)0.0112 (17)0.0013 (15)0.0039 (16)
O160.052 (3)0.037 (3)0.018 (2)0.012 (2)0.009 (2)0.0051 (19)
O170.036 (3)0.055 (4)0.098 (5)0.003 (3)0.026 (3)0.040 (3)
O180.031 (3)0.127 (5)0.012 (2)0.029 (3)0.011 (2)0.013 (3)
Geometric parameters (Å, º) top
Cd1—O62.267 (4)O13—C141.252 (6)
Cd1—N12.284 (4)O13—Cd2ii2.312 (3)
Cd1—O2i2.320 (3)O14—H14A0.8500
Cd1—O82.335 (3)O14—H14B0.8500
Cd1—O52.406 (3)N1—C11.343 (6)
Cd1—O72.435 (3)N1—C51.347 (6)
Cd1—O22.474 (3)N2—C121.346 (6)
Cd2—O142.244 (4)N2—C81.347 (6)
Cd2—N22.263 (4)C1—C21.390 (7)
Cd2—O13ii2.312 (3)C1—C61.515 (7)
Cd2—O102.372 (4)C2—C31.395 (7)
Cd2—O82.383 (3)C2—H2A0.9500
Cd2—O132.445 (3)C3—C41.402 (7)
Cd2—O72.450 (3)C4—C51.383 (7)
O1—C61.241 (6)C4—H4A0.9500
O2—C61.262 (6)C5—C71.505 (7)
O2—Cd1i2.320 (3)C8—C91.373 (6)
O3—C31.320 (5)C8—C131.518 (6)
O3—H3O0.8500C9—C101.387 (6)
O4—C71.237 (6)C9—H9A0.9500
O5—C71.269 (6)C10—C111.400 (6)
O6—H6A0.8500C11—C121.385 (6)
O6—H6B0.8500C11—H11A0.9500
O7—H7A0.8501C12—C141.521 (7)
O7—H7B0.8500O15—H15A0.8500
O8—H8A0.8500O15—H15B0.8500
O8—H8B0.8500O16—H16A0.8500
O9—C131.286 (6)O16—H16B0.8500
O10—C131.238 (6)O17—H17A0.8499
O11—C101.344 (5)O17—H17B0.8501
O11—H11O0.8500O18—H18A0.8500
O12—C141.255 (6)O18—H18B0.8500
O6—Cd1—N190.59 (16)H8A—O8—H8B102.3
O6—Cd1—O2i90.18 (14)C13—O10—Cd2116.8 (3)
N1—Cd1—O2i136.84 (13)C10—O11—H11O113.0
O6—Cd1—O8170.72 (15)C14—O13—Cd2ii131.0 (3)
N1—Cd1—O898.66 (13)C14—O13—Cd2117.7 (3)
O2i—Cd1—O882.57 (12)Cd2ii—O13—Cd2110.75 (13)
O6—Cd1—O581.50 (14)Cd2—O14—H14A121.4
N1—Cd1—O569.20 (13)Cd2—O14—H14B127.6
O2i—Cd1—O5153.07 (12)H14A—O14—H14B101.5
O8—Cd1—O5102.43 (12)C1—N1—C5118.9 (4)
O6—Cd1—O797.28 (15)C1—N1—Cd1121.5 (3)
N1—Cd1—O7141.26 (13)C5—N1—Cd1119.6 (3)
O2i—Cd1—O781.24 (11)C12—N2—C8118.6 (4)
O8—Cd1—O775.95 (12)C12—N2—Cd2121.3 (3)
O5—Cd1—O774.55 (11)C8—N2—Cd2120.1 (3)
O6—Cd1—O296.88 (15)N1—C1—C2122.2 (4)
N1—Cd1—O267.99 (13)N1—C1—C6116.1 (4)
O2i—Cd1—O269.08 (14)C2—C1—C6121.6 (4)
O8—Cd1—O285.97 (12)C1—C2—C3119.2 (5)
O5—Cd1—O2137.14 (11)C1—C2—H2A120.4
O7—Cd1—O2147.01 (11)C3—C2—H2A120.4
O14—Cd2—N2107.13 (15)O3—C3—C2124.0 (4)
O14—Cd2—O13ii86.47 (13)O3—C3—C4117.9 (4)
N2—Cd2—O13ii137.82 (13)C2—C3—C4118.1 (4)
O14—Cd2—O1082.66 (14)C5—C4—C3119.3 (4)
N2—Cd2—O1070.05 (13)C5—C4—H4A120.4
O13ii—Cd2—O10152.13 (12)C3—C4—H4A120.4
O14—Cd2—O891.90 (13)N1—C5—C4122.2 (5)
N2—Cd2—O8135.50 (13)N1—C5—C7116.2 (4)
O13ii—Cd2—O881.67 (12)C4—C5—C7121.5 (4)
O10—Cd2—O873.16 (12)O1—C6—O2126.1 (5)
O14—Cd2—O13103.58 (13)O1—C6—C1117.7 (4)
N2—Cd2—O1368.77 (13)O2—C6—C1116.2 (4)
O13ii—Cd2—O1369.25 (13)O4—C7—O5125.0 (5)
O10—Cd2—O13138.33 (12)O4—C7—C5118.8 (4)
O8—Cd2—O13145.76 (12)O5—C7—C5116.2 (4)
O14—Cd2—O7163.49 (13)N2—C8—C9122.7 (4)
N2—Cd2—O789.32 (13)N2—C8—C13113.3 (4)
O13ii—Cd2—O782.00 (12)C9—C8—C13124.1 (4)
O10—Cd2—O7102.26 (12)C8—C9—C10118.8 (4)
O8—Cd2—O774.81 (11)C8—C9—H9A120.6
O13—Cd2—O783.36 (12)C10—C9—H9A120.6
C6—O2—Cd1i131.4 (3)O11—C10—C9118.6 (4)
C6—O2—Cd1117.6 (3)O11—C10—C11122.2 (4)
Cd1i—O2—Cd1110.92 (14)C9—C10—C11119.2 (4)
C3—O3—H3O113.4C12—C11—C10118.3 (4)
C7—O5—Cd1118.0 (3)C12—C11—H11A120.9
Cd1—O6—H6A103.6C10—C11—H11A120.9
Cd1—O6—H6B129.8N2—C12—C11122.3 (4)
H6A—O6—H6B111.7N2—C12—C14115.4 (4)
Cd1—O7—Cd299.37 (12)C11—C12—C14122.2 (4)
Cd1—O7—H7A106.8O10—C13—O9123.6 (4)
Cd2—O7—H7A119.4O10—C13—C8119.1 (4)
Cd1—O7—H7B107.0O9—C13—C8117.3 (4)
Cd2—O7—H7B115.1O13—C14—O12125.6 (5)
H7A—O7—H7B107.9O13—C14—C12116.7 (4)
Cd1—O8—Cd2104.26 (13)O12—C14—C12117.6 (4)
Cd1—O8—H8A124.0H15A—O15—H15B110.3
Cd2—O8—H8A101.5H16A—O16—H16B104.2
Cd1—O8—H8B112.2H17A—O17—H17B102.7
Cd2—O8—H8B112.2H18A—O18—H18B114.0
O6—Cd1—O2—C694.9 (4)O13ii—Cd2—N2—C122.7 (5)
N1—Cd1—O2—C67.1 (4)O10—Cd2—N2—C12176.7 (4)
O2i—Cd1—O2—C6177.6 (5)O8—Cd2—N2—C12147.3 (3)
O8—Cd1—O2—C694.0 (4)O13—Cd2—N2—C123.2 (3)
O5—Cd1—O2—C610.0 (5)O7—Cd2—N2—C1279.9 (4)
O7—Cd1—O2—C6150.2 (3)O14—Cd2—N2—C878.0 (4)
O6—Cd1—O2—Cd1i87.55 (17)O13ii—Cd2—N2—C8177.9 (3)
N1—Cd1—O2—Cd1i175.4 (2)O10—Cd2—N2—C82.7 (3)
O2i—Cd1—O2—Cd1i0.0O8—Cd2—N2—C833.3 (4)
O8—Cd1—O2—Cd1i83.58 (15)O13—Cd2—N2—C8176.2 (4)
O5—Cd1—O2—Cd1i172.46 (14)O7—Cd2—N2—C8100.6 (4)
O7—Cd1—O2—Cd1i27.3 (3)C5—N1—C1—C21.8 (7)
O6—Cd1—O5—C786.1 (4)Cd1—N1—C1—C2179.1 (4)
N1—Cd1—O5—C77.8 (3)C5—N1—C1—C6176.5 (4)
O2i—Cd1—O5—C7159.4 (3)Cd1—N1—C1—C62.5 (6)
O8—Cd1—O5—C7102.5 (4)N1—C1—C2—C31.6 (8)
O7—Cd1—O5—C7173.9 (4)C6—C1—C2—C3176.6 (5)
O2—Cd1—O5—C74.9 (5)C1—C2—C3—O3179.8 (4)
O6—Cd1—O7—Cd2168.82 (13)C1—C2—C3—C40.3 (7)
N1—Cd1—O7—Cd268.7 (2)O3—C3—C4—C5178.5 (4)
O2i—Cd1—O7—Cd2102.13 (13)C2—C3—C4—C51.9 (7)
O8—Cd1—O7—Cd217.66 (11)C1—N1—C5—C40.1 (7)
O5—Cd1—O7—Cd289.76 (13)Cd1—N1—C5—C4179.2 (4)
O2—Cd1—O7—Cd276.4 (2)C1—N1—C5—C7178.9 (4)
O14—Cd2—O7—Cd154.7 (5)Cd1—N1—C5—C70.2 (6)
N2—Cd2—O7—Cd1120.54 (14)C3—C4—C5—N11.8 (8)
O13ii—Cd2—O7—Cd1100.87 (13)C3—C4—C5—C7179.3 (4)
O10—Cd2—O7—Cd151.13 (13)Cd1i—O2—C6—O13.4 (8)
O8—Cd2—O7—Cd117.39 (11)Cd1—O2—C6—O1173.5 (4)
O13—Cd2—O7—Cd1170.76 (12)Cd1i—O2—C6—C1174.8 (3)
N1—Cd1—O8—Cd2122.31 (14)Cd1—O2—C6—C18.2 (6)
O2i—Cd1—O8—Cd2101.29 (14)N1—C1—C6—O1177.4 (5)
O5—Cd1—O8—Cd251.83 (14)C2—C1—C6—O14.2 (8)
O7—Cd1—O8—Cd218.52 (11)N1—C1—C6—O24.2 (7)
O2—Cd1—O8—Cd2170.69 (14)C2—C1—C6—O2174.2 (5)
O14—Cd2—O8—Cd1171.44 (14)Cd1—O5—C7—O4170.3 (4)
N2—Cd2—O8—Cd154.4 (2)Cd1—O5—C7—C510.5 (6)
O13ii—Cd2—O8—Cd1102.41 (14)N1—C5—C7—O4173.4 (5)
O10—Cd2—O8—Cd189.69 (15)C4—C5—C7—O45.6 (7)
O13—Cd2—O8—Cd170.8 (2)N1—C5—C7—O57.4 (7)
O7—Cd2—O8—Cd118.49 (11)C4—C5—C7—O5173.7 (5)
O14—Cd2—O10—C13118.3 (4)C12—N2—C8—C90.4 (7)
N2—Cd2—O10—C137.0 (4)Cd2—N2—C8—C9179.0 (4)
O13ii—Cd2—O10—C13173.8 (3)C12—N2—C8—C13179.6 (4)
O8—Cd2—O10—C13147.5 (4)Cd2—N2—C8—C131.0 (5)
O13—Cd2—O10—C1316.1 (5)N2—C8—C9—C100.0 (7)
O7—Cd2—O10—C1377.7 (4)C13—C8—C9—C10180.0 (4)
O14—Cd2—O13—C14107.3 (4)C8—C9—C10—O11180.0 (4)
N2—Cd2—O13—C143.9 (4)C8—C9—C10—C111.0 (7)
O13ii—Cd2—O13—C14171.9 (5)O11—C10—C11—C12179.5 (4)
O10—Cd2—O13—C1413.1 (5)C9—C10—C11—C121.4 (7)
O8—Cd2—O13—C14138.2 (3)C8—N2—C12—C110.1 (7)
O7—Cd2—O13—C1487.9 (4)Cd2—N2—C12—C11179.6 (4)
O14—Cd2—O13—Cd2ii80.84 (17)C8—N2—C12—C14177.0 (4)
N2—Cd2—O13—Cd2ii175.8 (2)Cd2—N2—C12—C142.5 (6)
O13ii—Cd2—O13—Cd2ii0.0C10—C11—C12—N21.0 (7)
O10—Cd2—O13—Cd2ii175.07 (15)C10—C11—C12—C14175.9 (4)
O8—Cd2—O13—Cd2ii33.7 (3)Cd2—O10—C13—O9168.5 (4)
O7—Cd2—O13—Cd2ii83.93 (15)Cd2—O10—C13—C810.2 (6)
O6—Cd1—N1—C1101.9 (4)N2—C8—C13—O107.7 (7)
O2i—Cd1—N1—C111.0 (5)C9—C8—C13—O10172.3 (5)
O8—Cd1—N1—C177.4 (4)N2—C8—C13—O9171.1 (4)
O5—Cd1—N1—C1177.5 (4)C9—C8—C13—O98.9 (7)
O7—Cd1—N1—C1155.7 (3)Cd2ii—O13—C14—O127.4 (8)
O2—Cd1—N1—C14.7 (4)Cd2—O13—C14—O12177.3 (4)
O6—Cd1—N1—C577.2 (4)Cd2ii—O13—C14—C12174.0 (3)
O2i—Cd1—N1—C5168.1 (3)Cd2—O13—C14—C124.1 (6)
O8—Cd1—N1—C5103.6 (4)N2—C12—C14—O131.3 (7)
O5—Cd1—N1—C53.5 (3)C11—C12—C14—O13175.8 (5)
O7—Cd1—N1—C525.2 (5)N2—C12—C14—O12180.0 (4)
O2—Cd1—N1—C5174.4 (4)C11—C12—C14—O122.9 (7)
O14—Cd2—N2—C12101.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O9iii0.851.742.536 (5)156
O6—H6A···O4iv0.851.872.665 (5)156
O6—H6B···O170.851.832.677 (8)177
O7—H7A···O11v0.852.072.871 (5)158
O7—H7B···O1i0.851.842.639 (5)156
O8—H8A···O12ii0.851.882.687 (5)159
O8—H8B···O150.851.832.679 (5)176
O11—H11O···O5v0.851.762.547 (5)153
O14—H14A···O18vi0.851.942.747 (7)159
O14—H14B···O16ii0.851.822.663 (6)169
O15—H15A···O17vii0.851.962.802 (7)169
O15—H15B···O3iii0.852.032.790 (5)149
O16—H16A···O18viii0.852.303.013 (6)142
O16—H16A···O14ix0.852.513.228 (6)143
O16—H16B···O15ix0.851.972.791 (6)161
O18—H18A···O9iv0.851.882.719 (5)170
O18—H18B···O12x0.852.202.819 (6)129
C11—H11A···O4v0.952.313.224 (6)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+2, y+1, z; (iv) x+1, y+1, z; (v) x+1, y, z; (vi) x+1, y1, z; (vii) x+1, y, z; (viii) x, y1, z; (ix) x1, y, z; (x) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C7H3NO5)2(H2O)4]·4H2O
Mr731.14
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.4499 (6), 10.8633 (7), 11.2086 (9)
α, β, γ (°)87.910 (3), 74.239 (2), 80.478 (2)
V3)1092.08 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.15 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.749, 0.854
No. of measured, independent and
observed [I > 2σ(I)] reflections
14393, 6313, 4460
Rint0.060
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.091, 1.00
No. of reflections6313
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.01

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O9i0.8501.7352.536 (5)156
O6—H6A···O4ii0.8501.8652.665 (5)156
O6—H6B···O170.8501.8282.677 (8)177
O7—H7A···O11iii0.8502.0652.871 (5)158
O7—H7B···O1iv0.8501.8412.639 (5)156
O8—H8A···O12v0.8501.8752.687 (5)159
O8—H8B···O150.8501.8302.679 (5)176
O11—H11O···O5iii0.8501.7602.547 (5)153
O14—H14A···O18vi0.8501.9352.747 (7)159
O14—H14B···O16v0.8501.8232.663 (6)169
O15—H15A···O17vii0.8501.9632.802 (7)169
O15—H15B···O3i0.8502.0292.790 (5)149
O16—H16A···O18viii0.8502.2973.013 (6)142
O16—H16A···O14ix0.8502.5053.228 (6)143
O16—H16B···O15ix0.8501.9742.791 (6)161
O18—H18A···O9ii0.8501.8792.719 (5)170
O18—H18B···O12x0.8502.2042.819 (6)129
C11—H11A···O4iii0.9502.3103.224 (6)161
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y1, z; (vii) x+1, y, z; (viii) x, y1, z; (ix) x1, y, z; (x) x, y+1, z.
Cd—O and Cd—N distances in comparable compounds top
CompoundCoordination No.Cd—O bond length (Å)Cd—N bond length (Å)
(enH2)2[Cd(pydc)3].6H2O, 1 (Fu et al., 2004)92.522, 2.541, 2.5672.397, 2.419
[Cd2(pydc)2(H2O)6].2pydcH2, 2 (Odoko et al., 2002)72.376, 2.3962.478, 2.315
[Cd2(pydc)2(CH3OH)2(H2O)]n, 3 (Wu et al., 2007)72.326, 2.331, 2.376, 2.4642.319
Cd(pydc)(H2O)3]2.2H2pydc, 4 (Ranjbar et al., 2002)72.367, 2.390, 2.4532.321
[Cd(py-2,3-dc)(H2O)3]n, 5 (Aghabozorg, Motyeian et al., 2008)62.259, 2.2792.302
Cd—O bonds of coordinated water molecules are not considered.
 

References

First citationAghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007). Acta Cryst. E63, m1917–m1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Motyeian, E., Khadivi, R., Ghadermazi, M. & Manteghi, F. (2008). Acta Cryst. E64, m320–m321.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Roshan, L., Firoozi, N., Ghadermazi, M. & Bagheri, S. (2008). Acta Cryst. E64, m1208–m1209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFu, A.-Y., Wang, D.-Q. & Liu, A.-Z. (2004). Acta Cryst. E60, m1372–m1373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhosh, S. K., Ribas, J., El Fallah, M. S. & Bharadwaj, P. K. (2005). Inorg. Chem. 44, 3856–3862.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOdoko, M., Kusano, A. & Okabe, N. (2002). Acta Cryst. E58, m25–m27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRanjbar, M., Aghabozorg, H. & Moghimi, A. (2002). Acta Cryst. E58, m304–m306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H.-F., Chen, X.-D. & Du, M. (2007). Acta Cryst. E63, m126–m128.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1351-m1352
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds