organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Phenyl-2-thioxo-1,3-thia­zolidin-4-one

aJiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou 215123, People's Republic of China
*Correspondence e-mail: zhufengxia501@hotmail.com

(Received 3 September 2008; accepted 18 September 2008; online 24 September 2008)

In the mol­ecule of the title compound, C9H7NOS2, the heterocycle and the phenyl ring are oriented at a dihedral angle of 72.3 (1)°. Adjacent mol­ecules are connected through C—H⋯O inter­actions.

Related literature

For the synthesis of 3-phenyl­rhodanine, see: Brown et al. (1956[Brown, F. C., Bradsher, C. K., Morgan, E. C., Tetenbaum, M. & Wilder, P. (1956). J. Am. Chem. Soc., 78, 384-388.]). For the therapeutic properties of rhodanine-based mol­ecules, including anti­convulsant, anti­bacterial, anti­viral and anti­diabetic properties, see: Momose et al. (1991[Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull. 39, 1440-1445.]); HCV protease, Sudo et al. (1997[Sudo, K., Matsumoto, Y., Matsushima, M., Fujiwara, M., Konno, K., Shimotohno, K., Shigeta, S. & Yokota, T. (1997). Biochem. Biophys. Res. Commun. 238, 643-647.]); HCV NS3 protease, Sing et al. (2001[Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett. 11, 91-94.]); aldols reductase, Bruno et al. (2002[Bruno, G., Costantino, L., Curinga, C., Maccari, R., Monforte, F., Nicolo, F., Ottana, R. & Vigorita, M. G. (2002). Bioorg. Med. Chem. 10, 1077-1084.]); factor protease, Sherida et al. (2006[Sherida, L., Jung, J. D. & Forino, M. (2006). J. Med. Chem. 49, 27-30.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7NOS2

  • Mr = 209.28

  • Monoclinic, P 21 /c

  • a = 12.9941 (13) Å

  • b = 5.6111 (6) Å

  • c = 12.7271 (13) Å

  • β = 93.847 (3)°

  • V = 925.86 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 296 (2) K

  • 0.20 × 0.15 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.91, Tmax = 0.97

  • 10918 measured reflections

  • 1800 independent reflections

  • 1146 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.080

  • S = 1.00

  • 1800 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.51 3.410 (3) 163
C8—H8⋯O1ii 0.93 2.46 3.386 (3) 171
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Rhodanine derivatives are attractive compounds owing to their outstanding biological activities. They have undergone rapid development as a result of their use in anticonvulsant, antibacterial, antiviral and antidiabetic treatments (Momose et al., 1991). As an extension of these studies, we report herein on the structure of 3-phenylrhodanine (3-phenyl-2-thioxothiazolidin-4-one).

A 3-phenylrhodanine molecule, which is the asymmetric unit of the structure, is shown in Fig. 1. All the bond distances and bond angles are within the normal ranges. The two parts of the molecule, the five-member heterocycle and the phenyl ring, are oriented at a dihedral angle of 72.3 (1)°. Adjacent molecules are connected through C–H—O hydrogen bonds (Table 1).

Related literature top

For the synthesis of 3-phenylrhodanine, see: Brown et al. (1956). For the therapeutic properties of rhodanine-based molecules, including anticonvulsant, antibacterial, antiviral and antidiabetic properties, see: Momose et al. (1991); HCV protease, Sudo et al. (1997); HCV NS3 protease, Sing et al. (2001); aldols reductase, Bruno et al. (2002); factor protease, Sherida et al. (2006).

Experimental top

3-phenylrhodanine was synthesized according to the literature (Brown et al., 1956), and was recrystallized using a mixed solvent of ether and 95% ethanol (1:1 by volume). Yellow sheet crystals are obtained.

Refinement top

All non-hydrogen atoms were found in Fourier maps, and were refined anisotropically. Hydrogen atoms were positioned geometrically, and the isotropic vibration parameters related to the atoms which they are bonded to with Uiso = 1.2 Ueq.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of 3-benzylrhodanine with atom labels and 50% probability displacement ellipsoids for non-H atoms.
3-Phenyl-2-thioxo-1,3-thiazolidin-4-one top
Crystal data top
C9H7NOS2F(000) = 432
Mr = 209.28Dx = 1.501 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1321 reflections
a = 12.9941 (13) Åθ = 3.1–21.1°
b = 5.6111 (6) ŵ = 0.53 mm1
c = 12.7271 (13) ÅT = 296 K
β = 93.847 (3)°Plate, yellow
V = 925.86 (17) Å30.20 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1800 independent reflections
Radiation source: fine-focus sealed tube1146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 8 pixels mm-1θmax = 26.0°, θmin = 1.6°
ω scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 66
Tmin = 0.91, Tmax = 0.97l = 1515
10918 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.2182P]
where P = (Fo2 + 2Fc2)/3
1800 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H7NOS2V = 925.86 (17) Å3
Mr = 209.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9941 (13) ŵ = 0.53 mm1
b = 5.6111 (6) ÅT = 296 K
c = 12.7271 (13) Å0.20 × 0.15 × 0.05 mm
β = 93.847 (3)°
Data collection top
Bruker APEXII
diffractometer
1800 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1146 reflections with I > 2σ(I)
Tmin = 0.91, Tmax = 0.97Rint = 0.066
10918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.00Δρmax = 0.25 e Å3
1800 reflectionsΔρmin = 0.23 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35704 (19)0.8242 (4)0.64373 (18)0.0412 (6)
C20.2485 (2)0.5060 (4)0.58348 (17)0.0413 (6)
C30.32529 (19)0.5020 (4)0.50099 (19)0.0495 (7)
H3A0.29080.52310.43170.059*
H3B0.36160.35080.50240.059*
C40.20680 (17)0.7118 (4)0.74476 (17)0.0351 (6)
C50.13898 (18)0.8984 (4)0.74630 (18)0.0433 (6)
H50.13761.01400.69380.052*
C60.07285 (19)0.9134 (5)0.8263 (2)0.0478 (7)
H60.02621.03890.82750.057*
C70.0756 (2)0.7437 (5)0.90434 (19)0.0484 (7)
H70.03090.75490.95820.058*
C80.1438 (2)0.5586 (5)0.90295 (19)0.0512 (7)
H80.14550.44410.95590.061*
C90.21025 (19)0.5414 (4)0.82277 (18)0.0444 (6)
H90.25690.41580.82160.053*
N10.27190 (14)0.6844 (3)0.65849 (14)0.0364 (5)
O10.17588 (14)0.3754 (3)0.58706 (13)0.0541 (5)
S10.41400 (5)0.74161 (13)0.52991 (6)0.0566 (2)
S20.40143 (5)1.03944 (13)0.71931 (6)0.0583 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (15)0.0436 (15)0.0446 (14)0.0026 (12)0.0059 (11)0.0053 (12)
C20.0456 (16)0.0411 (15)0.0378 (13)0.0024 (13)0.0066 (12)0.0023 (12)
C30.0501 (16)0.0522 (17)0.0475 (14)0.0041 (14)0.0124 (12)0.0048 (13)
C40.0342 (14)0.0356 (14)0.0362 (12)0.0006 (11)0.0077 (11)0.0010 (11)
C50.0440 (16)0.0407 (15)0.0458 (15)0.0024 (13)0.0069 (13)0.0055 (11)
C60.0403 (16)0.0461 (16)0.0577 (16)0.0089 (13)0.0089 (13)0.0033 (13)
C70.0474 (16)0.0539 (17)0.0458 (14)0.0049 (15)0.0182 (12)0.0063 (14)
C80.0614 (18)0.0489 (16)0.0445 (15)0.0046 (15)0.0125 (14)0.0097 (13)
C90.0497 (16)0.0370 (14)0.0472 (14)0.0093 (12)0.0090 (12)0.0044 (12)
N10.0359 (12)0.0356 (11)0.0386 (11)0.0007 (9)0.0088 (9)0.0003 (9)
O10.0594 (13)0.0506 (11)0.0532 (11)0.0147 (10)0.0107 (9)0.0059 (9)
S10.0465 (4)0.0673 (5)0.0588 (4)0.0072 (4)0.0228 (3)0.0061 (4)
S20.0511 (5)0.0561 (5)0.0682 (5)0.0128 (4)0.0081 (4)0.0131 (4)
Geometric parameters (Å, º) top
C1—N11.379 (3)C4—N11.439 (3)
C1—S21.626 (3)C5—C61.378 (3)
C1—S11.733 (2)C5—H50.9300
C2—O11.198 (3)C6—C71.375 (3)
C2—N11.402 (3)C6—H60.9300
C2—C31.496 (3)C7—C81.366 (3)
C3—S11.793 (3)C7—H70.9300
C3—H3A0.9700C8—C91.384 (3)
C3—H3B0.9700C8—H80.9300
C4—C51.370 (3)C9—H90.9300
C4—C91.377 (3)
N1—C1—S2126.73 (18)C6—C5—H5120.3
N1—C1—S1110.68 (17)C7—C6—C5120.3 (2)
S2—C1—S1122.59 (15)C7—C6—H6119.9
O1—C2—N1123.1 (2)C5—C6—H6119.9
O1—C2—C3125.5 (2)C8—C7—C6120.2 (2)
N1—C2—C3111.4 (2)C8—C7—H7119.9
C2—C3—S1107.11 (17)C6—C7—H7119.9
C2—C3—H3A110.3C7—C8—C9120.0 (2)
S1—C3—H3A110.3C7—C8—H8120.0
C2—C3—H3B110.3C9—C8—H8120.0
S1—C3—H3B110.3C4—C9—C8119.5 (2)
H3A—C3—H3B108.5C4—C9—H9120.3
C5—C4—C9120.7 (2)C8—C9—H9120.3
C5—C4—N1120.3 (2)C1—N1—C2116.9 (2)
C9—C4—N1118.9 (2)C1—N1—C4124.14 (19)
C4—C5—C6119.4 (2)C2—N1—C4119.0 (2)
C4—C5—H5120.3C1—S1—C393.86 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.513.410 (3)163
C8—H8···O1ii0.932.463.386 (3)171
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H7NOS2
Mr209.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.9941 (13), 5.6111 (6), 12.7271 (13)
β (°) 93.847 (3)
V3)925.86 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.20 × 0.15 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.91, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
10918, 1800, 1146
Rint0.066
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.080, 1.00
No. of reflections1800
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.513.410 (3)163.2
C8—H8···O1ii0.932.463.386 (3)171.3
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.
 

References

First citationBrown, F. C., Bradsher, C. K., Morgan, E. C., Tetenbaum, M. & Wilder, P. (1956). J. Am. Chem. Soc., 78, 384–388.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.  Google Scholar
First citationBruno, G., Costantino, L., Curinga, C., Maccari, R., Monforte, F., Nicolo, F., Ottana, R. & Vigorita, M. G. (2002). Bioorg. Med. Chem. 10, 1077–1084.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMomose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull. 39, 1440–1445.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSherida, L., Jung, J. D. & Forino, M. (2006). J. Med. Chem. 49, 27–30.  Web of Science PubMed Google Scholar
First citationSing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett. 11, 91–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudo, K., Matsumoto, Y., Matsushima, M., Fujiwara, M., Konno, K., Shimotohno, K., Shigeta, S. & Yokota, T. (1997). Biochem. Biophys. Res. Commun. 238, 643–647.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds