organic compounds
Hydroxonium 1-ammonioethylidene-1,1-bisphosphonate
aYueyang Vocational Technology College, Yueyang 414000, Hunan, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410017, Hunan, People's Republic of China
*Correspondence e-mail: wuying6612@126.com
The title compound, H3O+·C2H8NO6P2−, contains a disordered H3O+ cation and an NH3C(CH3)(PO3H)2 anion. The three H atoms of the H3O+ cation are statistically distributed over four positions with occupancies of 0.75, resulting in a pseudo tetrahedron. Multiple N—H⋯O and O—H⋯O hydrogen bonds generate an intricate three-dimensional network.
Related literature
For related literature, see: Bollinger & Roundhill (1993); Chai et al. (1980); Clearfield (2002); Fernández et al. (2003); Li et al. (2008); Finn et al. (2003); Yin et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808029565/pv2098sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029565/pv2098Isup2.hkl
The title compound was synthesized according to the US Patent 4239695 (Chai et al., 1980). It was crystallized unexpectedly when 4,4'-bipyridine was adding into the AEDPH4 H2O solution to synthesize the complex. However, the 4,4'-bipyridine was not present in the final product.
All H atoms attached to C atoms, N atom and O(hydroxyl) atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (C), N—H = 0.86 Å and O—H= 0.82Å with Uiso(H) = 1.5Ueq(C,N or O). H atoms of the H3O+ cation were located in difference Fourier maps and included in the subsequent
using restraints (O-H = 0.86 (1)Å) with Uiso(H) = 1.5Ueq(O); in the final stages of their coordinates were fixed. The three hydrogen atoms of the H3O+ cation are statistically distributed over four positions with occupation factor of 0.75, resulting in a pseudo tetrahedron.Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line. | |
Fig. 2. Partial packing view of compound ( I ), showing the formation of the three dimensional network built from hydrogen bonds. For clarity, H atoms not involved in hydrogen bonding have been omitted. [symmetry codes: (i) 1+x, y, z; (ii) 2-x , 2-y, z ; (iii) x, y , z-1; (iv) 1-x, 1-y, 1-z]. |
H3O+·C2H8NO6P2− | Z = 2 |
Mr = 223.06 | F(000) = 232 |
Triclinic, P1 | Dx = 1.702 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6379 (5) Å | Cell parameters from 2523 reflections |
b = 8.9712 (8) Å | θ = 2.4–29.6° |
c = 9.2302 (8) Å | µ = 0.50 mm−1 |
α = 102.111 (1)° | T = 293 K |
β = 100.499 (1)° | Plate, colorless |
γ = 101.342 (1)° | 0.36 × 0.32 × 0.27 mm |
V = 435.22 (7) Å3 |
Bruker SMART 4K CCD area-detector diffractometer | 1871 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.009 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→7 |
Tmin = 0.839, Tmax = 0.876 | k = −9→11 |
2811 measured reflections | l = −11→8 |
1946 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0451P)2 + 0.5124P] where P = (Fo2 + 2Fc2)/3 |
1946 reflections | (Δ/σ)max < 0.001 |
113 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
H3O+·C2H8NO6P2− | γ = 101.342 (1)° |
Mr = 223.06 | V = 435.22 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.6379 (5) Å | Mo Kα radiation |
b = 8.9712 (8) Å | µ = 0.50 mm−1 |
c = 9.2302 (8) Å | T = 293 K |
α = 102.111 (1)° | 0.36 × 0.32 × 0.27 mm |
β = 100.499 (1)° |
Bruker SMART 4K CCD area-detector diffractometer | 1946 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1871 reflections with I > 2σ(I) |
Tmin = 0.839, Tmax = 0.876 | Rint = 0.009 |
2811 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.44 e Å−3 |
1946 reflections | Δρmin = −0.58 e Å−3 |
113 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.64618 (8) | 0.73089 (5) | 0.49332 (5) | 0.01519 (14) | |
P2 | 0.58222 (8) | 0.83546 (6) | 0.19085 (5) | 0.01897 (14) | |
C1 | 0.7352 (3) | 0.7236 (2) | 0.3101 (2) | 0.0159 (3) | |
C2 | 0.6859 (4) | 0.5520 (2) | 0.2183 (2) | 0.0263 (4) | |
H2A | 0.7448 | 0.5493 | 0.1268 | 0.039* | |
H2B | 0.5106 | 0.5046 | 0.1924 | 0.039* | |
H2C | 0.7717 | 0.4950 | 0.2784 | 0.039* | |
N1 | 1.0110 (3) | 0.79403 (19) | 0.34632 (18) | 0.0177 (3) | |
H1A | 1.0884 | 0.7500 | 0.4126 | 0.027* | |
H1B | 1.0421 | 0.8971 | 0.3866 | 0.027* | |
H1C | 1.0657 | 0.7766 | 0.2612 | 0.027* | |
O1 | 0.8136 (2) | 0.63586 (16) | 0.57120 (16) | 0.0207 (3) | |
H1 | 0.7371 | 0.5435 | 0.5513 | 0.031* | |
O2 | 0.7185 (3) | 0.89740 (16) | 0.58704 (16) | 0.0234 (3) | |
O3 | 0.3743 (2) | 0.64928 (16) | 0.46080 (17) | 0.0218 (3) | |
O4 | 0.6364 (3) | 1.00594 (17) | 0.29828 (18) | 0.0267 (3) | |
H4 | 0.5123 | 1.0175 | 0.3295 | 0.040* | |
O5 | 0.7259 (3) | 0.8501 (2) | 0.07158 (17) | 0.0295 (3) | |
O6 | 0.3106 (3) | 0.75734 (19) | 0.14090 (16) | 0.0262 (3) | |
O1W | 1.0469 (3) | 0.8192 (2) | −0.1160 (2) | 0.0403 (4) | |
H9 | 1.0002 | 0.7549 | −0.2088 | 0.061* | 0.75 |
H10 | 0.9220 | 0.8286 | −0.0718 | 0.061* | 0.75 |
H11 | 1.1434 | 0.7837 | −0.0515 | 0.061* | 0.75 |
H12 | 1.1157 | 0.9206 | −0.1025 | 0.061* | 0.75 |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0131 (2) | 0.0149 (2) | 0.0193 (2) | 0.00319 (17) | 0.00587 (17) | 0.00642 (17) |
P2 | 0.0151 (2) | 0.0268 (3) | 0.0203 (3) | 0.00901 (19) | 0.00713 (18) | 0.01124 (19) |
C1 | 0.0124 (7) | 0.0172 (8) | 0.0194 (8) | 0.0038 (6) | 0.0051 (6) | 0.0057 (6) |
C2 | 0.0297 (10) | 0.0204 (9) | 0.0257 (10) | 0.0056 (8) | 0.0055 (8) | 0.0005 (7) |
N1 | 0.0128 (7) | 0.0209 (7) | 0.0223 (8) | 0.0054 (6) | 0.0068 (6) | 0.0083 (6) |
O1 | 0.0173 (6) | 0.0195 (6) | 0.0253 (7) | 0.0040 (5) | 0.0017 (5) | 0.0094 (5) |
O2 | 0.0265 (7) | 0.0170 (7) | 0.0275 (7) | 0.0043 (5) | 0.0119 (6) | 0.0033 (5) |
O3 | 0.0132 (6) | 0.0226 (7) | 0.0334 (8) | 0.0043 (5) | 0.0073 (5) | 0.0138 (6) |
O4 | 0.0239 (7) | 0.0241 (7) | 0.0376 (8) | 0.0104 (6) | 0.0125 (6) | 0.0106 (6) |
O5 | 0.0297 (8) | 0.0425 (9) | 0.0283 (8) | 0.0162 (7) | 0.0175 (6) | 0.0184 (7) |
O6 | 0.0162 (7) | 0.0401 (8) | 0.0239 (7) | 0.0087 (6) | 0.0033 (5) | 0.0112 (6) |
O1W | 0.0390 (9) | 0.0496 (11) | 0.0344 (9) | 0.0119 (8) | 0.0101 (7) | 0.0127 (8) |
P1—O2 | 1.4952 (14) | C2—H2B | 0.9600 |
P1—O3 | 1.5081 (13) | C2—H2C | 0.9600 |
P1—O1 | 1.5686 (14) | N1—H1A | 0.8900 |
P1—C1 | 1.8417 (18) | N1—H1B | 0.8900 |
P2—O5 | 1.4928 (14) | N1—H1C | 0.8900 |
P2—O6 | 1.4947 (14) | O1—H1 | 0.8200 |
P2—O4 | 1.5765 (15) | O4—H4 | 0.8200 |
P2—C1 | 1.8497 (19) | O1W—H9 | 0.8869 |
C1—N1 | 1.505 (2) | O1W—H10 | 0.8852 |
C1—C2 | 1.537 (2) | O1W—H11 | 0.8841 |
C2—H2A | 0.9600 | O1W—H12 | 0.8888 |
O2—P1—O3 | 115.72 (8) | C1—C2—H2B | 109.5 |
O2—P1—O1 | 108.61 (8) | H2A—C2—H2B | 109.5 |
O3—P1—O1 | 111.06 (8) | C1—C2—H2C | 109.5 |
O2—P1—C1 | 109.30 (8) | H2A—C2—H2C | 109.5 |
O3—P1—C1 | 108.25 (8) | H2B—C2—H2C | 109.5 |
O1—P1—C1 | 103.15 (8) | C1—N1—H1A | 109.5 |
O5—P2—O6 | 118.42 (9) | C1—N1—H1B | 109.5 |
O5—P2—O4 | 106.13 (9) | H1A—N1—H1B | 109.5 |
O6—P2—O4 | 112.40 (8) | C1—N1—H1C | 109.5 |
O5—P2—C1 | 105.96 (8) | H1A—N1—H1C | 109.5 |
O6—P2—C1 | 108.21 (8) | H1B—N1—H1C | 109.5 |
O4—P2—C1 | 104.72 (8) | P1—O1—H1 | 109.5 |
N1—C1—C2 | 107.76 (14) | P2—O4—H4 | 109.5 |
N1—C1—P1 | 106.97 (11) | H9—O1W—H10 | 113.6 |
C2—C1—P1 | 110.19 (13) | H9—O1W—H11 | 112.2 |
N1—C1—P2 | 107.45 (12) | H10—O1W—H11 | 102.3 |
C2—C1—P2 | 109.40 (13) | H9—O1W—H12 | 120.3 |
P1—C1—P2 | 114.79 (9) | H10—O1W—H12 | 98.6 |
C1—C2—H2A | 109.5 | H11—O1W—H12 | 107.6 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.89 | 2.02 | 2.798 (2) | 145 |
N1—H1B···O2ii | 0.89 | 2.00 | 2.766 (2) | 144 |
N1—H1C···O6i | 0.89 | 1.93 | 2.771 (2) | 156 |
O1—H1···O3iii | 0.82 | 1.69 | 2.501 (2) | 168 |
O4—H4···O2iv | 0.82 | 1.84 | 2.635 (2) | 164 |
O1W—H9···O1v | 0.89 | 2.06 | 2.923 (2) | 164 |
O1W—H10···O5 | 0.89 | 1.88 | 2.737 (2) | 164 |
O1W—H11···O6i | 0.88 | 1.94 | 2.781 (2) | 159 |
O1W—H12···O5vi | 0.89 | 2.01 | 2.901 (3) | 180 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+1; (v) x, y, z−1; (vi) −x+2, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | H3O+·C2H8NO6P2− |
Mr | 223.06 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.6379 (5), 8.9712 (8), 9.2302 (8) |
α, β, γ (°) | 102.111 (1), 100.499 (1), 101.342 (1) |
V (Å3) | 435.22 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.50 |
Crystal size (mm) | 0.36 × 0.32 × 0.27 |
Data collection | |
Diffractometer | Bruker SMART 4K CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.839, 0.876 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2811, 1946, 1871 |
Rint | 0.009 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.095, 1.08 |
No. of reflections | 1946 |
No. of parameters | 113 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.58 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O3i | 0.89 | 2.02 | 2.798 (2) | 145 |
N1—H1B···O2ii | 0.89 | 2.00 | 2.766 (2) | 144 |
N1—H1C···O6i | 0.89 | 1.93 | 2.771 (2) | 156 |
O1—H1···O3iii | 0.82 | 1.69 | 2.501 (2) | 168 |
O4—H4···O2iv | 0.82 | 1.84 | 2.635 (2) | 164 |
O1W—H9···O1v | 0.89 | 2.06 | 2.923 (2) | 164 |
O1W—H10···O5 | 0.89 | 1.88 | 2.737 (2) | 164 |
O1W—H11···O6i | 0.88 | 1.94 | 2.781 (2) | 159 |
O1W—H12···O5vi | 0.89 | 2.01 | 2.901 (3) | 180 |
Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+1; (v) x, y, z−1; (vi) −x+2, −y+2, −z. |
Acknowledgements
This work was supported by the Education Department of Hunan Province (0806D094)
References
Bollinger, J. E. & Roundhill, D. M. (1993). Inorg. Chem. 32, 2821–2826. CrossRef CAS Web of Science Google Scholar
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent 4 239 695. Google Scholar
Clearfield, A. (2002). Curr. Opin. Solid Mater. Sci. 6, 495–506. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289–o292. Web of Science CSD CrossRef IUCr Journals Google Scholar
Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601. CAS Google Scholar
Li, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem. 61, 372–383. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem. 178, 1049–1053. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Phosphonic acids are interesting ligands. They can complex various metal ions and a series of organic-inorganic hydrid materials containing phosphonic acids have been prepared and characterized. Such materials have potential applications in catalysts, sensors, sorbents, magnetic and luminescent materials (Finn et al., 2003). In addition, introduction of some functional groups to phosphonic acids, such as crown ether, –COOH, –OH, –NR2 or mixed group will modify their complexing ability (Clearfield, 2002). 1-Aminoethylidene-1,1-diphosphonic acid (AEDPH4) exists as a zwitterion and is inclined to transfer one proton to the amino group (Bollinger & Roundhill, 1993; Fernández et al., 2003; Li et al., 2008 ). Its deprotonation would result in predictable hydrogen aggregates from stronger P—O—H···O—P to weaker C—H···O hydrogen bonds. However, its crystal structure is still unknown (Yin et al., 2005). Herein, we report the structure of the title compound, (I).
The asymetric unit of (I) is built up from one deprotonated AEDPH4 anion and a disordered H3O+ cation which are linked through OW—H···O hydrogen bonds (Fig. 1, Table 1). Two of the four protons of phosphonates are used in the protonation of one for the amino group, the other for H3O+ cation. The deprotonated AEDPH3- anions form two-dimensional (2D) H-bonded layer along the bc-plane. The strongest H-bond is O1—H1···O3iii (with O1···O3 distance 2.501 (2)Å), which links the AEDPH3- anions into dimers which form an infinite chain along the b axis by hydrogen bond O4—H4···O2iv (O4···O2 distance 2.635 (2) Å). Furthermore, three N-H···O H-bonds connect these chains to obtain a 2D layer. The H3O+ anions bond to the adjacent layers with five Ow—H···O bonds and stabilize the structure. The occurence of different hydrogen bond interactions, N—H···O, O—H···O and OW—H···O results in the formation of an intricated three dimensional network (Fig. 2, Table 1).