organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′,2′′-[Nitrilo­tris­(methyl­ene-p-phenyl­ene)]tribenzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 29 August 2008; accepted 16 September 2008; online 20 September 2008)

In the title compound, C42H30N4, the conformations of the three wings of the mol­ecule are not similar to each other as the torsion angles between the planes of the benzene rings are significantly different. In addition to van der Waals inter­actions, the crystal structure is stabilized only by intra­molecular C—H⋯N hydrogen bonds.

Related literature

For related structures, see: Fox et al. (1996[Fox, S., Nanthakumar, A., Wikström, M., Karlin, K. D. & Blackburn, N. J. (1996). J. Am. Chem. Soc. 118, 24-34.]); Menage et al. (1992[Menage, S., Zang, Y., Hendrich, M. P. & Que, L. Jr (1992). J. Am. Chem. Soc. 114, 7786-7792.]); Murthy & Karlin (1993[Murthy, N. N. & Karlin, K. D. (1993). J. Am. Chem. Soc. 115, 1236-1238.]); Schrock (1997[Schrock, R. R. (1997). Acc. Chem. Res. 30, 9-16.]); Foces-Foces et al. (1999[Foces-Foces, C., Llamas-Saiz, A. L., Alajarín, M., López-Lázaro, A. & Molina, P. (1999). Acta Cryst. C55, 373-377.]); Chen et al. (2005[Chen, Q., Buss, C. E., Young, V. G. Jr & Fox, S. (2005). J. Chem. Crystallogr. 35, 177-181.]); Iwasaki & Iwasaki (1972[Iwasaki, F. & Iwasaki, H. (1972). Acta Cryst. B28, 3370-3376.]).

[Scheme 1]

Experimental

Crystal data
  • C42H30N4

  • Mr = 590.70

  • Monoclinic, P 21 /c

  • a = 21.257 (4) Å

  • b = 15.085 (3) Å

  • c = 10.294 (2) Å

  • β = 94.73 (3)°

  • V = 3289.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.27 × 0.18 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.985, Tmax = 0.989

  • 32746 measured reflections

  • 7524 independent reflections

  • 4007 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.187

  • S = 1.02

  • 7524 reflections

  • 415 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯N3i 0.93 2.55 3.446 (5) 162
C24—H24A⋯N2ii 0.93 2.59 3.350 (4) 139
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tripodal ligands have shown tremendous scope in the synthesis of transition-metal complexes. Perhaps the most extensively studied examples are those comprising tris-(2-pyridylmethyl)amine, which has been widely exploited in complexes (Fox et al. 1996; Menage et al. 1992; Murthy & Karlin 1993), tris(2-aminobenzyl)amine (Foces-Foces et al. 1999), tris(2-chlorobenzl)amine and tris(2-bromobenzyl)amine (Chen et al. 2005) and tribenzylamine (Iwasaki & Iwasaki 1972). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry (Schrock 1997). We report here the crystal structure of the title compound tris[4-(2-cyano-phenyl)benzyl]amine, (I).

In the title compound (Fig.1), the conformations of the three wings of the molecule do not appear to be similar as the torsion angles between the planes of benzene rings are significantly different from each other. The pairs of benzene rings in the three wings form dihedral angle of 47.70 (10)°, 54.36 (7)° and 87.89 (9)°, respectively. In addition to van der Waals interactions, the crystal structure is stabilized only by intramolecular C—H···N hydrogen bonds: C4—H4A···N3 and C24—H24A···N2 (Table 1).

Related literature top

For related structures, see: Fox et al. (1996); Menage et al. (1992); Murthy & Karlin (1993); Schrock (1997); Foces-Foces et al. (1999); Chen et al. (2005); Iwasaki & Iwasaki (1972).

Experimental top

The title compount was obtained from the combination of 2-cyano-4'-(bromomethyl)biphenyl (8.13 g, 30.0 mmol) with 29% aqueous ammonia (2.64 g, 45.0 mmol) in ethanol (50 ml) at room temperature. A white solid precipitated during stirring over 24 h. The precipitate was collected by filtration, washed with ethanol, and allowed to air-dry to yield 2.67 g (43%) of colorless microcrystals. Recrystallization was effected from hot acetonitrile to yield colorless blocks suitable for X-ray analysis.

Refinement top

All H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å(aromatic), 0.97 Å(methylene), and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
2,2',2''-[Nitrilotris(methylene-p-phenylene)]tribenzonitrile top
Crystal data top
C42H30N4F(000) = 1240
Mr = 590.70Dx = 1.193 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7512 reflections
a = 21.257 (4) Åθ = 3.2–27.5°
b = 15.085 (3) ŵ = 0.07 mm1
c = 10.294 (2) ÅT = 298 K
β = 94.73 (3)°Block, colorless
V = 3289.5 (11) Å30.27 × 0.18 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
7524 independent reflections
Radiation source: fine-focus sealed tube4007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 2727
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.985, Tmax = 0.989l = 1313
32746 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0804P)2 + 0.198P]
where P = (Fo2 + 2Fc2)/3
7524 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.17 e Å3
6 restraintsΔρmin = 0.24 e Å3
Crystal data top
C42H30N4V = 3289.5 (11) Å3
Mr = 590.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.257 (4) ŵ = 0.07 mm1
b = 15.085 (3) ÅT = 298 K
c = 10.294 (2) Å0.27 × 0.18 × 0.15 mm
β = 94.73 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
7524 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
4007 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.989Rint = 0.081
32746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0656 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
7524 reflectionsΔρmin = 0.24 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.10835 (14)0.41593 (18)0.1399 (3)0.0704 (7)
C20.04158 (12)0.40234 (15)0.1365 (3)0.0635 (7)
C30.00882 (16)0.39289 (18)0.0152 (3)0.0819 (9)
H3A0.03020.39860.05960.098*
C40.05428 (19)0.3753 (2)0.0036 (4)0.0946 (11)
H4A0.07590.36920.07810.114*
C50.08530 (15)0.3669 (2)0.1143 (4)0.0947 (11)
H5A0.12830.35460.10680.114*
C60.05411 (12)0.37614 (18)0.2376 (3)0.0818 (9)
H6A0.07630.36950.31130.098*
C70.01046 (11)0.39535 (14)0.2513 (3)0.0604 (7)
C80.04395 (10)0.40436 (15)0.3830 (3)0.0576 (6)
C90.08923 (11)0.46989 (15)0.4118 (3)0.0613 (7)
H9A0.09680.51200.34890.074*
C100.12276 (11)0.47328 (16)0.5310 (3)0.0623 (7)
H10A0.15290.51750.54700.075*
C110.11309 (11)0.41278 (15)0.6284 (2)0.0559 (6)
C120.06633 (12)0.35033 (17)0.6025 (3)0.0706 (7)
H12A0.05720.31050.66730.085*
C130.03285 (12)0.34602 (17)0.4821 (3)0.0720 (8)
H13A0.00200.30270.46710.086*
C140.15284 (11)0.41551 (17)0.7558 (2)0.0621 (7)
H14A0.15250.47520.79090.074*
H14B0.13480.37620.81740.074*
C150.25982 (12)0.41470 (14)0.8554 (2)0.0545 (6)
H15A0.30000.38450.85330.065*
H15B0.24090.39580.93340.065*
C160.27119 (10)0.51310 (14)0.8625 (2)0.0499 (6)
C170.29125 (16)0.55906 (17)0.7584 (2)0.0854 (9)
H17A0.29690.52880.68150.103*
C180.30323 (16)0.64887 (17)0.7647 (2)0.0843 (9)
H18A0.31660.67810.69230.101*
C190.29559 (10)0.69558 (14)0.8768 (2)0.0471 (5)
C200.27620 (13)0.64986 (16)0.9803 (2)0.0674 (7)
H20A0.27100.68001.05750.081*
C210.26400 (12)0.56002 (16)0.9737 (2)0.0641 (7)
H21A0.25070.53101.04630.077*
C220.31100 (10)0.79189 (13)0.8858 (2)0.0458 (5)
C230.37045 (12)0.82099 (15)0.9309 (2)0.0615 (7)
H23A0.40120.77940.95710.074*
C240.38549 (13)0.90998 (16)0.9382 (2)0.0641 (7)
H24A0.42600.92750.96820.077*
C250.34097 (13)0.97222 (16)0.9014 (2)0.0601 (6)
H25A0.35111.03220.90650.072*
C260.28152 (13)0.94626 (15)0.8570 (3)0.0657 (7)
H26A0.25120.98860.83180.079*
C270.26623 (11)0.85714 (15)0.8493 (2)0.0556 (6)
C280.20387 (15)0.83188 (18)0.8029 (3)0.0873 (10)
C290.22125 (11)0.29298 (14)0.7186 (2)0.0548 (6)
H29A0.18670.27610.65610.066*
H29B0.21540.26270.79980.066*
C300.28224 (10)0.26225 (13)0.6692 (2)0.0456 (5)
C310.31594 (11)0.31379 (14)0.5885 (2)0.0570 (6)
H31A0.30170.37070.56720.068*
C320.37013 (11)0.28319 (15)0.5387 (2)0.0572 (6)
H32A0.39200.31970.48520.069*
C330.39231 (10)0.19792 (14)0.5679 (2)0.0455 (5)
C340.35817 (10)0.14595 (13)0.6485 (2)0.0472 (5)
H34A0.37170.08860.66890.057*
C350.30462 (10)0.17814 (13)0.6985 (2)0.0473 (5)
H35A0.28300.14230.75340.057*
C360.44926 (10)0.16442 (13)0.5103 (2)0.0480 (5)
C370.45515 (12)0.17505 (16)0.3787 (3)0.0653 (7)
H37A0.42300.20330.32760.078*
C380.50730 (14)0.14503 (19)0.3209 (3)0.0791 (8)
H38A0.50990.15310.23190.095*
C390.55515 (13)0.10347 (17)0.3934 (3)0.0745 (8)
H39A0.59030.08360.35390.089*
C400.55158 (11)0.09101 (15)0.5233 (3)0.0654 (7)
H40A0.58420.06250.57260.078*
C410.49847 (11)0.12139 (14)0.5828 (2)0.0568 (5)
C420.49593 (11)0.10864 (16)0.7198 (3)0.0615 (5)
N10.21846 (8)0.38865 (11)0.74051 (18)0.0498 (5)
N20.49418 (13)0.09735 (19)0.8305 (3)0.1000 (9)
N30.15370 (15)0.8150 (2)0.7631 (4)0.1453 (15)
N40.16140 (12)0.42632 (19)0.1407 (3)0.0936 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0622 (18)0.0750 (18)0.0733 (19)0.0106 (14)0.0013 (15)0.0096 (14)
C20.0589 (16)0.0502 (14)0.0784 (19)0.0069 (11)0.0127 (14)0.0018 (13)
C30.087 (2)0.0690 (18)0.085 (2)0.0123 (15)0.0181 (18)0.0046 (15)
C40.099 (3)0.074 (2)0.103 (3)0.0135 (18)0.039 (2)0.0101 (19)
C50.0617 (19)0.0684 (19)0.147 (3)0.0030 (14)0.036 (2)0.016 (2)
C60.0502 (16)0.0723 (18)0.120 (3)0.0008 (13)0.0081 (17)0.0153 (17)
C70.0466 (14)0.0420 (13)0.090 (2)0.0037 (10)0.0076 (14)0.0032 (13)
C80.0431 (13)0.0496 (14)0.0794 (18)0.0033 (10)0.0015 (12)0.0006 (13)
C90.0587 (15)0.0525 (14)0.0719 (18)0.0067 (11)0.0006 (13)0.0012 (12)
C100.0579 (15)0.0548 (15)0.0735 (17)0.0081 (11)0.0006 (13)0.0027 (13)
C110.0484 (14)0.0508 (13)0.0690 (17)0.0086 (11)0.0072 (12)0.0049 (12)
C120.0631 (17)0.0680 (17)0.081 (2)0.0004 (13)0.0092 (15)0.0131 (14)
C130.0562 (16)0.0610 (16)0.098 (2)0.0108 (12)0.0009 (15)0.0044 (15)
C140.0620 (15)0.0597 (15)0.0654 (17)0.0130 (12)0.0105 (13)0.0061 (12)
C150.0695 (15)0.0446 (13)0.0489 (14)0.0077 (11)0.0013 (12)0.0008 (10)
C160.0570 (14)0.0471 (13)0.0448 (13)0.0072 (10)0.0003 (11)0.0001 (11)
C170.164 (3)0.0500 (15)0.0443 (15)0.0021 (17)0.0204 (17)0.0055 (12)
C180.160 (3)0.0517 (15)0.0433 (15)0.0013 (17)0.0203 (17)0.0055 (12)
C190.0521 (13)0.0433 (12)0.0455 (13)0.0053 (10)0.0019 (10)0.0014 (10)
C200.095 (2)0.0570 (15)0.0540 (15)0.0191 (14)0.0294 (14)0.0129 (12)
C210.0887 (19)0.0570 (15)0.0497 (15)0.0178 (13)0.0238 (13)0.0036 (12)
C220.0552 (14)0.0427 (12)0.0398 (12)0.0043 (10)0.0065 (10)0.0018 (10)
C230.0617 (16)0.0504 (14)0.0714 (17)0.0070 (11)0.0006 (13)0.0010 (12)
C240.0655 (16)0.0589 (15)0.0668 (17)0.0075 (12)0.0024 (13)0.0009 (13)
C250.0798 (18)0.0471 (13)0.0539 (15)0.0019 (13)0.0085 (13)0.0008 (11)
C260.0755 (18)0.0463 (14)0.0756 (18)0.0130 (12)0.0075 (15)0.0111 (12)
C270.0554 (14)0.0511 (14)0.0593 (15)0.0034 (11)0.0005 (12)0.0082 (11)
C280.072 (2)0.0641 (17)0.122 (3)0.0005 (15)0.0199 (19)0.0240 (17)
C290.0571 (14)0.0423 (12)0.0657 (16)0.0014 (10)0.0088 (12)0.0032 (11)
C300.0530 (13)0.0381 (11)0.0450 (12)0.0003 (9)0.0009 (10)0.0029 (10)
C310.0697 (16)0.0384 (12)0.0647 (16)0.0147 (11)0.0157 (13)0.0077 (11)
C320.0686 (16)0.0444 (13)0.0602 (15)0.0089 (11)0.0152 (12)0.0098 (11)
C330.0513 (13)0.0408 (12)0.0432 (12)0.0048 (9)0.0032 (10)0.0014 (10)
C340.0523 (13)0.0342 (11)0.0538 (14)0.0033 (9)0.0034 (11)0.0021 (10)
C350.0535 (13)0.0385 (11)0.0496 (13)0.0032 (10)0.0018 (10)0.0026 (10)
C360.0501 (13)0.0379 (11)0.0556 (14)0.0018 (9)0.0020 (11)0.0032 (10)
C370.0677 (16)0.0667 (16)0.0630 (17)0.0152 (13)0.0139 (13)0.0042 (13)
C380.082 (2)0.0767 (19)0.082 (2)0.0141 (16)0.0280 (17)0.0019 (15)
C390.0667 (18)0.0627 (17)0.097 (2)0.0042 (13)0.0250 (17)0.0140 (16)
C400.0468 (14)0.0489 (14)0.099 (2)0.0018 (10)0.0033 (14)0.0088 (14)
C410.0529 (11)0.0468 (10)0.0684 (12)0.0022 (9)0.0103 (11)0.0051 (10)
C420.0559 (11)0.0533 (11)0.0723 (13)0.0054 (9)0.0128 (11)0.0034 (11)
N10.0548 (11)0.0409 (10)0.0530 (11)0.0087 (8)0.0009 (9)0.0067 (8)
N20.093 (2)0.125 (2)0.0771 (19)0.0226 (15)0.0209 (15)0.0079 (16)
N30.086 (2)0.113 (2)0.225 (4)0.0195 (17)0.059 (2)0.054 (2)
N40.0671 (17)0.121 (2)0.094 (2)0.0082 (15)0.0118 (15)0.0107 (16)
Geometric parameters (Å, º) top
C1—N41.138 (3)C21—H21A0.9300
C1—C21.432 (4)C22—C231.381 (3)
C2—C31.386 (4)C22—C271.399 (3)
C2—C71.406 (4)C23—C241.381 (3)
C3—C41.363 (4)C23—H23A0.9300
C3—H3A0.9300C24—C251.364 (3)
C4—C51.368 (5)C24—H24A0.9300
C4—H4A0.9300C25—C261.365 (3)
C5—C61.390 (4)C25—H25A0.9300
C5—H5A0.9300C26—C271.384 (3)
C6—C71.399 (3)C26—H26A0.9300
C6—H6A0.9300C27—C281.424 (4)
C7—C81.485 (4)C28—N31.139 (4)
C8—C131.382 (4)C29—N11.463 (3)
C8—C91.394 (3)C29—C301.504 (3)
C9—C101.369 (3)C29—H29A0.9700
C9—H9A0.9300C29—H29B0.9700
C10—C111.383 (3)C30—C351.380 (3)
C10—H10A0.9300C30—C311.380 (3)
C11—C121.379 (3)C31—C321.379 (3)
C11—C141.501 (3)C31—H31A0.9300
C12—C131.379 (4)C32—C331.394 (3)
C12—H12A0.9300C32—H32A0.9300
C13—H13A0.9300C33—C341.388 (3)
C14—N11.473 (3)C33—C361.480 (3)
C14—H14A0.9700C34—C351.376 (3)
C14—H14B0.9700C34—H34A0.9300
C15—N11.468 (3)C35—H35A0.9300
C15—C161.505 (3)C36—C371.380 (3)
C15—H15A0.9700C36—C411.394 (3)
C15—H15B0.9700C37—C381.377 (3)
C16—C211.365 (3)C37—H37A0.9300
C16—C171.374 (3)C38—C391.364 (4)
C17—C181.379 (3)C38—H38A0.9300
C17—H17A0.9300C39—C401.358 (4)
C18—C191.373 (3)C39—H39A0.9300
C18—H18A0.9300C40—C411.405 (3)
C19—C201.361 (3)C40—H40A0.9300
C19—C221.490 (3)C41—C421.429 (4)
C20—C211.380 (3)C42—N21.156 (3)
C20—H20A0.9300
N4—C1—C2179.0 (3)C20—C21—H21A119.5
C3—C2—C7120.9 (3)C23—C22—C27116.7 (2)
C3—C2—C1117.4 (3)C23—C22—C19121.39 (19)
C7—C2—C1121.7 (2)C27—C22—C19121.9 (2)
C4—C3—C2121.1 (3)C24—C23—C22121.9 (2)
C4—C3—H3A119.5C24—C23—H23A119.0
C2—C3—H3A119.5C22—C23—H23A119.0
C3—C4—C5119.0 (3)C25—C24—C23120.1 (2)
C3—C4—H4A120.5C25—C24—H24A119.9
C5—C4—H4A120.5C23—C24—H24A119.9
C4—C5—C6121.7 (3)C24—C25—C26119.8 (2)
C4—C5—H5A119.2C24—C25—H25A120.1
C6—C5—H5A119.2C26—C25—H25A120.1
C5—C6—C7120.2 (3)C25—C26—C27120.3 (2)
C5—C6—H6A119.9C25—C26—H26A119.9
C7—C6—H6A119.9C27—C26—H26A119.9
C6—C7—C2117.2 (3)C26—C27—C22121.1 (2)
C6—C7—C8120.3 (3)C26—C27—C28119.1 (2)
C2—C7—C8122.5 (2)C22—C27—C28119.7 (2)
C13—C8—C9116.9 (2)N3—C28—C27177.1 (3)
C13—C8—C7121.1 (2)N1—C29—C30113.78 (18)
C9—C8—C7121.9 (2)N1—C29—H29A108.8
C10—C9—C8121.1 (2)C30—C29—H29A108.8
C10—C9—H9A119.5N1—C29—H29B108.8
C8—C9—H9A119.5C30—C29—H29B108.8
C9—C10—C11121.8 (2)H29A—C29—H29B107.7
C9—C10—H10A119.1C35—C30—C31117.6 (2)
C11—C10—H10A119.1C35—C30—C29120.0 (2)
C12—C11—C10117.3 (2)C31—C30—C29122.31 (19)
C12—C11—C14122.1 (2)C32—C31—C30121.8 (2)
C10—C11—C14120.5 (2)C32—C31—H31A119.1
C13—C12—C11121.0 (3)C30—C31—H31A119.1
C13—C12—H12A119.5C31—C32—C33120.4 (2)
C11—C12—H12A119.5C31—C32—H32A119.8
C12—C13—C8121.8 (2)C33—C32—H32A119.8
C12—C13—H13A119.1C34—C33—C32117.8 (2)
C8—C13—H13A119.1C34—C33—C36122.11 (19)
N1—C14—C11111.64 (19)C32—C33—C36120.1 (2)
N1—C14—H14A109.3C35—C34—C33120.90 (19)
C11—C14—H14A109.3C35—C34—H34A119.6
N1—C14—H14B109.3C33—C34—H34A119.6
C11—C14—H14B109.3C34—C35—C30121.6 (2)
H14A—C14—H14B108.0C34—C35—H35A119.2
N1—C15—C16112.73 (17)C30—C35—H35A119.2
N1—C15—H15A109.0C37—C36—C41117.1 (2)
C16—C15—H15A109.0C37—C36—C33119.8 (2)
N1—C15—H15B109.0C41—C36—C33123.1 (2)
C16—C15—H15B109.0C38—C37—C36121.8 (3)
H15A—C15—H15B107.8C38—C37—H37A119.1
C21—C16—C17117.1 (2)C36—C37—H37A119.1
C21—C16—C15121.6 (2)C39—C38—C37120.4 (3)
C17—C16—C15121.3 (2)C39—C38—H38A119.8
C16—C17—C18121.8 (2)C37—C38—H38A119.8
C16—C17—H17A119.1C40—C39—C38120.2 (3)
C18—C17—H17A119.1C40—C39—H39A119.9
C19—C18—C17120.6 (2)C38—C39—H39A119.9
C19—C18—H18A119.7C39—C40—C41119.8 (2)
C17—C18—H18A119.7C39—C40—H40A120.1
C20—C19—C18117.5 (2)C41—C40—H40A120.1
C20—C19—C22121.6 (2)C36—C41—C40120.8 (2)
C18—C19—C22120.8 (2)C36—C41—C42120.2 (2)
C19—C20—C21121.8 (2)C40—C41—C42118.9 (2)
C19—C20—H20A119.1N2—C42—C41179.2 (3)
C21—C20—H20A119.1C29—N1—C15111.04 (17)
C16—C21—C20121.1 (2)C29—N1—C14109.79 (17)
C16—C21—H21A119.5C15—N1—C14110.46 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N3i0.932.553.446 (5)162
C24—H24A···N2ii0.932.593.350 (4)139
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC42H30N4
Mr590.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)21.257 (4), 15.085 (3), 10.294 (2)
β (°) 94.73 (3)
V3)3289.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.27 × 0.18 × 0.15
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.985, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
32746, 7524, 4007
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.187, 1.02
No. of reflections7524
No. of parameters415
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.24

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···N3i0.932.553.446 (5)161.7
C24—H24A···N2ii0.932.593.350 (4)138.7
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationChen, Q., Buss, C. E., Young, V. G. Jr & Fox, S. (2005). J. Chem. Crystallogr. 35, 177–181.  Web of Science CSD CrossRef Google Scholar
First citationFoces-Foces, C., Llamas-Saiz, A. L., Alajarín, M., López-Lázaro, A. & Molina, P. (1999). Acta Cryst. C55, 373–377.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFox, S., Nanthakumar, A., Wikström, M., Karlin, K. D. & Blackburn, N. J. (1996). J. Am. Chem. Soc. 118, 24–34.  CrossRef CAS Web of Science Google Scholar
First citationIwasaki, F. & Iwasaki, H. (1972). Acta Cryst. B28, 3370–3376.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMenage, S., Zang, Y., Hendrich, M. P. & Que, L. Jr (1992). J. Am. Chem. Soc. 114, 7786–7792.  CSD CrossRef CAS Web of Science Google Scholar
First citationMurthy, N. N. & Karlin, K. D. (1993). J. Am. Chem. Soc. 115, 1236–1238.  CSD CrossRef Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchrock, R. R. (1997). Acc. Chem. Res. 30, 9–16.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds