organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1874-o1875

Methyl [hydr­­oxy(phen­yl)phosphono­meth­yl]phospho­nate methanol solvate

aLaboratoire de Biophysique Moléculaire, Cellulaire et Tissulaire, UMR 7033 CNRS, UFR–SMBH Université Paris-Nord, 74 rue M. Cachin, 93017 Bobigny Cedex, France, and bService de Cristallochimie, Institut de Chimie des Substances Naturelles, CNRS, 1 Avenue de la Terrasse, 91198 Gif sur-Yvette Cedex, France
*Correspondence e-mail: carole.barbey@smbh.univ-paris13.fr

(Received 10 June 2008; accepted 21 July 2008; online 6 September 2008)

The title compound, C8H12O7P2·CH4O, is a monoesterified bis­phospho­nate (or 1-hydroxy­methyl­ene-1,1-bis­phospho­nic acid). These synthetic compounds are widely used in medicine to inhibit bone resorption in diseases like osteoporosis, and are characterized by a stable P—C—P group and are thus analogs of inorganic pyrophosphate. By masking one or several ionizable groups, introduced as phosphono­ester, it was anti­cipated the formation of prodrugs with higher lipophilicity that could facilitate the drug delivery and metabolization. Mol­ecules are paired by inter­molecular hydrogen bonds involving the phospho­nic groups. In addition, dimers are connected side-by-side, building infinite ribbons along the a-axis direction; these ribbons are cross-linked perpendicularly along the b-axis direction via a methanol solvent mol­ecule (disordered over two sites with occupancy factors ca 0.6 and 0.4), forming an extended inter­molecular hydrogen-bonded network. The H atoms of the methyl group in the main molecule are disordered equally over two positions.

Related literature

For related literature, see: Barbey et al. (2003[Barbey, C., Lecouvey, M., Mallard, I., Prangé, T., Neuman, A., Lance, M. & Navaza, A. (2003). Z. Kristallogr. 218, 445-449.]), Migianu et al. (2005[Migianu, E., Guénin, E. & Lecouvey, M. (2005). Synlett, 3, 425-428.]), Fleisch (1998[Fleisch, H. (1998). Endocr. Rev. 19 80-100.], 2002[Fleisch, H. (2002). Breast Cancer Res. 4 30-34.]); Clezardin et al. (2003[Clezardin, P., Fournier, P., Boissier, S. & Peyruchaud, O. (2003). Curr. Med. Chem. 10, 173-180.]); Green & Clezardin (2002[Green, J. R. & Clezardin, P. (2002). Am. J. Clin. Oncol. 25, S3-S9.]); Lecouvey et al. (2003a[Lecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., El Manouni, D. & Louriki, M. (2003a). World Patent WO 03/008425.],b[Lecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., El Manouni, D. & Louriki, M. (2003b). Chem. Abstr. 138, 122736.]); Vepsalainen (2002[Vepsalainen, J. J. (2002). Curr. Med. Chem. 62, 1201-1208.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12O7P2·CH4O

  • Mr = 314.16

  • Monoclinic, P 21 /c

  • a = 6.3085 (5) Å

  • b = 6.9871 (6) Å

  • c = 28.147 (2) Å

  • β = 92.654 (3)°

  • V = 1239.34 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.847, Tmax = 0.929

  • 3837 measured reflections

  • 2375 independent reflections

  • 1943 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.141

  • S = 1.08

  • 2375 reflections

  • 191 parameters

  • 32 restraints

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O21i 0.82 1.75 2.548 (4) 163
O11—H11⋯O22ii 0.82 1.72 2.525 (4) 169
O21—H21⋯O62iii 0.82 1.89 2.548 (5) 136
O7—H7⋯O12iv 0.82 1.86 2.658 (3) 164
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CrystalBuilder (Welter, 2006[Welter, R. (2006). Acta Cryst. A62, s252.]).

Supporting information


Comment top

The title compound, C8H12O7P2, is a potential prodrug of the corresponding 1-hydroxymethylene-1,1-bisphosphonate (HMBP). This family of molecules has recently become very interesting owing to their biological properties and medical applications. Indeed, they are used in nuclear medicine, in treatment of bone diseases (Paget's disease, osteoporosis) and as adjuvant in the treatment of some cancers (e.g. breast, prostate) due to their antiproliferative properties (Fleisch, 2002; Green & Clezardin, 2002; Clezardin et al., 2003). However, HMBPs show a low intestinal absorption because of their high hydrophilicity and complexing power towards divalent cations of the organism. Moreover, they induce some secondary effects such as gastric and intestinal problems and osteonecrosis of the jaw-bone. To circumvent to these drawbacks, a prodrug strategy was considered that would deliver bisphosphonates with an improved gastrointestinal absorption (Vepsalainen, 2002). The approach in our laboratory consists of modifying the phosphonic acid functionality itself, by introducing an ester group (Lecouvey et al., 2003a,b). Thus, by masking the negative charges of HMBPs with suitable bioreversible substituents, the lipophilicity of bisphosphonates could be enhanced and the complexation with divalent cations decreased. Bisphosphonate prodrugs should then release bisphosphonic acids via enzymatic and/or chemical hydrolysis. Among these synthesized prodrugs, the title compound is a monoesterified version for which we report herein the crystal structure determination (Fig. 1). The crystal structure consists of layers of hydrophobic regions that enclose the phenyl rings and polar regions where bisphosphonate groups are linked as pairs and a disordered methanol molecule takes part in the crystal cohesion (Fig. 2).

Related literature top

For related literature, see: Barbey et al. (2003), Migianu et al. (2005), Fleisch (1998, 2002); Clezardin et al. (2003); Green & Clezardin (2002); Lecouvey et al. (2003a,b); Vepsalainen (2002).

Experimental top

Synthesis of the α-ketophosphonate dimethyl ester (I): benzoyl chloride (5.8 ml, 50 mmol) was added dropwise at -10°C under argon to trimethylphosphite (5.9 ml, 50 mmol). The reaction mixture was then stirred at room temperature for 2 h (the end of the reaction was monitored by 31P {1H} NMR or IR spectroscopy). The crude product was purified by distillation under reduced pressure to furnish the desired α-ketophosphonate dimethyl ester with 74% yield (Migianu et al., 2005, compound 2 d).

Synthesis of [hydroxy-(hydroxy-methoxy-phosphoryl)-phenyl-methyl]-phosphonic acid (II): To the α-ketophosphonate dimethyl ester (1.07 g, 5 mmol) in 4 ml of distilled THF at 0°C under argon was added dropwise trimethylsilyl bromide (1.65 ml, 12.5 mmol). The reaction was exothermic and the temperature had to be maintained below 10°C during the addition. The reaction mixture was stirred at room temperature for 5 h (the end of the reaction was monitored by 31P {1H} NMR) and evaporation of volatile fractions (0.01 Torr) at 50°C gave bis(silylated) α-ketophosphonate. Methyl bis(trimethylsilyl) phosphite (1.2 g, 5 mmol) was then added dropwise at 0°C under argon. The reaction mixture was stirred overnight at room temperature and methanolysis for two hours led to the expected 1-hydroxymethylene-1,1- bisphosphonate monomethyl ester. After reduced pressure evaporation of volatile fractions, the crude compound was purified by precipitation in methanol and obtained with 88% yield (Scheme 2, Migianu et al., 2005).

Crystallization of monomethylester II was by slow evaporation at room temperature from a concentrated methanol/ water (9/1) solution to give colorless crystals with max. size 0.3 mm, suitable for diffraction.

Refinement top

All H atoms attached to C or O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methylene) and O—H = 0.82 Å (hydroxyl) with Uiso(H) = 1.2Ueq(C) (aromatic) or 1.5Ueq(C) and 1.5Ueq(O) for others. The methyl group was refined as idealized disordered one with two positions rotated from each other by 60 degrees. Each of the P2—O21 and P2—O22 bonds seems to be a mixture of single and double bonds, so the disordered hydroxyl group bound to P2 was modeled as constrained hydrogen with a site occupation factors of 0.5 on each site. The solvent molecule is a disordered one with two alternative conformations on a single site. H atoms of this disordered methanol molecule are intentionaly not included because they are very difficult to position accurately.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek (2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound. Displacement ellipsoids are drawn at the 40 % probability level.
[Figure 2] Fig. 2. Partial packing view, projected along the b axis, showing the formation of the bisphosphonate dimers and the two dimensional network. H-bonds are represented as dashed lines. (PLUTO diagram from PLATON (Spek, 2003))
[Figure 3] Fig. 3. Scheme 2. Chemical pathway of the formation of title compound (II)
Methyl [hydroxy(phenyl)phosphonomethyl]phosphonate methanol solvate top
Crystal data top
C8H12O7P2·CH4OZ = 4
Mr = 314.16F(000) = 656
Monoclinic, P21/cDx = 1.684 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.3085 (5) Åθ = 0.4–26.0°
b = 6.9871 (6) ŵ = 0.39 mm1
c = 28.147 (2) ÅT = 293 K
β = 92.654 (3)°Parallelepiped, colourless
V = 1239.34 (17) Å30.30 × 0.20 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
2375 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9 pixels mm-1θmax = 25.9°, θmin = 3.3°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 78
Tmin = 0.847, Tmax = 0.929l = 3434
3837 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0456P)2 + 3.3095P]
where P = (Fo2 + 2Fc2)/3
2375 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.56 e Å3
32 restraintsΔρmin = 0.44 e Å3
Crystal data top
C8H12O7P2·CH4OV = 1239.34 (17) Å3
Mr = 314.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3085 (5) ŵ = 0.39 mm1
b = 6.9871 (6) ÅT = 293 K
c = 28.147 (2) Å0.30 × 0.20 × 0.20 mm
β = 92.654 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2375 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
1943 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.929Rint = 0.033
3837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05732 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08Δρmax = 0.56 e Å3
2375 reflectionsΔρmin = 0.44 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.41077 (14)0.23600 (13)0.08924 (3)0.0240 (3)
O110.4358 (4)0.3030 (4)0.03727 (9)0.0317 (6)
H110.37000.23050.01900.047*
O120.2224 (4)0.1143 (4)0.09548 (10)0.0371 (7)
O130.4134 (4)0.4188 (4)0.12031 (9)0.0340 (6)
H130.44280.51160.10400.051*
P20.68094 (15)0.12727 (14)0.07691 (3)0.0273 (3)
O210.4976 (4)0.2548 (4)0.08552 (11)0.0410 (7)
H210.38830.19120.08510.061*0.50
O220.7272 (5)0.0849 (4)0.02594 (9)0.0394 (7)
H220.62390.03280.01270.059*0.50
O230.8962 (4)0.2125 (4)0.09820 (10)0.0377 (7)
C230.9189 (8)0.3297 (7)0.14094 (17)0.0532 (12)
H23A1.06530.36390.14660.080*0.50
H23B0.83520.44380.13680.080*0.50
H23C0.87110.25880.16760.080*0.50
H23D0.78250.34710.15410.080*0.50
H23E1.01260.26720.16390.080*0.50
H23F0.97660.45220.13300.080*0.50
C1A0.5094 (7)0.0159 (6)0.18502 (14)0.0360 (9)
H1A0.38400.04840.16830.043*
C2A0.5336 (8)0.0566 (7)0.23324 (15)0.0455 (11)
H2A0.42350.11460.24870.055*
C3A0.7199 (8)0.0115 (7)0.25829 (14)0.0464 (11)
H3A0.73710.04160.29040.056*
C4A0.8802 (7)0.0784 (7)0.23536 (15)0.0454 (11)
H4A1.00560.10960.25230.054*
C5A0.8572 (6)0.1230 (6)0.18731 (13)0.0341 (9)
H5A0.96570.18610.17240.041*
C6A0.6723 (6)0.0736 (5)0.16151 (12)0.0259 (8)
C70.6573 (5)0.1066 (5)0.10757 (12)0.0223 (7)
O70.8204 (4)0.2294 (4)0.09186 (8)0.0267 (6)
H70.93570.17610.09580.040*
O620.1603 (6)0.8597 (7)0.04096 (16)0.0193 (14)0.559 (10)
C610.159 (5)0.695 (3)0.0135 (8)0.072 (6)0.559 (10)
O720.1408 (11)0.5812 (12)0.0056 (3)0.037 (2)0.441 (10)
C710.167 (5)0.754 (4)0.0172 (13)0.067 (7)0.441 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0226 (5)0.0195 (5)0.0300 (5)0.0013 (4)0.0009 (3)0.0004 (4)
O110.0375 (14)0.0296 (14)0.0274 (13)0.0005 (12)0.0040 (10)0.0004 (11)
O120.0213 (13)0.0321 (15)0.0580 (18)0.0016 (12)0.0036 (11)0.0031 (14)
O130.0476 (16)0.0214 (14)0.0335 (14)0.0038 (12)0.0075 (12)0.0028 (11)
P20.0311 (5)0.0191 (5)0.0314 (5)0.0023 (4)0.0027 (4)0.0039 (4)
O210.0399 (16)0.0255 (14)0.0571 (19)0.0008 (13)0.0027 (13)0.0066 (13)
O220.0545 (17)0.0334 (16)0.0300 (14)0.0042 (14)0.0012 (12)0.0061 (12)
O230.0381 (15)0.0328 (16)0.0419 (16)0.0107 (13)0.0008 (12)0.0005 (13)
C230.065 (3)0.042 (3)0.052 (3)0.013 (2)0.014 (2)0.002 (2)
C1A0.039 (2)0.032 (2)0.037 (2)0.0049 (19)0.0036 (17)0.0032 (18)
C2A0.060 (3)0.037 (2)0.041 (2)0.006 (2)0.015 (2)0.006 (2)
C3A0.073 (3)0.043 (3)0.024 (2)0.004 (2)0.002 (2)0.0043 (19)
C4A0.053 (3)0.049 (3)0.033 (2)0.003 (2)0.0079 (19)0.002 (2)
C5A0.035 (2)0.033 (2)0.034 (2)0.0004 (18)0.0001 (16)0.0016 (17)
C6A0.0329 (19)0.0182 (17)0.0267 (18)0.0032 (15)0.0028 (14)0.0003 (14)
C70.0192 (16)0.0193 (17)0.0286 (17)0.0045 (14)0.0022 (13)0.0002 (14)
O70.0219 (12)0.0242 (13)0.0341 (14)0.0034 (11)0.0015 (10)0.0061 (11)
O620.012 (2)0.016 (3)0.029 (3)0.0013 (18)0.0002 (16)0.0083 (19)
C610.094 (14)0.066 (16)0.057 (10)0.005 (12)0.004 (9)0.026 (10)
O720.035 (4)0.031 (4)0.046 (4)0.006 (3)0.003 (3)0.003 (3)
C710.043 (9)0.054 (15)0.105 (15)0.015 (10)0.011 (9)0.003 (13)
Geometric parameters (Å, º) top
P1—O121.478 (3)C23—H23F0.9600
P1—O131.548 (3)C1A—C2A1.388 (6)
P1—O111.551 (3)C1A—C6A1.396 (5)
P1—C71.851 (3)C1A—H1A0.9300
O11—H110.8200C2A—C3A1.379 (7)
O13—H130.8200C2A—H2A0.9300
P2—O211.489 (3)C3A—C4A1.376 (6)
P2—O221.507 (3)C3A—H3A0.9300
P2—O231.575 (3)C4A—C5A1.389 (6)
P2—C71.857 (4)C4A—H4A0.9300
O21—H210.8200C5A—C6A1.389 (5)
O22—H220.8200C5A—H5A0.9300
O23—C231.457 (5)C6A—C71.534 (5)
C23—H23A0.9600C7—O71.426 (4)
C23—H23B0.9600O7—H70.8200
C23—H23C0.9600O62—C611.384 (18)
C23—H23D0.9600O72—C711.37 (2)
C23—H23E0.9600
O12—P1—O13113.27 (16)O23—C23—H23F109.5
O12—P1—O11113.79 (16)H23A—C23—H23F56.3
O13—P1—O11106.55 (15)H23B—C23—H23F56.3
O12—P1—C7110.81 (16)H23C—C23—H23F141.1
O13—P1—C7105.00 (15)H23D—C23—H23F109.5
O11—P1—C7106.82 (15)H23E—C23—H23F109.5
P1—O11—H11109.5C2A—C1A—C6A120.4 (4)
P1—O13—H13109.5C2A—C1A—H1A119.8
O21—P2—O22117.32 (17)C6A—C1A—H1A119.8
O21—P2—O23111.97 (16)C3A—C2A—C1A120.4 (4)
O22—P2—O23103.58 (16)C3A—C2A—H2A119.8
O21—P2—C7111.78 (16)C1A—C2A—H2A119.8
O22—P2—C7107.03 (16)C4A—C3A—C2A119.5 (4)
O23—P2—C7104.03 (15)C4A—C3A—H3A120.3
P2—O21—H21109.5C2A—C3A—H3A120.3
P2—O22—H22109.5C3A—C4A—C5A120.9 (4)
C23—O23—P2125.2 (3)C3A—C4A—H4A119.6
O23—C23—H23A109.5C5A—C4A—H4A119.6
O23—C23—H23B109.5C6A—C5A—C4A120.0 (4)
H23A—C23—H23B109.5C6A—C5A—H5A120.0
O23—C23—H23C109.5C4A—C5A—H5A120.0
H23A—C23—H23C109.5C5A—C6A—C1A118.9 (3)
H23B—C23—H23C109.5C5A—C6A—C7119.5 (3)
O23—C23—H23D109.5C1A—C6A—C7121.5 (3)
H23A—C23—H23D141.1O7—C7—C6A112.6 (3)
H23B—C23—H23D56.3O7—C7—P1103.2 (2)
H23C—C23—H23D56.3C6A—C7—P1111.2 (2)
O23—C23—H23E109.5O7—C7—P2108.1 (2)
H23A—C23—H23E56.3C6A—C7—P2109.0 (2)
H23B—C23—H23E141.1P1—C7—P2112.63 (17)
H23C—C23—H23E56.3C7—O7—H7109.5
H23D—C23—H23E109.5
O21—P2—O23—C2332.5 (4)O13—P1—C7—O766.9 (2)
O22—P2—O23—C23159.8 (3)O11—P1—C7—O746.0 (2)
C7—P2—O23—C2388.4 (3)O12—P1—C7—C6A68.5 (3)
C6A—C1A—C2A—C3A0.9 (7)O13—P1—C7—C6A54.1 (3)
C1A—C2A—C3A—C4A1.5 (7)O11—P1—C7—C6A167.0 (2)
C2A—C3A—C4A—C5A0.4 (7)O12—P1—C7—P254.2 (2)
C3A—C4A—C5A—C6A1.3 (7)O13—P1—C7—P2176.81 (17)
C4A—C5A—C6A—C1A1.9 (6)O11—P1—C7—P270.3 (2)
C4A—C5A—C6A—C7174.2 (4)O21—P2—C7—O7171.4 (2)
C2A—C1A—C6A—C5A0.8 (6)O22—P2—C7—O741.7 (3)
C2A—C1A—C6A—C7175.2 (4)O23—P2—C7—O767.6 (2)
C5A—C6A—C7—O714.6 (5)O21—P2—C7—C6A65.9 (3)
C1A—C6A—C7—O7169.4 (3)O22—P2—C7—C6A164.4 (2)
C5A—C6A—C7—P1129.9 (3)O23—P2—C7—C6A55.1 (3)
C1A—C6A—C7—P154.1 (4)O21—P2—C7—P158.0 (2)
C5A—C6A—C7—P2105.4 (3)O22—P2—C7—P171.7 (2)
C1A—C6A—C7—P270.6 (4)O23—P2—C7—P1179.03 (17)
O12—P1—C7—O7170.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O21i0.821.752.548 (4)163
O11—H11···O22ii0.821.722.525 (4)169
O21—H21···O62iii0.821.892.548 (5)136
O7—H7···O12iv0.821.862.658 (3)164
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H12O7P2·CH4O
Mr314.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.3085 (5), 6.9871 (6), 28.147 (2)
β (°) 92.654 (3)
V3)1239.34 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.847, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
3837, 2375, 1943
Rint0.033
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.142, 1.08
No. of reflections2375
No. of parameters191
No. of restraints32
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.44

Computer programs: COLLECT (Hooft, 1998), HKL (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek (2003), WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13···O21i0.821.752.548 (4)162.8
O11—H11···O22ii0.821.722.525 (4)169.0
O21—H21···O62iii0.821.892.548 (5)136.4
O7—H7···O12iv0.821.862.658 (3)164.0
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x+1, y, z.
 

References

First citationBarbey, C., Lecouvey, M., Mallard, I., Prangé, T., Neuman, A., Lance, M. & Navaza, A. (2003). Z. Kristallogr. 218, 445–449.  Web of Science CSD CrossRef CAS Google Scholar
First citationClezardin, P., Fournier, P., Boissier, S. & Peyruchaud, O. (2003). Curr. Med. Chem. 10, 173–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFleisch, H. (1998). Endocr. Rev. 19 80–100.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFleisch, H. (2002). Breast Cancer Res. 4 30–34.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGreen, J. R. & Clezardin, P. (2002). Am. J. Clin. Oncol. 25, S3–S9.  Web of Science CrossRef PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., El Manouni, D. & Louriki, M. (2003a). World Patent WO 03/008425.  Google Scholar
First citationLecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., El Manouni, D. & Louriki, M. (2003b). Chem. Abstr. 138, 122736.  Google Scholar
First citationMigianu, E., Guénin, E. & Lecouvey, M. (2005). Synlett, 3, 425–428.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVepsalainen, J. J. (2002). Curr. Med. Chem. 62, 1201–1208.  CrossRef Google Scholar
First citationWelter, R. (2006). Acta Cryst. A62, s252.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1874-o1875
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds