organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,7,9,10-Tetra­hydro-16,22-ethano­oxyethano-5,8,11,19-tetra­oxa-16,22-di­aza­dibenzo[h,q]cyclo­octa­decine-17,21-dione: a benzyl­annelated macrobicyclic di­amide

aDepartment of Chemistry, Point Loma Nazarene University, 3900 Lomaland Dr., Rohr Science 305E, San Diego, CA 92106, USA, and bDepartment of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019-3051, USA
*Correspondence e-mail: garysmith@pointloma.edu

(Received 21 August 2008; accepted 18 September 2008; online 24 September 2008)

The macrobicyclic title compound, C24H28N2O7, has two tertiary diamide bridgehead atoms and is composed of a 12-membered ring (N2O2 donor set) and two 18-membered rings (N2O4 donor sets). The solid-state structure shows that each of the amide groups is not coplanar with the adjacent benzene ring and NMR studies indicate that this conformational relationship persists in solution.

Related literature

For general background, see: Dietrich et al. (1969[Dietrich, B., Lehn, J. M. & Sauvage, J. P. (1969). Tetrahedron Lett. 10, 2889-2892.]); Tummler et al. (1977[Tummler, B., Maass, G., Weber, E., Wehner, W. & Vogtle, F. (1977). J. Am. Chem. Soc. 99, 4683-4690.]); Niklas et al. (2004[Niklas, N., Heinemann, F. W., Hampel, F., Clark, T. & Alsfasser, R. (2004). Inorg. Chem. 43, 4663-4673.]); Schickaneder et al. (2006[Schickaneder, C., Heinemann, F. W. & Alsfasser, R. (2006). Eur. J. Inorg. Chem. 12, 2357-2363.]); Lehn (1973[Lehn, J. M. (1973). Struct. Bond., 16, 1-69.]). For related structures, see: Tarnowska et al. (2004[Tarnowska, A., Jarosz, M. & Jurczak, J. (2004). Synthesis, 3, 369-372.]); Smith et al. (2007[Smith, G. L. N., Powell, D. R., Khan, M. A. & Taylor, R. W. (2007). Acta Cryst. C63, o378-o381.]). For the synthesis, see: Dietrich et al. (1973[Dietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629-1645.]). For NMR studies, see: Smith et al. (2007[Smith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, o1253-o1255.]); Silverstein & Webster (1998[Silverstein, R. M. & Webster, F. X. (1998). Spectrometric Identification of Organic Compounds, 6th ed. New York: John Wiley & Sons Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C24H28N2O7

  • Mr = 456.48

  • Monoclinic, P 21 /n

  • a = 15.125 (2) Å

  • b = 9.3901 (14) Å

  • c = 16.446 (2) Å

  • β = 108.416 (5)°

  • V = 2216.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 87 (2) K

  • 0.58 × 0.56 × 0.52 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.950

  • 23465 measured reflections

  • 4352 independent reflections

  • 4142 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.03

  • 4352 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cryptands (Dietrich et al., 1969; Lehn, 1973) and tertiary amides (Tummler et al., 1977; Niklas et al., 2004; Schickaneder et al., 2006) are of interest as hosts for cationic guests. The title compound, (I), was isolated during the synthesis of the corresponding benzoannelated cryptand. A related macrobicyclic diamide without benzene rings has been reported, but the carbonyl groups are on the bridge containing the three ether O atoms (Tarnowska et al., 2004).

Fig. 1 shows that (I) consists of a 12-membered ring (N1, O4, N2, O6) and two 18-membered rings (N1, O1, O2, O3, N2, (O4 or O6)). With respect to the molecular cavity formed by these rings, donor atoms O1, O2, O3, O6, N1, and N2 have an endodentate orientation while O4 and carbonyl oxygen atoms O5 and O7 are exodentate. The donor atoms shared by the 18-membered rings (N1, O1, O2, O3, N2) form a plane (average deviation = 0.0244 Å) that is almost perpendicular (dihedral angle = 92.8 (2)°) to the plane defined by the donor atoms from the 12-membered ring (N1, O4, N2, O6; average deviation = 0.0995 Å). The planar amide groups (N1, C15, O5, C16; average deviation = 0.0014 Å), (N2, C18, O7, C17; average deviation = 0.0060 Å) form dihedral angles of 86.4 (2) and 99.0 (2)° with benzene rings 1 and 2, respectively.

In this conformation the distances between protons H2 and H20 and the carbonyl O atoms (O5 and O7) are 3.70Å and 3.80 Å, respectively. In the solid-state structure of the analogous monocyclic diamide (i.e., donor atoms N1, O1, O2, O3, N2, O6), each amide group and adjacent benzene ring are nearly co-planar (dihedral angles = 14.3 (2)°, 17.1 (2)°) and the distances between protons analogous to H2 and H20 to the adjacent carbonyl O atoms are between 2.29Å and 2.40Å (Smith et al., 2006). In CDCl3, the 1H chemical shift values of the aromatic protons of (I) lie in the expected range from 6.96 - 7.25 p.p.m. (Silverstein & Webster, 1998); however, for the corresponding monocyclic diamide, the ortho protons are shifted downfield to 8.22 p.p.m. due to deshielding by the adjacent carbonyl O atoms. The X-ray structure and NMR chemical shift data for (I) indicate that the presence of the ethanooxyethano bridging strand prevents the amide and benzene groups from adopting a coplanar conformation both in the solid state and in solution.

Related literature top

For related literature, see: Dietrich et al. (1969, 1973); Lehn (1973); Niklas et al. (2004); Schickaneder et al. (2006); Silverstein & Webster (1998); Smith et al. (2006); Smith, Powell, Khan & Taylor (2007); Smith, Rocher, Powell & Taylor (2007); Tarnowska et al. (2004); Tummler et al. (1977). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

Compound (I) was obtained from the reaction of the monocyclic diamine (Smith et al., 2007) (3.8 mM) in CH2Cl2 containing pyridine (15 mM) and the 2,2'-oxydiacetyl chloride solution (4.3 mM) in CH2Cl2 under high dilution conditions (Dietrich et al., 1973). The crude diamide was purified by flash column chromatography on silica gel using CH2Cl2 and MeOH (0–10%) as the eluent. Spectroscopic Analysis: 1H-NMR (CDCl3, 300 MHz) δ 3.66, 3.83 (m, 4H, NCH2CH2), 3,71, 4.44 (m, 4H, NCH2), 3.85,3.96 (m, 4H, ArOCH2CH2), 4.17 (m, 4H, ArOCH2), 4.39, 4.52 (m,4H, C(?O)CH2), 6.96 - 7.25 (m, 8H, Ar); ESI-MS: m/z = 457.3 (M + H+) and 479.3 (M + Na+). Crystals suitable for X-ray crystallography were grown by vapor diffusion of MeOH into a solution of (I) in CH2Cl2.

Refinement top

H atoms were positioned goemetrically and refined using a riding model with C—H = 0.95Å for aromatic carbons and 0.99Å for methylene carbons.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
6,7,9,10-Tetrahydro-16,22-ethanooxyethano-5,8,11,19-tetraoxa- 16,22-diazadibenzo[h,q]cyclooctadecine-17,21-dione top
Crystal data top
C24H28N2O7F(000) = 968
Mr = 456.48Dx = 1.368 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7313 reflections
a = 15.125 (2) Åθ = 2.6–28.2°
b = 9.3901 (14) ŵ = 0.10 mm1
c = 16.446 (2) ÅT = 87 K
β = 108.416 (5)°Block, colorless
V = 2216.1 (5) Å30.58 × 0.56 × 0.52 mm
Z = 4
Data collection top
Bruker APEX
diffractometer
4352 independent reflections
Radiation source: fine-focus sealed tube4142 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.366 pixels mm-1θmax = 26.0°, θmin = 2.2°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 1111
Tmin = 0.940, Tmax = 0.950l = 2020
23465 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.7509P]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H28N2O7V = 2216.1 (5) Å3
Mr = 456.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.125 (2) ŵ = 0.10 mm1
b = 9.3901 (14) ÅT = 87 K
c = 16.446 (2) Å0.58 × 0.56 × 0.52 mm
β = 108.416 (5)°
Data collection top
Bruker APEX
diffractometer
4352 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4142 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.950Rint = 0.020
23465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
4352 reflectionsΔρmin = 0.23 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.64508 (5)0.74748 (8)0.62300 (5)0.02150 (17)
O20.59736 (5)0.89145 (8)0.45462 (5)0.02121 (17)
O30.64605 (5)0.75428 (8)0.31729 (5)0.02270 (17)
O40.57879 (5)0.34635 (8)0.45980 (5)0.02311 (17)
O50.84403 (5)0.62786 (8)0.72596 (5)0.02390 (17)
O60.81395 (5)0.53553 (8)0.52618 (5)0.02129 (17)
O70.85667 (5)0.62395 (8)0.34044 (5)0.02538 (18)
N10.72291 (6)0.48401 (9)0.65874 (5)0.01944 (19)
N20.72987 (6)0.49648 (9)0.34218 (6)0.02010 (19)
C10.66837 (7)0.54166 (11)0.70866 (6)0.0198 (2)
C20.65342 (8)0.46203 (12)0.77389 (7)0.0240 (2)
H20.68200.37130.78770.029*
C30.59674 (8)0.51404 (12)0.81940 (7)0.0265 (2)
H30.58690.45930.86440.032*
C40.55497 (8)0.64576 (12)0.79873 (7)0.0249 (2)
H40.51570.68100.82920.030*
C50.56994 (7)0.72721 (12)0.73368 (7)0.0224 (2)
H50.54130.81800.72030.027*
C60.62683 (7)0.67631 (11)0.68798 (6)0.0193 (2)
C70.60204 (8)0.88484 (11)0.60179 (7)0.0219 (2)
H7A0.61670.94490.65390.026*
H7B0.53350.87400.57850.026*
C80.63801 (8)0.95395 (11)0.53658 (7)0.0232 (2)
H8A0.62341.05700.53360.028*
H8B0.70660.94330.55400.028*
C90.63046 (8)0.96135 (11)0.39353 (7)0.0228 (2)
H9A0.69940.96240.41400.027*
H9B0.60841.06120.38690.027*
C100.59670 (8)0.88731 (11)0.30861 (7)0.0233 (2)
H10A0.52880.87000.29240.028*
H10B0.60920.94650.26370.028*
C110.68585 (7)0.35454 (11)0.60899 (7)0.0217 (2)
H11A0.68580.27590.64910.026*
H11B0.72750.32690.57580.026*
C120.58634 (7)0.37445 (12)0.54701 (7)0.0224 (2)
H12A0.54370.31000.56440.027*
H12B0.56600.47350.55170.027*
C130.61408 (7)0.45732 (11)0.41885 (7)0.0219 (2)
H13A0.64410.53220.46090.026*
H13B0.56260.50120.37260.026*
C140.68495 (7)0.39065 (11)0.38188 (7)0.0219 (2)
H14A0.73330.34110.42820.026*
H14B0.65330.31870.33840.026*
C150.80862 (7)0.53954 (11)0.67021 (7)0.0200 (2)
C160.86233 (7)0.49116 (12)0.61103 (7)0.0233 (2)
H16A0.92560.53300.62990.028*
H16B0.86850.38620.61310.028*
C170.86817 (7)0.50959 (12)0.47159 (7)0.0235 (2)
H17A0.88510.40740.47450.028*
H17B0.92660.56540.49190.028*
C180.81667 (7)0.54926 (11)0.37915 (7)0.0206 (2)
C190.67883 (7)0.54321 (11)0.25679 (7)0.0203 (2)
C200.67082 (7)0.45530 (12)0.18772 (7)0.0241 (2)
H200.69960.36420.19650.029*
C210.62088 (8)0.49929 (13)0.10519 (7)0.0270 (2)
H210.61530.43850.05760.032*
C220.57953 (8)0.63187 (13)0.09301 (7)0.0262 (2)
H220.54620.66270.03660.031*
C230.58607 (7)0.72109 (12)0.16232 (7)0.0243 (2)
H230.55690.81190.15310.029*
C240.63543 (7)0.67709 (11)0.24507 (7)0.0207 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0234 (4)0.0199 (4)0.0218 (4)0.0037 (3)0.0079 (3)0.0030 (3)
O20.0234 (4)0.0210 (4)0.0195 (4)0.0021 (3)0.0071 (3)0.0003 (3)
O30.0257 (4)0.0211 (4)0.0209 (4)0.0051 (3)0.0067 (3)0.0006 (3)
O40.0239 (4)0.0256 (4)0.0195 (4)0.0087 (3)0.0064 (3)0.0022 (3)
O50.0218 (4)0.0226 (4)0.0245 (4)0.0028 (3)0.0034 (3)0.0016 (3)
O60.0177 (3)0.0262 (4)0.0196 (4)0.0040 (3)0.0055 (3)0.0019 (3)
O70.0231 (4)0.0266 (4)0.0282 (4)0.0026 (3)0.0105 (3)0.0011 (3)
N10.0182 (4)0.0184 (4)0.0203 (4)0.0004 (3)0.0040 (3)0.0012 (3)
N20.0188 (4)0.0201 (4)0.0217 (4)0.0006 (3)0.0068 (4)0.0016 (3)
C10.0174 (5)0.0209 (5)0.0191 (5)0.0032 (4)0.0030 (4)0.0029 (4)
C20.0240 (5)0.0215 (5)0.0241 (5)0.0041 (4)0.0043 (4)0.0005 (4)
C30.0278 (6)0.0297 (6)0.0225 (5)0.0089 (5)0.0086 (4)0.0004 (4)
C40.0210 (5)0.0315 (6)0.0229 (5)0.0066 (4)0.0078 (4)0.0069 (4)
C50.0198 (5)0.0239 (5)0.0217 (5)0.0005 (4)0.0037 (4)0.0035 (4)
C60.0171 (5)0.0216 (5)0.0170 (5)0.0034 (4)0.0023 (4)0.0015 (4)
C70.0250 (5)0.0183 (5)0.0207 (5)0.0037 (4)0.0047 (4)0.0008 (4)
C80.0261 (5)0.0186 (5)0.0221 (5)0.0018 (4)0.0035 (4)0.0014 (4)
C90.0248 (5)0.0195 (5)0.0271 (6)0.0012 (4)0.0127 (4)0.0026 (4)
C100.0248 (5)0.0221 (5)0.0246 (5)0.0062 (4)0.0101 (4)0.0043 (4)
C110.0231 (5)0.0181 (5)0.0220 (5)0.0001 (4)0.0043 (4)0.0021 (4)
C120.0204 (5)0.0266 (5)0.0201 (5)0.0034 (4)0.0062 (4)0.0018 (4)
C130.0191 (5)0.0224 (5)0.0234 (5)0.0018 (4)0.0057 (4)0.0022 (4)
C140.0220 (5)0.0189 (5)0.0246 (5)0.0016 (4)0.0071 (4)0.0013 (4)
C150.0186 (5)0.0191 (5)0.0196 (5)0.0021 (4)0.0022 (4)0.0041 (4)
C160.0174 (5)0.0291 (6)0.0210 (5)0.0028 (4)0.0026 (4)0.0025 (4)
C170.0179 (5)0.0282 (6)0.0245 (5)0.0034 (4)0.0070 (4)0.0001 (4)
C180.0194 (5)0.0193 (5)0.0245 (5)0.0024 (4)0.0087 (4)0.0015 (4)
C190.0161 (5)0.0233 (5)0.0221 (5)0.0024 (4)0.0068 (4)0.0011 (4)
C200.0200 (5)0.0246 (5)0.0291 (6)0.0017 (4)0.0098 (4)0.0033 (4)
C210.0240 (5)0.0335 (6)0.0244 (5)0.0070 (5)0.0090 (4)0.0072 (5)
C220.0224 (5)0.0350 (6)0.0202 (5)0.0047 (5)0.0052 (4)0.0018 (4)
C230.0217 (5)0.0263 (5)0.0251 (5)0.0003 (4)0.0076 (4)0.0033 (4)
C240.0182 (5)0.0236 (5)0.0218 (5)0.0023 (4)0.0085 (4)0.0003 (4)
Geometric parameters (Å, º) top
O1—C61.3606 (13)C8—H8B0.9900
O1—C71.4373 (12)C9—C101.4979 (15)
O2—C91.4173 (12)C9—H9A0.9900
O2—C81.4197 (12)C9—H9B0.9900
O3—C241.3570 (13)C10—H10A0.9900
O3—C101.4390 (12)C10—H10B0.9900
O4—C121.4270 (12)C11—C121.5395 (14)
O4—C131.4323 (13)C11—H11A0.9900
O5—C151.2268 (13)C11—H11B0.9900
O6—C171.4151 (12)C12—H12A0.9900
O6—C161.4181 (12)C12—H12B0.9900
O7—C181.2274 (13)C13—C141.5238 (15)
N1—C151.3540 (14)C13—H13A0.9900
N1—C11.4407 (13)C13—H13B0.9900
N1—C111.4738 (13)C14—H14A0.9900
N2—C181.3544 (14)C14—H14B0.9900
N2—C191.4408 (13)C15—C161.5211 (15)
N2—C141.4683 (13)C16—H16A0.9900
C1—C21.3835 (15)C16—H16B0.9900
C1—C61.4050 (15)C17—C181.5195 (15)
C2—C31.3925 (16)C17—H17A0.9900
C2—H20.9500C17—H17B0.9900
C3—C41.3815 (17)C19—C201.3782 (15)
C3—H30.9500C19—C241.4030 (15)
C4—C51.3906 (16)C20—C211.3914 (16)
C4—H40.9500C20—H200.9500
C5—C61.3937 (15)C21—C221.3792 (17)
C5—H50.9500C21—H210.9500
C7—C81.4953 (15)C22—C231.3927 (16)
C7—H7A0.9900C22—H220.9500
C7—H7B0.9900C23—C241.3923 (15)
C8—H8A0.9900C23—H230.9500
C6—O1—C7116.27 (8)C12—C11—H11B109.0
C9—O2—C8109.73 (8)H11A—C11—H11B107.8
C24—O3—C10117.56 (8)O4—C12—C11113.21 (9)
C12—O4—C13114.50 (8)O4—C12—H12A108.9
C17—O6—C16110.57 (8)C11—C12—H12A108.9
C15—N1—C1118.12 (9)O4—C12—H12B108.9
C15—N1—C11125.07 (9)C11—C12—H12B108.9
C1—N1—C11116.13 (8)H12A—C12—H12B107.7
C18—N2—C19118.10 (9)O4—C13—C14107.60 (8)
C18—N2—C14124.55 (9)O4—C13—H13A110.2
C19—N2—C14117.31 (8)C14—C13—H13A110.2
C2—C1—C6120.26 (10)O4—C13—H13B110.2
C2—C1—N1120.14 (10)C14—C13—H13B110.2
C6—C1—N1119.53 (9)H13A—C13—H13B108.5
C1—C2—C3120.42 (10)N2—C14—C13112.46 (8)
C1—C2—H2119.8N2—C14—H14A109.1
C3—C2—H2119.8C13—C14—H14A109.1
C4—C3—C2119.54 (10)N2—C14—H14B109.1
C4—C3—H3120.2C13—C14—H14B109.1
C2—C3—H3120.2H14A—C14—H14B107.8
C3—C4—C5120.58 (10)O5—C15—N1122.50 (10)
C3—C4—H4119.7O5—C15—C16119.00 (9)
C5—C4—H4119.7N1—C15—C16118.50 (9)
C4—C5—C6120.30 (10)O6—C16—C15109.15 (8)
C4—C5—H5119.8O6—C16—H16A109.9
C6—C5—H5119.8C15—C16—H16A109.9
O1—C6—C5124.62 (9)O6—C16—H16B109.9
O1—C6—C1116.48 (9)C15—C16—H16B109.9
C5—C6—C1118.89 (10)H16A—C16—H16B108.3
O1—C7—C8108.90 (9)O6—C17—C18112.08 (8)
O1—C7—H7A109.9O6—C17—H17A109.2
C8—C7—H7A109.9C18—C17—H17A109.2
O1—C7—H7B109.9O6—C17—H17B109.2
C8—C7—H7B109.9C18—C17—H17B109.2
H7A—C7—H7B108.3H17A—C17—H17B107.9
O2—C8—C7110.79 (9)O7—C18—N2122.89 (10)
O2—C8—H8A109.5O7—C18—C17118.56 (9)
C7—C8—H8A109.5N2—C18—C17118.51 (9)
O2—C8—H8B109.5C20—C19—C24120.53 (10)
C7—C8—H8B109.5C20—C19—N2120.09 (10)
H8A—C8—H8B108.1C24—C19—N2119.35 (9)
O2—C9—C10110.69 (9)C19—C20—C21120.36 (11)
O2—C9—H9A109.5C19—C20—H20119.8
C10—C9—H9A109.5C21—C20—H20119.8
O2—C9—H9B109.5C22—C21—C20119.42 (10)
C10—C9—H9B109.5C22—C21—H21120.3
H9A—C9—H9B108.1C20—C21—H21120.3
O3—C10—C9107.28 (8)C21—C22—C23120.83 (10)
O3—C10—H10A110.3C21—C22—H22119.6
C9—C10—H10A110.3C23—C22—H22119.6
O3—C10—H10B110.3C24—C23—C22119.93 (11)
C9—C10—H10B110.3C24—C23—H23120.0
H10A—C10—H10B108.5C22—C23—H23120.0
N1—C11—C12112.85 (8)O3—C24—C23125.15 (10)
N1—C11—H11A109.0O3—C24—C19115.95 (9)
C12—C11—H11A109.0C23—C24—C19118.90 (10)
N1—C11—H11B109.0
C15—N1—C1—C2108.91 (11)C1—N1—C15—O56.14 (15)
C11—N1—C1—C262.11 (12)C11—N1—C15—O5164.00 (9)
C15—N1—C1—C674.13 (12)C1—N1—C15—C16173.30 (9)
C11—N1—C1—C6114.85 (10)C11—N1—C15—C1616.55 (14)
C6—C1—C2—C30.33 (16)C17—O6—C16—C15171.97 (8)
N1—C1—C2—C3176.61 (9)O5—C15—C16—O6114.72 (10)
C1—C2—C3—C40.33 (16)N1—C15—C16—O664.74 (12)
C2—C3—C4—C50.75 (16)C16—O6—C17—C18177.25 (9)
C3—C4—C5—C60.51 (16)C19—N2—C18—O77.04 (15)
C7—O1—C6—C50.33 (14)C14—N2—C18—O7170.73 (10)
C7—O1—C6—C1179.68 (8)C19—N2—C18—C17175.37 (9)
C4—C5—C6—O1179.49 (9)C14—N2—C18—C176.86 (15)
C4—C5—C6—C10.15 (15)O6—C17—C18—O7130.66 (10)
C2—C1—C6—O1179.96 (9)O6—C17—C18—N251.64 (13)
N1—C1—C6—O13.01 (13)C18—N2—C19—C20103.13 (12)
C2—C1—C6—C50.57 (15)C14—N2—C19—C2074.81 (12)
N1—C1—C6—C5176.39 (9)C18—N2—C19—C2478.59 (12)
C6—O1—C7—C8173.66 (8)C14—N2—C19—C24103.47 (11)
C9—O2—C8—C7178.33 (8)C24—C19—C20—C211.14 (16)
O1—C7—C8—O275.03 (10)N2—C19—C20—C21179.40 (9)
C8—O2—C9—C10173.86 (8)C19—C20—C21—C220.11 (16)
C24—O3—C10—C9171.74 (8)C20—C21—C22—C230.92 (16)
O2—C9—C10—O371.12 (10)C21—C22—C23—C240.48 (16)
C15—N1—C11—C12133.07 (10)C10—O3—C24—C235.01 (15)
C1—N1—C11—C1256.61 (12)C10—O3—C24—C19175.35 (9)
C13—O4—C12—C1176.49 (11)C22—C23—C24—O3179.61 (10)
N1—C11—C12—O4122.34 (10)C22—C23—C24—C190.76 (15)
C12—O4—C13—C14125.90 (9)C20—C19—C24—O3178.77 (9)
C18—N2—C14—C13101.99 (11)N2—C19—C24—O30.50 (13)
C19—N2—C14—C1380.22 (11)C20—C19—C24—C231.56 (15)
O4—C13—C14—N2176.83 (8)N2—C19—C24—C23179.83 (9)

Experimental details

Crystal data
Chemical formulaC24H28N2O7
Mr456.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)87
a, b, c (Å)15.125 (2), 9.3901 (14), 16.446 (2)
β (°) 108.416 (5)
V3)2216.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.58 × 0.56 × 0.52
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.940, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
23465, 4352, 4142
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.03
No. of reflections4352
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR00–030) and the National Institutes of Health (grant GM66206). The authors thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDietrich, B., Lehn, J. M. & Sauvage, J. P. (1969). Tetrahedron Lett. 10, 2889–2892.  CrossRef Google Scholar
First citationDietrich, B., Lehn, J. M., Sauvage, J. P. & Blanzat, J. (1973). Tetrahedron, 29, 1629–1645.  CrossRef CAS Web of Science Google Scholar
First citationLehn, J. M. (1973). Struct. Bond., 16, 1–69.  CrossRef CAS Google Scholar
First citationNiklas, N., Heinemann, F. W., Hampel, F., Clark, T. & Alsfasser, R. (2004). Inorg. Chem. 43, 4663–4673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSchickaneder, C., Heinemann, F. W. & Alsfasser, R. (2006). Eur. J. Inorg. Chem. 12, 2357–2363.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverstein, R. M. & Webster, F. X. (1998). Spectrometric Identification of Organic Compounds, 6th ed. New York: John Wiley & Sons Inc.  Google Scholar
First citationSmith, G. L. N., Alguindigue, S. S., Khan, M. A., Powell, D. R. & Taylor, R. W. (2006). Magn. Reson. Chem. 44, 901–904.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSmith, G. L. N., Powell, D. R., Khan, M. A. & Taylor, R. W. (2007). Acta Cryst. C63, o378–o381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G. L. N., Rocher, N. M., Powell, D. R. & Taylor, R. W. (2007). Acta Cryst. E63, o1253–o1255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTarnowska, A., Jarosz, M. & Jurczak, J. (2004). Synthesis, 3, 369–372.  Google Scholar
First citationTummler, B., Maass, G., Weber, E., Wehner, W. & Vogtle, F. (1977). J. Am. Chem. Soc. 99, 4683–4690.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds