organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hydroxonium 1-ammonio­ethyl­­idene-1,1-bis­­phospho­nate

aYueyang Vocational Technology College, Yueyang 414000, Hunan, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410017, Hunan, People's Republic of China
*Correspondence e-mail: wuying6612@126.com

(Received 7 August 2008; accepted 15 September 2008; online 20 September 2008)

The title compound, H3O+·C2H8NO6P2, contains a disordered H3O+ cation and an NH3C(CH3)(PO3H)2 anion. The three H atoms of the H3O+ cation are statistically distributed over four positions with occupancies of 0.75, resulting in a pseudo tetra­hedron. Multiple N—H⋯O and O—H⋯O hydrogen bonds generate an intricate three-dimensional network.

Related literature

For related literature, see: Bollinger & Roundhill (1993[Bollinger, J. E. & Roundhill, D. M. (1993). Inorg. Chem. 32, 2821-2826.]); Chai et al. (1980[Chai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent 4 239 695.]); Clearfield (2002[Clearfield, A. (2002). Curr. Opin. Solid Mater. Sci. 6, 495-506.]); Fernández et al. (2003[Fernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289-o292.]); Li et al. (2008[Li, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem. 61, 372-383.]); Finn et al. (2003[Finn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421-601.]); Yin et al. (2005[Yin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem. 178, 1049-1053.]).

[Scheme 1]

Experimental

Crystal data
  • H3O+·C2H8NO6P2

  • Mr = 223.06

  • Triclinic, [P \overline 1]

  • a = 5.6379 (5) Å

  • b = 8.9712 (8) Å

  • c = 9.2302 (8) Å

  • α = 102.111 (1)°

  • β = 100.499 (1)°

  • γ = 101.342 (1)°

  • V = 435.22 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 293 (2) K

  • 0.36 × 0.32 × 0.27 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.839, Tmax = 0.876

  • 2811 measured reflections

  • 1946 independent reflections

  • 1871 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.08

  • 1946 reflections

  • 113 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 2.02 2.798 (2) 145
N1—H1B⋯O2ii 0.89 2.00 2.766 (2) 144
N1—H1C⋯O6i 0.89 1.93 2.771 (2) 156
O1—H1⋯O3iii 0.82 1.69 2.501 (2) 168
O4—H4⋯O2iv 0.82 1.84 2.635 (2) 164
O1W—H9⋯O1v 0.89 2.06 2.923 (2) 164
O1W—H10⋯O5 0.89 1.88 2.737 (2) 164
O1W—H11⋯O6i 0.88 1.94 2.781 (2) 159
O1W—H12⋯O5vi 0.89 2.01 2.901 (3) 180
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+2, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1; (v) x, y, z-1; (vi) -x+2, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phosphonic acids are interesting ligands. They can complex various metal ions and a series of organic-inorganic hydrid materials containing phosphonic acids have been prepared and characterized. Such materials have potential applications in catalysts, sensors, sorbents, magnetic and luminescent materials (Finn et al., 2003). In addition, introduction of some functional groups to phosphonic acids, such as crown ether, –COOH, –OH, –NR2 or mixed group will modify their complexing ability (Clearfield, 2002). 1-Aminoethylidene-1,1-diphosphonic acid (AEDPH4) exists as a zwitterion and is inclined to transfer one proton to the amino group (Bollinger & Roundhill, 1993; Fernández et al., 2003; Li et al., 2008 ). Its deprotonation would result in predictable hydrogen aggregates from stronger P—O—H···O—P to weaker C—H···O hydrogen bonds. However, its crystal structure is still unknown (Yin et al., 2005). Herein, we report the structure of the title compound, (I).

The asymetric unit of (I) is built up from one deprotonated AEDPH4 anion and a disordered H3O+ cation which are linked through OW—H···O hydrogen bonds (Fig. 1, Table 1). Two of the four protons of phosphonates are used in the protonation of one for the amino group, the other for H3O+ cation. The deprotonated AEDPH3- anions form two-dimensional (2D) H-bonded layer along the bc-plane. The strongest H-bond is O1—H1···O3iii (with O1···O3 distance 2.501 (2)Å), which links the AEDPH3- anions into dimers which form an infinite chain along the b axis by hydrogen bond O4—H4···O2iv (O4···O2 distance 2.635 (2) Å). Furthermore, three N-H···O H-bonds connect these chains to obtain a 2D layer. The H3O+ anions bond to the adjacent layers with five Ow—H···O bonds and stabilize the structure. The occurence of different hydrogen bond interactions, N—H···O, O—H···O and OW—H···O results in the formation of an intricated three dimensional network (Fig. 2, Table 1).

Related literature top

For related literature, see: Bollinger & Roundhill (1993); Chai et al. (1980); Clearfield (2002); Fernández et al. (2003); Li et al. (2008); Finn et al. (2003); Yin et al. (2005). .

Experimental top

The title compound was synthesized according to the US Patent 4239695 (Chai et al., 1980). It was crystallized unexpectedly when 4,4'-bipyridine was adding into the AEDPH4 H2O solution to synthesize the complex. However, the 4,4'-bipyridine was not present in the final product.

Refinement top

All H atoms attached to C atoms, N atom and O(hydroxyl) atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (C), N—H = 0.86 Å and O—H= 0.82Å with Uiso(H) = 1.5Ueq(C,N or O). H atoms of the H3O+ cation were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H = 0.86 (1)Å) with Uiso(H) = 1.5Ueq(O); in the final stages of refinement their coordinates were fixed. The three hydrogen atoms of the H3O+ cation are statistically distributed over four positions with occupation factor of 0.75, resulting in a pseudo tetrahedron.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view of compound ( I ), showing the formation of the three dimensional network built from hydrogen bonds. For clarity, H atoms not involved in hydrogen bonding have been omitted. [symmetry codes: (i) 1+x, y, z; (ii) 2-x , 2-y, z ; (iii) x, y , z-1; (iv) 1-x, 1-y, 1-z].
Hydroxonium 1-ammonioethylidene-1,1-bisphosphonate top
Crystal data top
H3O+·C2H8NO6P2Z = 2
Mr = 223.06F(000) = 232
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6379 (5) ÅCell parameters from 2523 reflections
b = 8.9712 (8) Åθ = 2.4–29.6°
c = 9.2302 (8) ŵ = 0.50 mm1
α = 102.111 (1)°T = 293 K
β = 100.499 (1)°Plate, colorless
γ = 101.342 (1)°0.36 × 0.32 × 0.27 mm
V = 435.22 (7) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.839, Tmax = 0.876k = 911
2811 measured reflectionsl = 118
1946 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.5124P]
where P = (Fo2 + 2Fc2)/3
1946 reflections(Δ/σ)max < 0.001
113 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
H3O+·C2H8NO6P2γ = 101.342 (1)°
Mr = 223.06V = 435.22 (7) Å3
Triclinic, P1Z = 2
a = 5.6379 (5) ÅMo Kα radiation
b = 8.9712 (8) ŵ = 0.50 mm1
c = 9.2302 (8) ÅT = 293 K
α = 102.111 (1)°0.36 × 0.32 × 0.27 mm
β = 100.499 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
1946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1871 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.876Rint = 0.009
2811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
1946 reflectionsΔρmin = 0.58 e Å3
113 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.64618 (8)0.73089 (5)0.49332 (5)0.01519 (14)
P20.58222 (8)0.83546 (6)0.19085 (5)0.01897 (14)
C10.7352 (3)0.7236 (2)0.3101 (2)0.0159 (3)
C20.6859 (4)0.5520 (2)0.2183 (2)0.0263 (4)
H2A0.74480.54930.12680.039*
H2B0.51060.50460.19240.039*
H2C0.77170.49500.27840.039*
N11.0110 (3)0.79403 (19)0.34632 (18)0.0177 (3)
H1A1.08840.75000.41260.027*
H1B1.04210.89710.38660.027*
H1C1.06570.77660.26120.027*
O10.8136 (2)0.63586 (16)0.57120 (16)0.0207 (3)
H10.73710.54350.55130.031*
O20.7185 (3)0.89740 (16)0.58704 (16)0.0234 (3)
O30.3743 (2)0.64928 (16)0.46080 (17)0.0218 (3)
O40.6364 (3)1.00594 (17)0.29828 (18)0.0267 (3)
H40.51231.01750.32950.040*
O50.7259 (3)0.8501 (2)0.07158 (17)0.0295 (3)
O60.3106 (3)0.75734 (19)0.14090 (16)0.0262 (3)
O1W1.0469 (3)0.8192 (2)0.1160 (2)0.0403 (4)
H91.00020.75490.20880.061*0.75
H100.92200.82860.07180.061*0.75
H111.14340.78370.05150.061*0.75
H121.11570.92060.10250.061*0.75
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0131 (2)0.0149 (2)0.0193 (2)0.00319 (17)0.00587 (17)0.00642 (17)
P20.0151 (2)0.0268 (3)0.0203 (3)0.00901 (19)0.00713 (18)0.01124 (19)
C10.0124 (7)0.0172 (8)0.0194 (8)0.0038 (6)0.0051 (6)0.0057 (6)
C20.0297 (10)0.0204 (9)0.0257 (10)0.0056 (8)0.0055 (8)0.0005 (7)
N10.0128 (7)0.0209 (7)0.0223 (8)0.0054 (6)0.0068 (6)0.0083 (6)
O10.0173 (6)0.0195 (6)0.0253 (7)0.0040 (5)0.0017 (5)0.0094 (5)
O20.0265 (7)0.0170 (7)0.0275 (7)0.0043 (5)0.0119 (6)0.0033 (5)
O30.0132 (6)0.0226 (7)0.0334 (8)0.0043 (5)0.0073 (5)0.0138 (6)
O40.0239 (7)0.0241 (7)0.0376 (8)0.0104 (6)0.0125 (6)0.0106 (6)
O50.0297 (8)0.0425 (9)0.0283 (8)0.0162 (7)0.0175 (6)0.0184 (7)
O60.0162 (7)0.0401 (8)0.0239 (7)0.0087 (6)0.0033 (5)0.0112 (6)
O1W0.0390 (9)0.0496 (11)0.0344 (9)0.0119 (8)0.0101 (7)0.0127 (8)
Geometric parameters (Å, º) top
P1—O21.4952 (14)C2—H2B0.9600
P1—O31.5081 (13)C2—H2C0.9600
P1—O11.5686 (14)N1—H1A0.8900
P1—C11.8417 (18)N1—H1B0.8900
P2—O51.4928 (14)N1—H1C0.8900
P2—O61.4947 (14)O1—H10.8200
P2—O41.5765 (15)O4—H40.8200
P2—C11.8497 (19)O1W—H90.8869
C1—N11.505 (2)O1W—H100.8852
C1—C21.537 (2)O1W—H110.8841
C2—H2A0.9600O1W—H120.8888
O2—P1—O3115.72 (8)C1—C2—H2B109.5
O2—P1—O1108.61 (8)H2A—C2—H2B109.5
O3—P1—O1111.06 (8)C1—C2—H2C109.5
O2—P1—C1109.30 (8)H2A—C2—H2C109.5
O3—P1—C1108.25 (8)H2B—C2—H2C109.5
O1—P1—C1103.15 (8)C1—N1—H1A109.5
O5—P2—O6118.42 (9)C1—N1—H1B109.5
O5—P2—O4106.13 (9)H1A—N1—H1B109.5
O6—P2—O4112.40 (8)C1—N1—H1C109.5
O5—P2—C1105.96 (8)H1A—N1—H1C109.5
O6—P2—C1108.21 (8)H1B—N1—H1C109.5
O4—P2—C1104.72 (8)P1—O1—H1109.5
N1—C1—C2107.76 (14)P2—O4—H4109.5
N1—C1—P1106.97 (11)H9—O1W—H10113.6
C2—C1—P1110.19 (13)H9—O1W—H11112.2
N1—C1—P2107.45 (12)H10—O1W—H11102.3
C2—C1—P2109.40 (13)H9—O1W—H12120.3
P1—C1—P2114.79 (9)H10—O1W—H1298.6
C1—C2—H2A109.5H11—O1W—H12107.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.022.798 (2)145
N1—H1B···O2ii0.892.002.766 (2)144
N1—H1C···O6i0.891.932.771 (2)156
O1—H1···O3iii0.821.692.501 (2)168
O4—H4···O2iv0.821.842.635 (2)164
O1W—H9···O1v0.892.062.923 (2)164
O1W—H10···O50.891.882.737 (2)164
O1W—H11···O6i0.881.942.781 (2)159
O1W—H12···O5vi0.892.012.901 (3)180
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y, z1; (vi) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaH3O+·C2H8NO6P2
Mr223.06
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.6379 (5), 8.9712 (8), 9.2302 (8)
α, β, γ (°)102.111 (1), 100.499 (1), 101.342 (1)
V3)435.22 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.36 × 0.32 × 0.27
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.839, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
2811, 1946, 1871
Rint0.009
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.08
No. of reflections1946
No. of parameters113
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.58

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.022.798 (2)145
N1—H1B···O2ii0.892.002.766 (2)144
N1—H1C···O6i0.891.932.771 (2)156
O1—H1···O3iii0.821.692.501 (2)168
O4—H4···O2iv0.821.842.635 (2)164
O1W—H9···O1v0.892.062.923 (2)164
O1W—H10···O50.891.882.737 (2)164
O1W—H11···O6i0.881.942.781 (2)159
O1W—H12···O5vi0.892.012.901 (3)180
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+1; (v) x, y, z1; (vi) x+2, y+2, z.
 

Acknowledgements

This work was supported by the Education Department of Hunan Province (0806D094)

References

First citationBollinger, J. E. & Roundhill, D. M. (1993). Inorg. Chem. 32, 2821–2826.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChai, B. J., Covina, W. & Muggee, F. D. (1980). US Patent 4 239 695.  Google Scholar
First citationClearfield, A. (2002). Curr. Opin. Solid Mater. Sci. 6, 495–506.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernández, D., Vega, D. & Ellena, J. A. (2003). Acta Cryst. C59, o289–o292.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFinn, R. C., Zubieta, J. & Haushalter, R. C. (2003). Prog. Inorg. Chem. 51, 421–601.  CAS Google Scholar
First citationLi, M., Xiang, J. F., Chen, S. P., Wu, S. M., Yuan, L. J., Li, H., He, H. J. & Sun, J. T. (2008). J. Coord. Chem. 61, 372–383.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, P., Wang, X. C., Gao, S. & Zheng, L. M. (2005). J. Solid State Chem. 178, 1049–1053.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds