metal-organic compounds
Pentacarbonyl-2κ5C-chlorido-1κCl-bis[1(η5)-cyclopentadienyl][μ2-oxido(methyl)methylene-1:2κ2O:C]tungsten(0)zirconium(IV)
aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and bDepartment of Chemistry and Biochemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: ce@sun.ac.za
The title compound, [ZrW(C5H5)2(C2H3O)Cl(CO)5] or [W(CO)5C(CH3)OZr(C5H5)2Cl], consists of two metal centres, with a (tungsten pentacarbonyl)oxymethylcarbene group coordinating as a monodentate ligand to the chloridozirconocene. The two halves of the molecule are related by a crystallographic mirror plane. Delocalization through the Zr—O—C=W unit is indicated by a short Zr—O distance and a nearly linear Zr—O—C angle.
Related literature
For related literature regarding catalytic data of the title compound, see: Sinn et al. (1980); Brüll et al. (2001); Luruli et al. (2004, 2006). For comparable structures, see: Erker et al. (1989); Wolczanski et al. (1983); Esterhuysen et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: PWPC (Gomm, 1998); cell PWPC; data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808028006/om2260sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028006/om2260Isup2.hkl
To a well stirred suspension of W(CO)6 (8.906 g) in 80 ml diethylether a solution of LiCH3 (17 ml, 1.6M in diethylether) in 50 ml diethylether was added. After solvent removal, dissolution of the residue in 100 ml cold water and filtration, a solution of Et4NCl (8.306 g) in 25 ml cold water was added to the filtrate. Upon filtration 1.015 g of the product {[W(CO)5C(CH3)O][NEt4]} was dissolved in 30 ml dichloromethane and added to a solution of Cp2ZrCl2 (0.585 g) in 70 ml dichloromethane. After stirring for 30 min at -40°C AgBF4 (0.389 g) was added and stirred for 90 min at -40°C. After reaching room temperature the solvent was removed and the residue extracted in 5 portions of 10 ml toluene. The extract was filtered, and the filtrate dried over anhydrous MgSO4. The solution was layered with pentane to yield red crystals suitable for X-ray diffraction analysis.
H atoms were positioned geometrically, with C—H = 0.95–0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: PWPC (Gomm, 1998); cell
PWPC (Gomm, 1998); data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).Fig. 1. The molecular structure of (II) showing the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level. |
[ZrW(C5H5)2(C2H3O)Cl(CO)5] | Dx = 2.065 Mg m−3 |
Mr = 623.79 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 25 reflections |
a = 22.3794 (8) Å | θ = 2–17° |
b = 12.3852 (7) Å | µ = 6.41 mm−1 |
c = 7.2404 (3) Å | T = 273 K |
V = 2006.85 (16) Å3 | Prism, red |
Z = 4 | 0.34 × 0.31 × 0.29 mm |
F(000) = 1176 |
Philips PW1100 diffractometer | 1521 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.042 |
Graphite monochromator | θmax = 25.0°, θmin = 2.5° |
ω/2θ scans | h = 0→26 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→14 |
Tmin = 0.219, Tmax = 0.258 | l = −8→0 |
2070 measured reflections | 3 standard reflections every 50 reflections |
1851 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.053P)2 + 1.7971P] where P = (Fo2 + 2Fc2)/3 |
1851 reflections | (Δ/σ)max = 0.001 |
131 parameters | Δρmax = 1.15 e Å−3 |
0 restraints | Δρmin = −1.14 e Å−3 |
[ZrW(C5H5)2(C2H3O)Cl(CO)5] | V = 2006.85 (16) Å3 |
Mr = 623.79 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 22.3794 (8) Å | µ = 6.41 mm−1 |
b = 12.3852 (7) Å | T = 273 K |
c = 7.2404 (3) Å | 0.34 × 0.31 × 0.29 mm |
Philips PW1100 diffractometer | 1521 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.042 |
Tmin = 0.219, Tmax = 0.258 | 3 standard reflections every 50 reflections |
2070 measured reflections | intensity decay: none |
1851 independent reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.08 | Δρmax = 1.15 e Å−3 |
1851 reflections | Δρmin = −1.14 e Å−3 |
131 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
W1 | 0.812162 (16) | 0.2500 | 0.32704 (5) | 0.04133 (16) | |
Cl1 | 0.60410 (18) | 0.2500 | 0.5194 (4) | 0.0896 (10) | |
O1 | 0.8874 (3) | 0.0780 (5) | 0.1035 (9) | 0.092 (2) | |
C1 | 0.8601 (3) | 0.1384 (6) | 0.1848 (10) | 0.0573 (18) | |
Zr1 | 0.59893 (4) | 0.2500 | 0.18263 (11) | 0.0388 (2) | |
O2 | 0.9032 (3) | 0.2500 | 0.6604 (11) | 0.078 (2) | |
C2 | 0.8712 (4) | 0.2500 | 0.5381 (14) | 0.053 (2) | |
O3 | 0.7386 (3) | 0.0625 (5) | 0.5187 (10) | 0.094 (2) | |
C3 | 0.7643 (3) | 0.1307 (6) | 0.4506 (10) | 0.0529 (17) | |
O4 | 0.6885 (3) | 0.2500 | 0.1422 (10) | 0.0535 (17) | |
C4 | 0.7442 (4) | 0.2500 | 0.1090 (13) | 0.045 (2) | |
C5 | 0.7572 (6) | 0.2500 | −0.0914 (16) | 0.089 (5) | |
H5A | 0.8006 | 0.2500 | −0.1105 | 0.134* | |
H5B | 0.7399 | 0.3146 | −0.1482 | 0.134* | 0.50 |
H5C | 0.7399 | 0.1854 | −0.1482 | 0.134* | 0.50 |
C6 | 0.6081 (5) | 0.0817 (7) | −0.0048 (16) | 0.088 (3) | |
H6 | 0.6406 | 0.0757 | −0.0886 | 0.106* | |
C7 | 0.6081 (5) | 0.0484 (6) | 0.1785 (16) | 0.085 (3) | |
H7 | 0.6407 | 0.0169 | 0.2432 | 0.102* | |
C8 | 0.5524 (5) | 0.0696 (8) | 0.2486 (16) | 0.083 (3) | |
H8 | 0.5392 | 0.0535 | 0.3703 | 0.100* | |
C9 | 0.5185 (4) | 0.1185 (7) | 0.1117 (15) | 0.074 (2) | |
H9 | 0.4785 | 0.1430 | 0.1246 | 0.088* | |
C10 | 0.5523 (5) | 0.1253 (7) | −0.0444 (13) | 0.079 (3) | |
H11 | 0.5399 | 0.1546 | −0.1595 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.0383 (2) | 0.0444 (2) | 0.0413 (2) | 0.000 | 0.00042 (16) | 0.000 |
Cl1 | 0.118 (3) | 0.107 (2) | 0.0435 (15) | 0.000 | 0.0088 (17) | 0.000 |
O1 | 0.099 (4) | 0.091 (4) | 0.087 (4) | 0.026 (4) | 0.009 (4) | −0.027 (4) |
C1 | 0.059 (4) | 0.058 (4) | 0.055 (4) | 0.010 (4) | −0.003 (3) | −0.011 (4) |
Zr1 | 0.0376 (5) | 0.0378 (5) | 0.0408 (5) | 0.000 | 0.0006 (4) | 0.000 |
O2 | 0.056 (5) | 0.109 (7) | 0.068 (5) | 0.000 | −0.016 (4) | 0.000 |
C2 | 0.044 (5) | 0.069 (6) | 0.047 (5) | 0.000 | −0.007 (5) | 0.000 |
O3 | 0.089 (4) | 0.083 (4) | 0.111 (5) | −0.019 (4) | 0.009 (4) | 0.034 (4) |
C3 | 0.051 (4) | 0.050 (4) | 0.057 (4) | −0.006 (3) | −0.007 (3) | 0.014 (3) |
O4 | 0.039 (4) | 0.066 (5) | 0.055 (4) | 0.000 | −0.002 (3) | 0.000 |
C4 | 0.037 (5) | 0.050 (5) | 0.046 (5) | 0.000 | 0.000 (4) | 0.000 |
C5 | 0.061 (7) | 0.162 (14) | 0.045 (6) | 0.000 | 0.000 (6) | 0.000 |
C6 | 0.096 (7) | 0.052 (5) | 0.117 (8) | −0.019 (5) | 0.039 (7) | −0.040 (6) |
C7 | 0.092 (7) | 0.033 (4) | 0.130 (10) | 0.004 (4) | −0.036 (7) | 0.004 (5) |
C8 | 0.104 (7) | 0.055 (5) | 0.091 (6) | −0.026 (5) | −0.002 (7) | 0.015 (5) |
C9 | 0.051 (4) | 0.058 (5) | 0.112 (7) | −0.013 (4) | −0.013 (5) | −0.002 (5) |
C10 | 0.123 (8) | 0.050 (5) | 0.062 (5) | −0.031 (5) | −0.027 (6) | 0.000 (4) |
W1—C2 | 2.019 (10) | Zr1—C8 | 2.511 (9) |
W1—C1i | 2.030 (8) | O2—C2 | 1.139 (11) |
W1—C1 | 2.030 (7) | O3—C3 | 1.134 (8) |
W1—C3i | 2.033 (7) | O4—C4 | 1.270 (10) |
W1—C3 | 2.033 (7) | C4—C5 | 1.480 (14) |
W1—C4 | 2.192 (9) | C5—H5A | 0.9800 |
Cl1—Zr1 | 2.441 (3) | C5—H5B | 0.9800 |
O1—C1 | 1.131 (9) | C5—H5C | 0.9800 |
Zr1—O4 | 2.026 (6) | C6—C7 | 1.390 (13) |
Zr1—C9 | 2.482 (8) | C6—C10 | 1.391 (13) |
Zr1—C9i | 2.482 (8) | C6—H6 | 0.9500 |
Zr1—C10 | 2.485 (8) | C7—C8 | 1.373 (13) |
Zr1—C10i | 2.485 (8) | C7—H7 | 0.9500 |
Zr1—C6 | 2.496 (8) | C8—C9 | 1.387 (13) |
Zr1—C6i | 2.496 (8) | C8—H8 | 0.9500 |
Zr1—C7i | 2.506 (8) | C9—C10 | 1.362 (12) |
Zr1—C7 | 2.506 (8) | C9—H9 | 0.9500 |
Zr1—C8i | 2.511 (9) | C10—H11 | 0.9500 |
C2—W1—C1i | 92.2 (3) | Cl1—Zr1—C8i | 80.2 (3) |
C2—W1—C1 | 92.2 (3) | C9—Zr1—C8i | 108.8 (3) |
C1i—W1—C1 | 85.8 (5) | C9i—Zr1—C8i | 32.3 (3) |
C2—W1—C3i | 90.7 (3) | C10—Zr1—C8i | 120.3 (3) |
C1i—W1—C3i | 90.4 (3) | C10i—Zr1—C8i | 53.0 (3) |
C1—W1—C3i | 175.3 (3) | C6—Zr1—C8i | 151.7 (4) |
C2—W1—C3 | 90.7 (3) | C6i—Zr1—C8i | 52.7 (3) |
C1i—W1—C3 | 175.3 (3) | C7i—Zr1—C8i | 31.8 (3) |
C1—W1—C3 | 90.4 (3) | C7—Zr1—C8i | 157.4 (5) |
C3i—W1—C3 | 93.2 (4) | O4—Zr1—C8 | 116.0 (3) |
C2—W1—C4 | 176.9 (4) | Cl1—Zr1—C8 | 80.2 (3) |
C1i—W1—C4 | 90.1 (3) | C9—Zr1—C8 | 32.3 (3) |
C1—W1—C4 | 90.1 (3) | C9i—Zr1—C8 | 108.8 (3) |
C3i—W1—C4 | 87.2 (3) | C10—Zr1—C8 | 53.0 (3) |
C3—W1—C4 | 87.2 (3) | C10i—Zr1—C8 | 120.3 (3) |
O1—C1—W1 | 178.5 (8) | C6—Zr1—C8 | 52.7 (3) |
O4—Zr1—Cl1 | 95.6 (2) | C6i—Zr1—C8 | 151.7 (4) |
O4—Zr1—C9 | 133.5 (2) | C7i—Zr1—C8 | 157.4 (5) |
Cl1—Zr1—C9 | 104.0 (3) | C7—Zr1—C8 | 31.8 (3) |
O4—Zr1—C9i | 133.5 (2) | C8i—Zr1—C8 | 125.7 (5) |
Cl1—Zr1—C9i | 104.0 (3) | O2—C2—W1 | 178.1 (9) |
C9—Zr1—C9i | 82.1 (4) | O3—C3—W1 | 178.4 (7) |
O4—Zr1—C10 | 108.7 (3) | C4—O4—Zr1 | 177.4 (7) |
Cl1—Zr1—C10 | 132.9 (2) | O4—C4—C5 | 112.3 (9) |
C9—Zr1—C10 | 31.8 (3) | O4—C4—W1 | 123.0 (7) |
C9i—Zr1—C10 | 88.1 (3) | C5—C4—W1 | 124.7 (7) |
O4—Zr1—C10i | 108.7 (3) | C4—C5—H5A | 109.5 |
Cl1—Zr1—C10i | 132.9 (2) | C4—C5—H5B | 109.5 |
C9—Zr1—C10i | 88.1 (3) | H5A—C5—H5B | 109.5 |
C9i—Zr1—C10i | 31.8 (3) | C4—C5—H5C | 109.5 |
C10—Zr1—C10i | 76.8 (4) | H5A—C5—H5C | 109.5 |
O4—Zr1—C6 | 80.8 (3) | H5B—C5—H5C | 109.5 |
Cl1—Zr1—C6 | 122.6 (3) | C7—C6—C10 | 108.2 (9) |
C9—Zr1—C6 | 53.0 (3) | C7—C6—Zr1 | 74.2 (5) |
C9i—Zr1—C6 | 119.7 (4) | C10—C6—Zr1 | 73.4 (5) |
C10—Zr1—C6 | 32.4 (3) | C7—C6—H6 | 125.9 |
C10i—Zr1—C6 | 101.2 (4) | C10—C6—H6 | 125.9 |
O4—Zr1—C6i | 80.8 (3) | Zr1—C6—H6 | 118.4 |
Cl1—Zr1—C6i | 122.6 (3) | C8—C7—C6 | 107.2 (9) |
C9—Zr1—C6i | 119.7 (4) | C8—C7—Zr1 | 74.3 (5) |
C9i—Zr1—C6i | 53.0 (3) | C6—C7—Zr1 | 73.5 (5) |
C10—Zr1—C6i | 101.2 (4) | C8—C7—H7 | 126.4 |
C10i—Zr1—C6i | 32.4 (3) | C6—C7—H7 | 126.4 |
C6—Zr1—C6i | 113.3 (6) | Zr1—C7—H7 | 117.8 |
O4—Zr1—C7i | 85.2 (3) | C7—C8—C9 | 108.4 (10) |
Cl1—Zr1—C7i | 90.5 (3) | C7—C8—Zr1 | 73.9 (5) |
C9—Zr1—C7i | 135.4 (3) | C9—C8—Zr1 | 72.7 (5) |
C9i—Zr1—C7i | 53.4 (3) | C7—C8—H8 | 125.8 |
C10—Zr1—C7i | 130.2 (3) | C9—C8—H8 | 125.8 |
C10i—Zr1—C7i | 53.7 (3) | Zr1—C8—H8 | 119.4 |
C6—Zr1—C7i | 145.0 (5) | C10—C9—C8 | 108.4 (9) |
C6i—Zr1—C7i | 32.3 (3) | C10—C9—Zr1 | 74.2 (5) |
O4—Zr1—C7 | 85.2 (3) | C8—C9—Zr1 | 75.0 (5) |
Cl1—Zr1—C7 | 90.5 (3) | C10—C9—H9 | 125.8 |
C9—Zr1—C7 | 53.4 (3) | C8—C9—H9 | 125.8 |
C9i—Zr1—C7 | 135.4 (3) | Zr1—C9—H9 | 116.9 |
C10—Zr1—C7 | 53.7 (3) | C9—C10—C6 | 107.7 (8) |
C10i—Zr1—C7 | 130.2 (3) | C9—C10—Zr1 | 73.9 (5) |
C6—Zr1—C7 | 32.3 (3) | C6—C10—Zr1 | 74.2 (5) |
C6i—Zr1—C7 | 145.0 (5) | C9—C10—H11 | 126.2 |
C7i—Zr1—C7 | 170.5 (6) | C6—C10—H11 | 126.2 |
O4—Zr1—C8i | 116.0 (3) | Zr1—C10—H11 | 117.7 |
Symmetry code: (i) x, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [ZrW(C5H5)2(C2H3O)Cl(CO)5] |
Mr | 623.79 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 273 |
a, b, c (Å) | 22.3794 (8), 12.3852 (7), 7.2404 (3) |
V (Å3) | 2006.85 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.41 |
Crystal size (mm) | 0.34 × 0.31 × 0.29 |
Data collection | |
Diffractometer | Philips PW1100 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.219, 0.258 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2070, 1851, 1521 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.092, 1.08 |
No. of reflections | 1851 |
No. of parameters | 131 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.15, −1.14 |
Computer programs: PWPC (Gomm, 1998), Xtal3.4 (Hall et al., 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), publCIF (Westrip, 2008).
W1—C4 | 2.192 (9) | O4—C4 | 1.270 (10) |
Zr1—O4 | 2.026 (6) | ||
C4—O4—Zr1 | 177.4 (7) |
Acknowledgements
We thank the NRF and the University of Stellenbosch for financial support.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8. Web of Science CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Brüll, R., Kgosane, D., Neveling, A., Pasch, H., Raubenheimer, H. G., Sanderson, R. & Wahner, U. M. (2001). Macromol. Symp. 165, 11–18. Google Scholar
Erker, G., Dorf, U., Lecht, R., Ashby, M. T., Aulbach, M., Schlund, R., Krüger, C. & Mynott, R. (1989). Organometallics, 8, 2037–2044. CSD CrossRef CAS Web of Science Google Scholar
Esterhuysen, C., Nel, I. B. J. & Cronje, S. (2008). Acta Cryst. E64, m1150. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gomm, M. (1998). PWPC. Institut für Angewandte Physik, Erlangen, Germany. Google Scholar
Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual. University of Western Australia: Lamb, Perth. Google Scholar
Luruli, N., Grumel, V., Brüll, R., Du Toit, A., Pasch, H., Van Reenen, A. J. & Raubenheimer, H. G. (2004). J. Polym. Sci., A1 5121–5133. Google Scholar
Luruli, N., Heinz, L. C., Grumel, V., Brüll, R., Pasch, H. & Raubenheimer, H. G. (2006). Polymer, 47, 56–66. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sinn, H., Kaminsky, W., Vollmer, H. J. & Woldt, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 390–392. CrossRef Web of Science Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
Wolczanski, P. T., Threlkel, R. S. & Santarsiero, B. D. (1983). Acta Cryst. C39, 1330–1333. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Homogeneous equivalents of the heterogeneous catalysts used in Ziegler–Natta polymerization of alkenes are of interest in efforts to understand the mechanism of polymerization. Cp2TiCl2 (I) has been shown to polymerize ethylene when activated by MAO (Sinn et al., 1980). In our ongoing studies into finding improved catalysts for the oligomerization of α-olefins we have studied zirconocene equivalents to (I) where we replaced one of the Cl ligands with a number of different ligands (Brüll et al., 2001). In particular, the use of a tungsten–carbene moiety as a ligand, (II), has been proven to result in an effective catalyst for the oligomerization of 1-pentene, as well as the copolymerization of ethene and 1-pentene, in the presence of MAO (Luruli et al., 2004; Luruli et al., 2006). Herein we report the crystal structure of the title zirconocene complex, (II).
In the molecular structure the Zr—O distance is shorter than all other zirconocene complexes containing a Zr—O—C(R)═M (where M = any transition metal) group reported to date (Cambridge Structural Database, v. 5.29; Allen, 2002), except when R = H [1.971 (4) Å; Wolczanski et al., 1983]. The Zr—O—C angle, on the other hand, is more linear than the previously published structures, with a larger value than that of the benzoxycarbene W(CO)5C(C6H5)OZr(C5H5)2OC6H5 (166.1 (5)°; Erker et al., 1989). This, together with the short [1.27 (1)Å] C(carbene)—O distance, suggests that the bridging group forms an acyl-type structure, W—C(Me)═O, with a typical hard–hard bond involving σ and π-donation from the O-atom to the Zr-fragment. This is similar to the hafnocene complex W(CO)5C(C6H5)OHf(C5H5)2Cl (Esterhuysen et al., 2008), where the Hf—O—C angle is also nearly linear [171.4 (3)°].
No intermolecular interactions are observed in the crystal structure, with the molecules packing in columns parallel to the a axis.