organic compounds
3-Phenyl-2-thioxo-1,3-thiazolidin-4-one
aJiangsu Key Laboratory for the Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, 111 West Changjiang Road, Huaian 223300, Jiangsu, People's Republic of China, and bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Suzhou 215123, People's Republic of China
*Correspondence e-mail: zhufengxia501@hotmail.com
In the molecule of the title compound, C9H7NOS2, the heterocycle and the phenyl ring are oriented at a dihedral angle of 72.3 (1)°. Adjacent molecules are connected through C—H⋯O interactions.
Related literature
For the synthesis of 3-phenylrhodanine, see: Brown et al. (1956). For the therapeutic properties of rhodanine-based molecules, including anticonvulsant, antibacterial, antiviral and antidiabetic properties, see: Momose et al. (1991); HCV protease, Sudo et al. (1997); HCV NS3 protease, Sing et al. (2001); aldols reductase, Bruno et al. (2002); factor protease, Sherida et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808030079/pk2120sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030079/pk2120Isup2.hkl
3-phenylrhodanine was synthesized according to the literature (Brown et al., 1956), and was recrystallized using a mixed solvent of ether and 95% ethanol (1:1 by volume). Yellow sheet crystals are obtained.
All non-hydrogen atoms were found in Fourier maps, and were refined anisotropically. Hydrogen atoms were positioned geometrically, and the isotropic vibration parameters related to the atoms which they are bonded to with Uiso = 1.2 Ueq.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. The asymmetric unit of 3-benzylrhodanine with atom labels and 50% probability displacement ellipsoids for non-H atoms. |
C9H7NOS2 | F(000) = 432 |
Mr = 209.28 | Dx = 1.501 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1321 reflections |
a = 12.9941 (13) Å | θ = 3.1–21.1° |
b = 5.6111 (6) Å | µ = 0.53 mm−1 |
c = 12.7271 (13) Å | T = 296 K |
β = 93.847 (3)° | Plate, yellow |
V = 925.86 (17) Å3 | 0.20 × 0.15 × 0.05 mm |
Z = 4 |
Bruker APEXII diffractometer | 1800 independent reflections |
Radiation source: fine-focus sealed tube | 1146 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
Detector resolution: 8 pixels mm-1 | θmax = 26.0°, θmin = 1.6° |
ω scans | h = −14→15 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −6→6 |
Tmin = 0.91, Tmax = 0.97 | l = −15→15 |
10918 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0272P)2 + 0.2182P] where P = (Fo2 + 2Fc2)/3 |
1800 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C9H7NOS2 | V = 925.86 (17) Å3 |
Mr = 209.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.9941 (13) Å | µ = 0.53 mm−1 |
b = 5.6111 (6) Å | T = 296 K |
c = 12.7271 (13) Å | 0.20 × 0.15 × 0.05 mm |
β = 93.847 (3)° |
Bruker APEXII diffractometer | 1800 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1146 reflections with I > 2σ(I) |
Tmin = 0.91, Tmax = 0.97 | Rint = 0.066 |
10918 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.25 e Å−3 |
1800 reflections | Δρmin = −0.23 e Å−3 |
118 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.35704 (19) | 0.8242 (4) | 0.64373 (18) | 0.0412 (6) | |
C2 | 0.2485 (2) | 0.5060 (4) | 0.58348 (17) | 0.0413 (6) | |
C3 | 0.32529 (19) | 0.5020 (4) | 0.50099 (19) | 0.0495 (7) | |
H3A | 0.2908 | 0.5231 | 0.4317 | 0.059* | |
H3B | 0.3616 | 0.3508 | 0.5024 | 0.059* | |
C4 | 0.20680 (17) | 0.7118 (4) | 0.74476 (17) | 0.0351 (6) | |
C5 | 0.13898 (18) | 0.8984 (4) | 0.74630 (18) | 0.0433 (6) | |
H5 | 0.1376 | 1.0140 | 0.6938 | 0.052* | |
C6 | 0.07285 (19) | 0.9134 (5) | 0.8263 (2) | 0.0478 (7) | |
H6 | 0.0262 | 1.0389 | 0.8275 | 0.057* | |
C7 | 0.0756 (2) | 0.7437 (5) | 0.90434 (19) | 0.0484 (7) | |
H7 | 0.0309 | 0.7549 | 0.9582 | 0.058* | |
C8 | 0.1438 (2) | 0.5586 (5) | 0.90295 (19) | 0.0512 (7) | |
H8 | 0.1455 | 0.4441 | 0.9559 | 0.061* | |
C9 | 0.21025 (19) | 0.5414 (4) | 0.82277 (18) | 0.0444 (6) | |
H9 | 0.2569 | 0.4158 | 0.8216 | 0.053* | |
N1 | 0.27190 (14) | 0.6844 (3) | 0.65849 (14) | 0.0364 (5) | |
O1 | 0.17588 (14) | 0.3754 (3) | 0.58706 (13) | 0.0541 (5) | |
S1 | 0.41400 (5) | 0.74161 (13) | 0.52991 (6) | 0.0566 (2) | |
S2 | 0.40143 (5) | 1.03944 (13) | 0.71931 (6) | 0.0583 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0359 (15) | 0.0436 (15) | 0.0446 (14) | 0.0026 (12) | 0.0059 (11) | 0.0053 (12) |
C2 | 0.0456 (16) | 0.0411 (15) | 0.0378 (13) | 0.0024 (13) | 0.0066 (12) | 0.0023 (12) |
C3 | 0.0501 (16) | 0.0522 (17) | 0.0475 (14) | 0.0041 (14) | 0.0124 (12) | −0.0048 (13) |
C4 | 0.0342 (14) | 0.0356 (14) | 0.0362 (12) | −0.0006 (11) | 0.0077 (11) | −0.0010 (11) |
C5 | 0.0440 (16) | 0.0407 (15) | 0.0458 (15) | 0.0024 (13) | 0.0069 (13) | 0.0055 (11) |
C6 | 0.0403 (16) | 0.0461 (16) | 0.0577 (16) | 0.0089 (13) | 0.0089 (13) | −0.0033 (13) |
C7 | 0.0474 (16) | 0.0539 (17) | 0.0458 (14) | −0.0049 (15) | 0.0182 (12) | −0.0063 (14) |
C8 | 0.0614 (18) | 0.0489 (16) | 0.0445 (15) | −0.0046 (15) | 0.0125 (14) | 0.0097 (13) |
C9 | 0.0497 (16) | 0.0370 (14) | 0.0472 (14) | 0.0093 (12) | 0.0090 (12) | 0.0044 (12) |
N1 | 0.0359 (12) | 0.0356 (11) | 0.0386 (11) | −0.0007 (9) | 0.0088 (9) | −0.0003 (9) |
O1 | 0.0594 (13) | 0.0506 (11) | 0.0532 (11) | −0.0147 (10) | 0.0107 (9) | −0.0059 (9) |
S1 | 0.0465 (4) | 0.0673 (5) | 0.0588 (4) | −0.0072 (4) | 0.0228 (3) | −0.0061 (4) |
S2 | 0.0511 (5) | 0.0561 (5) | 0.0682 (5) | −0.0128 (4) | 0.0081 (4) | −0.0131 (4) |
C1—N1 | 1.379 (3) | C4—N1 | 1.439 (3) |
C1—S2 | 1.626 (3) | C5—C6 | 1.378 (3) |
C1—S1 | 1.733 (2) | C5—H5 | 0.9300 |
C2—O1 | 1.198 (3) | C6—C7 | 1.375 (3) |
C2—N1 | 1.402 (3) | C6—H6 | 0.9300 |
C2—C3 | 1.496 (3) | C7—C8 | 1.366 (3) |
C3—S1 | 1.793 (3) | C7—H7 | 0.9300 |
C3—H3A | 0.9700 | C8—C9 | 1.384 (3) |
C3—H3B | 0.9700 | C8—H8 | 0.9300 |
C4—C5 | 1.370 (3) | C9—H9 | 0.9300 |
C4—C9 | 1.377 (3) | ||
N1—C1—S2 | 126.73 (18) | C6—C5—H5 | 120.3 |
N1—C1—S1 | 110.68 (17) | C7—C6—C5 | 120.3 (2) |
S2—C1—S1 | 122.59 (15) | C7—C6—H6 | 119.9 |
O1—C2—N1 | 123.1 (2) | C5—C6—H6 | 119.9 |
O1—C2—C3 | 125.5 (2) | C8—C7—C6 | 120.2 (2) |
N1—C2—C3 | 111.4 (2) | C8—C7—H7 | 119.9 |
C2—C3—S1 | 107.11 (17) | C6—C7—H7 | 119.9 |
C2—C3—H3A | 110.3 | C7—C8—C9 | 120.0 (2) |
S1—C3—H3A | 110.3 | C7—C8—H8 | 120.0 |
C2—C3—H3B | 110.3 | C9—C8—H8 | 120.0 |
S1—C3—H3B | 110.3 | C4—C9—C8 | 119.5 (2) |
H3A—C3—H3B | 108.5 | C4—C9—H9 | 120.3 |
C5—C4—C9 | 120.7 (2) | C8—C9—H9 | 120.3 |
C5—C4—N1 | 120.3 (2) | C1—N1—C2 | 116.9 (2) |
C9—C4—N1 | 118.9 (2) | C1—N1—C4 | 124.14 (19) |
C4—C5—C6 | 119.4 (2) | C2—N1—C4 | 119.0 (2) |
C4—C5—H5 | 120.3 | C1—S1—C3 | 93.86 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.51 | 3.410 (3) | 163 |
C8—H8···O1ii | 0.93 | 2.46 | 3.386 (3) | 171 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H7NOS2 |
Mr | 209.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 12.9941 (13), 5.6111 (6), 12.7271 (13) |
β (°) | 93.847 (3) |
V (Å3) | 925.86 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.20 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Bruker APEXII diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.91, 0.97 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10918, 1800, 1146 |
Rint | 0.066 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.080, 1.00 |
No. of reflections | 1800 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.23 |
Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 0.93 | 2.51 | 3.410 (3) | 163.2 |
C8—H8···O1ii | 0.93 | 2.46 | 3.386 (3) | 171.3 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1/2, z+1/2. |
References
Brown, F. C., Bradsher, C. K., Morgan, E. C., Tetenbaum, M. & Wilder, P. (1956). J. Am. Chem. Soc., 78, 384–388. CrossRef CAS Web of Science Google Scholar
Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA. Google Scholar
Bruno, G., Costantino, L., Curinga, C., Maccari, R., Monforte, F., Nicolo, F., Ottana, R. & Vigorita, M. G. (2002). Bioorg. Med. Chem. 10, 1077–1084. Web of Science CSD CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. & Sohda, T. (1991). Chem. Pharm. Bull. 39, 1440–1445. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sherida, L., Jung, J. D. & Forino, M. (2006). J. Med. Chem. 49, 27–30. Web of Science PubMed Google Scholar
Sing, W. T., Lee, C. L., Yeo, S. L., Lim, S. P. & Sim, M. M. (2001). Bioorg. Med. Chem. Lett. 11, 91–94. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sudo, K., Matsumoto, Y., Matsushima, M., Fujiwara, M., Konno, K., Shimotohno, K., Shigeta, S. & Yokota, T. (1997). Biochem. Biophys. Res. Commun. 238, 643–647. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rhodanine derivatives are attractive compounds owing to their outstanding biological activities. They have undergone rapid development as a result of their use in anticonvulsant, antibacterial, antiviral and antidiabetic treatments (Momose et al., 1991). As an extension of these studies, we report herein on the structure of 3-phenylrhodanine (3-phenyl-2-thioxothiazolidin-4-one).
A 3-phenylrhodanine molecule, which is the asymmetric unit of the structure, is shown in Fig. 1. All the bond distances and bond angles are within the normal ranges. The two parts of the molecule, the five-member heterocycle and the phenyl ring, are oriented at a dihedral angle of 72.3 (1)°. Adjacent molecules are connected through C–H—O hydrogen bonds (Table 1).