metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,6-Bis[(di-tert-butyl­phosphino)­methyl]­phenyl}chloridonickel(II)

aDepartment of Chemistry and Chemical Biology, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA, and bDepartment of Chemistry and Biochemistry, University of Washington, Seattle, WA 98195, USA
*Correspondence e-mail: rakemp@unm.edu

(Received 3 September 2008; accepted 16 September 2008; online 20 September 2008)

In the title compound, [Ni(C24H43P2)Cl], the Ni atom adopts a distorted square-planar geometry, with the P atoms of the 2,6-bis­[(di-tert-butyl­phosphino)meth­yl]phenyl ligand trans to one another. The P—Ni—P plane is twisted out of the plane of the aromatic ring by 21.97 (6)°.

Related literature

For the original synthesis and spectroscopic characterization of the title compound, see: Moulton & Shaw (1976[Moulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020-1024.]). For the crystallographic characterization of the Pd analogue, see: Kimmich et al. (2002[Kimmich, B. F. M., Marshall, W. J., Fagan, P. J., Hauptman, E. & Bullock, R. M. (2002). Inorg. Chim. Acta, 330, 52-58.]). For crystallographic characterization of the 2,6-bis­[(di-tert-butyl­phosphino)meth­yl]benzene ligand, see: Hollink et al. (2003[Hollink, E., Stewart, J. C., Wei, P. & Stephan, D. W. (2003). J. Chem. Soc. Dalton Trans. pp. 3968-3974.]). For related literature, see: Denney et al. (2006[Denney, M. C., Smythe, N. A., Cetto, K. L., Kemp, R. A. & Goldberg, K. I. (2006). J. Am. Chem. Soc. 128, 2508-2509.]); Keith et al. (2006[Keith, J. M., Muller, R. P., Kemp, R. A., Goldberg, K. I., Goddard, W. A. III & Oxgaard, J. (2006). Inorg. Chem. 45, 9631-9633.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C24H43P2)Cl]

  • Mr = 487.68

  • Orthorhombic, P 21 21 21

  • a = 11.3394 (4) Å

  • b = 15.0463 (5) Å

  • c = 15.4184 (5) Å

  • V = 2630.63 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 225 (2) K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.622, Tmax = 0.679

  • 84881 measured reflections

  • 10074 independent reflections

  • 8461 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.09

  • 10074 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 4507 Friedel pairs

  • Flack parameter: 0.006 (7)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, (I), was originally prepared by Moulton & Shaw (1976) but its crystal structure was not determined at that time. We have prepared (I) as part of our studies of PCP 'pincer' complexes of divalent late transition metals, which show promise as catalysts for the epoxidation of olefins (Denney et al., 2006; Keith et al., 2006).

In the molecular stucture of (I) (Fig. 1), the nickel adopts a square planar geometry, with the phosphorus atoms trans to one another. The Ni—P bond lengths 2.1921 (4) and 2.1978 (4) Å, are significantly shorter than the corresponding Pd—P bonds [2.3039 (6) and 2.3969 (6) Å] in the analogous palladium complex (Kimmich et al., 2002). Steric hindrance distorts the P—Ni—P bond angle to 169.651 (18)°, while the less constrained C—Ni—Cl angle is much closer to linearity at 176.13 (5)°.

Significant geometrical changes are observed in the 2,6-bis[(di-tert-butylphosphino)methyl]benzene ligand upon binding to nickel. In the free ligand (Hollink et al., 2003), the average P—Cmethylene bond length is 1.870 Å, while in (I), it has decreased to 1.8308 (19) Å (P1—C8) and 1.8341 (18) Å (P2—C7). This bond shortening is accompanied by change in the P—Cmethylene—Cphenyl angle, from 114.5° in the free ligand to 106.23 (12)° (P1—C8—C2) and 106.84 (12)° (P2—C7—C6) in (I).

Related literature top

For the original synthesis and spectroscopic characterization of the title compound, see: Moulton & Shaw (1976). For the crystallographic characterization of the Pd analogue, see: Kimmich et al. (2002). For crystallographic characterization of the 2,6-bis[(di-tert-butylphosphino)methyl]benzene ligand, see: Hollink et al. (2003). For related literature, see: Denney et al. (2006); Keith et al. (2006).

Experimental top

A solution of nickel chloride hexahydrate (0.6 g, 2.5 mmol) dissolved in 2 ml of degassed water was added to a solution of 2,6-bis-[(di-tert-butylphosphino)methyl]benzene (1.02 g, 2.6 mmol) in 10 ml ethanol. The solution was heated to reflux. A golden-yellow precipitate began to form only after 0.5 h. The solution was stirred under gentle reflux overnight. After cooling, the product was collected by filtration and washed with cold ethanol. It was recrystallized from a concentrated solution of pentane at 238 K.

Refinement top

Hydrogen atoms were included at geometrically idealized positions with C—H distances 0.94, 0.97 and 0.98 Å, for aryl, methyl and methylene H-atoms in a riding mode on the respective heavy atoms. The isotropic displacement parameters for the hydrogen atoms were fixed at 1.5 and 1.2 times Ueq of the parent methyl and non-methyl C-atoms. An absolute structure was determined (Flack, 1983) employing 4507 Friedel pairs of reflections which were not merged.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing numbering scheme. Ellipsoids are shown at 50% probability and hydrogen atoms have been removed for clarity.
{2,6-Bis[(di-tert-butylphosphino)methyl]phenyl}chloridonickel(II) top
Crystal data top
[Ni(C24H43P2)Cl]F(000) = 1048
Mr = 487.68Dx = 1.231 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8656 reflections
a = 11.3394 (4) Åθ = 2.2–32.5°
b = 15.0463 (5) ŵ = 0.97 mm1
c = 15.4184 (5) ÅT = 225 K
V = 2630.63 (15) Å3Prism, gold-brown
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
10074 independent reflections
Radiation source: fine-focus sealed tube8461 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 33.2°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2004)
h = 1717
Tmin = 0.622, Tmax = 0.679k = 2323
84881 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0439P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
10074 reflectionsΔρmax = 0.32 e Å3
265 parametersΔρmin = 0.50 e Å3
0 restraintsAbsolute structure: Flack (1983), with 4507 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (7)
Crystal data top
[Ni(C24H43P2)Cl]V = 2630.63 (15) Å3
Mr = 487.68Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.3394 (4) ŵ = 0.97 mm1
b = 15.0463 (5) ÅT = 225 K
c = 15.4184 (5) Å0.50 × 0.50 × 0.40 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
10074 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Bruker, 2004)
8461 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.679Rint = 0.048
84881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.32 e Å3
S = 1.09Δρmin = 0.50 e Å3
10074 reflectionsAbsolute structure: Flack (1983), with 4507 Friedel pairs
265 parametersAbsolute structure parameter: 0.006 (7)
0 restraints
Special details top

Experimental. Yield = 60%. 1H NMR (250 MHz, C6D6) δ 7.00 (t, 1H, 3JHH = 7.4 Hz, Ar-Hpara), 6.84 (d, 2H, 3JHH = 7.4 Hz, Ar-Hmeta), 2.91 (virtual t, 4H, JHP = 6.8 Hz, CH2), 1.40 (virtual t, 36H, JHP = 12.7 Hz, CH3) p.p.m. 13C{1H} NMR (63 MHz, C6D6) δ 155.7 (t, 2JCP = 16.7 Hz, Ar-Cipso), 153.0 (virtual t, JCP = 25.5 Hz, Ar-Cortho), 125.2 (s, Ar-Cpara), 121.8 (virtual t, JCP = 16.7 Hz, Ar-Cmeta), 34.9 (virtual t, JCP = 13.4 Hz, PCH2), 34.3 (virtual t, JCP = 22.7 Hz, PC(CH3)3), 29.8 (s, CH3) p.p.m. 31P{1H} NMR (101 MHz, C6D6) δ 66.9 p.p.m.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.536566 (17)0.968358 (13)0.925683 (12)0.02623 (5)
Cl10.60025 (5)1.02689 (4)0.80121 (3)0.04914 (12)
P10.38227 (4)0.90497 (3)0.86644 (3)0.02696 (8)
P20.67658 (4)1.02487 (3)1.00738 (3)0.02786 (8)
C10.48595 (14)0.91031 (10)1.03045 (10)0.0278 (3)
C20.37594 (16)0.86671 (11)1.03569 (11)0.0326 (3)
C30.34528 (18)0.81652 (13)1.10805 (13)0.0405 (4)
H30.27230.78691.10940.049*
C40.4201 (2)0.80982 (13)1.17718 (13)0.0441 (5)
H40.39920.77501.22540.053*
C50.52717 (18)0.85476 (12)1.17589 (11)0.0383 (4)
H50.57800.85161.22400.046*
C60.55930 (16)0.90460 (11)1.10322 (11)0.0327 (3)
C70.67683 (17)0.95101 (13)1.10201 (12)0.0391 (4)
H7A0.74090.90761.09740.047*
H7B0.68790.98541.15540.047*
C80.29202 (16)0.87651 (14)0.96090 (12)0.0382 (4)
H8A0.23450.92360.97270.046*
H8B0.24940.82080.95080.046*
C90.41665 (16)0.79598 (10)0.81364 (12)0.0339 (3)
C100.5097 (2)0.80785 (14)0.74313 (14)0.0488 (5)
H10A0.57840.83710.76740.073*
H10B0.47760.84390.69660.073*
H10C0.53220.75010.72050.073*
C110.3068 (2)0.75117 (14)0.77561 (15)0.0497 (5)
H11A0.27760.78610.72730.075*
H11B0.24630.74710.81990.075*
H11C0.32710.69200.75560.075*
C120.4694 (2)0.73571 (12)0.88360 (14)0.0471 (5)
H12A0.49340.67980.85770.071*
H12B0.41080.72450.92810.071*
H12C0.53740.76460.90930.071*
C130.28236 (17)0.97553 (14)0.79810 (13)0.0422 (4)
C140.15386 (19)0.94355 (18)0.79892 (18)0.0618 (6)
H14A0.10570.98400.76510.093*
H14B0.12520.94200.85820.093*
H14C0.14940.88440.77400.093*
C150.3241 (2)0.98364 (15)0.70379 (13)0.0539 (5)
H15A0.31620.92660.67510.081*
H15B0.40611.00200.70280.081*
H15C0.27641.02750.67380.081*
C160.2868 (3)1.06881 (15)0.83988 (18)0.0642 (7)
H16A0.23281.10810.80980.096*
H16B0.36631.09230.83570.096*
H16C0.26431.06460.90040.096*
C170.83287 (16)1.01907 (13)0.96814 (12)0.0369 (4)
C180.84152 (19)0.92899 (15)0.92080 (17)0.0524 (5)
H18A0.92170.92000.90070.079*
H18B0.78820.92880.87160.079*
H18C0.82010.88150.96040.079*
C190.92396 (18)1.02033 (17)1.04173 (15)0.0514 (5)
H19A1.00201.01031.01800.077*
H19B0.90550.97391.08320.077*
H19C0.92191.07761.07050.077*
C200.63680 (18)1.13804 (12)1.04915 (13)0.0403 (4)
C210.5238 (2)1.12685 (15)1.10274 (17)0.0593 (6)
H21A0.54011.09011.15300.089*
H21B0.46361.09871.06740.089*
H21C0.49621.18471.12170.089*
C220.7314 (2)1.17943 (16)1.10738 (16)0.0585 (6)
H22A0.80201.19071.07350.088*
H22B0.75001.13891.15430.088*
H22C0.70231.23491.13120.088*
C230.6101 (3)1.19968 (14)0.97333 (16)0.0571 (6)
H23A0.57861.25530.99510.086*
H23B0.55271.17190.93540.086*
H23C0.68211.21110.94120.086*
C240.86278 (18)1.09373 (16)0.90427 (14)0.0491 (5)
H24A0.85971.15050.93400.074*
H24B0.80621.09360.85710.074*
H24C0.94141.08440.88120.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02964 (9)0.02516 (9)0.02389 (9)0.00470 (8)0.00320 (8)0.00305 (7)
Cl10.0605 (3)0.0569 (3)0.02997 (19)0.0283 (3)0.00855 (19)0.0151 (2)
P10.02591 (18)0.02588 (17)0.02911 (19)0.00090 (15)0.00127 (15)0.00323 (15)
P20.03048 (18)0.02878 (18)0.02431 (17)0.00396 (16)0.00252 (14)0.00080 (16)
C10.0318 (8)0.0261 (6)0.0256 (7)0.0007 (6)0.0043 (6)0.0008 (6)
C20.0343 (8)0.0312 (8)0.0321 (8)0.0005 (7)0.0090 (7)0.0036 (6)
C30.0416 (10)0.0390 (9)0.0411 (9)0.0050 (8)0.0187 (8)0.0025 (8)
C40.0579 (12)0.0399 (9)0.0345 (9)0.0028 (9)0.0192 (9)0.0076 (7)
C50.0465 (10)0.0410 (9)0.0273 (8)0.0087 (8)0.0051 (8)0.0062 (7)
C60.0394 (9)0.0319 (8)0.0268 (7)0.0021 (7)0.0030 (6)0.0027 (6)
C70.0393 (9)0.0472 (10)0.0309 (8)0.0033 (8)0.0079 (7)0.0094 (7)
C80.0301 (8)0.0469 (10)0.0377 (9)0.0050 (7)0.0061 (7)0.0095 (8)
C90.0396 (9)0.0247 (7)0.0375 (9)0.0030 (6)0.0075 (7)0.0057 (6)
C100.0569 (13)0.0432 (10)0.0465 (11)0.0010 (9)0.0210 (9)0.0067 (8)
C110.0562 (12)0.0374 (10)0.0556 (12)0.0123 (9)0.0036 (10)0.0146 (9)
C120.0604 (12)0.0281 (8)0.0529 (11)0.0085 (9)0.0101 (11)0.0009 (7)
C130.0421 (9)0.0404 (9)0.0442 (10)0.0116 (8)0.0140 (8)0.0054 (9)
C140.0352 (10)0.0807 (17)0.0696 (15)0.0119 (10)0.0166 (10)0.0113 (13)
C150.0648 (14)0.0528 (12)0.0441 (11)0.0079 (11)0.0195 (10)0.0053 (9)
C160.0812 (18)0.0433 (11)0.0682 (16)0.0299 (12)0.0268 (14)0.0098 (11)
C170.0303 (8)0.0426 (9)0.0378 (9)0.0044 (7)0.0011 (7)0.0008 (8)
C180.0414 (10)0.0530 (12)0.0627 (13)0.0072 (9)0.0048 (10)0.0128 (11)
C190.0348 (9)0.0644 (13)0.0551 (12)0.0068 (9)0.0094 (9)0.0041 (11)
C200.0479 (11)0.0351 (9)0.0378 (9)0.0036 (8)0.0014 (8)0.0089 (7)
C210.0600 (14)0.0528 (12)0.0650 (14)0.0047 (11)0.0205 (12)0.0166 (11)
C220.0662 (15)0.0557 (13)0.0535 (13)0.0148 (11)0.0036 (12)0.0227 (11)
C230.0776 (17)0.0351 (10)0.0586 (14)0.0104 (11)0.0019 (13)0.0007 (9)
C240.0399 (10)0.0612 (12)0.0462 (11)0.0106 (9)0.0041 (8)0.0102 (10)
Geometric parameters (Å, º) top
Ni1—C11.9239 (15)C13—C151.534 (3)
Ni1—P12.1921 (4)C13—C141.535 (3)
Ni1—P22.1978 (4)C13—C161.545 (3)
Ni1—Cl12.2317 (5)C14—H14A0.9700
P1—C81.8308 (19)C14—H14B0.9700
P1—C91.8720 (16)C14—H14C0.9700
P1—C131.8763 (18)C15—H15A0.9700
P2—C71.8341 (18)C15—H15B0.9700
P2—C171.8746 (19)C15—H15C0.9700
P2—C201.8756 (19)C16—H16A0.9700
C1—C61.399 (2)C16—H16B0.9700
C1—C21.412 (2)C16—H16C0.9700
C2—C31.391 (2)C17—C241.532 (3)
C2—C81.502 (3)C17—C191.534 (3)
C3—C41.366 (3)C17—C181.543 (3)
C3—H30.9400C18—H18A0.9700
C4—C51.390 (3)C18—H18B0.9700
C4—H40.9400C18—H18C0.9700
C5—C61.397 (2)C19—H19A0.9700
C5—H50.9400C19—H19B0.9700
C6—C71.505 (3)C19—H19C0.9700
C7—H7A0.9800C20—C231.523 (3)
C7—H7B0.9800C20—C221.532 (3)
C8—H8A0.9800C20—C211.534 (3)
C8—H8B0.9800C21—H21A0.9700
C9—C101.525 (3)C21—H21B0.9700
C9—C121.531 (3)C21—H21C0.9700
C9—C111.533 (3)C22—H22A0.9700
C10—H10A0.9700C22—H22B0.9700
C10—H10B0.9700C22—H22C0.9700
C10—H10C0.9700C23—H23A0.9700
C11—H11A0.9700C23—H23B0.9700
C11—H11B0.9700C23—H23C0.9700
C11—H11C0.9700C24—H24A0.9700
C12—H12A0.9700C24—H24B0.9700
C12—H12B0.9700C24—H24C0.9700
C12—H12C0.9700
C1—Ni1—P185.08 (5)C15—C13—C14109.01 (18)
C1—Ni1—P284.83 (5)C15—C13—C16108.2 (2)
P1—Ni1—P2169.651 (18)C14—C13—C16108.22 (19)
C1—Ni1—Cl1176.13 (5)C15—C13—P1113.01 (14)
P1—Ni1—Cl194.109 (18)C14—C13—P1113.03 (17)
P2—Ni1—Cl196.109 (17)C16—C13—P1105.07 (13)
C8—P1—C9104.92 (9)C13—C14—H14A109.5
C8—P1—C13103.98 (9)C13—C14—H14B109.5
C9—P1—C13112.16 (9)H14A—C14—H14B109.5
C8—P1—Ni1102.50 (6)C13—C14—H14C109.5
C9—P1—Ni1113.34 (6)H14A—C14—H14C109.5
C13—P1—Ni1118.02 (7)H14B—C14—H14C109.5
C7—P2—C17103.12 (9)C13—C15—H15A109.5
C7—P2—C20106.10 (9)C13—C15—H15B109.5
C17—P2—C20112.36 (9)H15A—C15—H15B109.5
C7—P2—Ni1102.87 (6)C13—C15—H15C109.5
C17—P2—Ni1118.68 (6)H15A—C15—H15C109.5
C20—P2—Ni1111.98 (7)H15B—C15—H15C109.5
C6—C1—C2116.79 (15)C13—C16—H16A109.5
C6—C1—Ni1121.59 (12)C13—C16—H16B109.5
C2—C1—Ni1121.51 (12)H16A—C16—H16B109.5
C3—C2—C1121.26 (17)C13—C16—H16C109.5
C3—C2—C8120.69 (17)H16A—C16—H16C109.5
C1—C2—C8118.05 (15)H16B—C16—H16C109.5
C4—C3—C2120.70 (18)C24—C17—C19108.50 (16)
C4—C3—H3119.6C24—C17—C18109.02 (17)
C2—C3—H3119.6C19—C17—C18108.54 (18)
C3—C4—C5119.69 (17)C24—C17—P2112.50 (14)
C3—C4—H4120.2C19—C17—P2113.40 (13)
C5—C4—H4120.2C18—C17—P2104.70 (13)
C4—C5—C6120.04 (18)C17—C18—H18A109.5
C4—C5—H5120.0C17—C18—H18B109.5
C6—C5—H5120.0H18A—C18—H18B109.5
C5—C6—C1121.42 (16)C17—C18—H18C109.5
C5—C6—C7119.36 (17)H18A—C18—H18C109.5
C1—C6—C7119.21 (14)H18B—C18—H18C109.5
C6—C7—P2106.84 (12)C17—C19—H19A109.5
C6—C7—H7A110.4C17—C19—H19B109.5
P2—C7—H7A110.4H19A—C19—H19B109.5
C6—C7—H7B110.4C17—C19—H19C109.5
P2—C7—H7B110.4H19A—C19—H19C109.5
H7A—C7—H7B108.6H19B—C19—H19C109.5
C2—C8—P1106.23 (12)C23—C20—C22109.96 (19)
C2—C8—H8A110.5C23—C20—C21108.3 (2)
P1—C8—H8A110.5C22—C20—C21108.32 (18)
C2—C8—H8B110.5C23—C20—P2109.70 (13)
P1—C8—H8B110.5C22—C20—P2113.70 (16)
H8A—C8—H8B108.7C21—C20—P2106.63 (13)
C10—C9—C12107.52 (16)C20—C21—H21A109.5
C10—C9—C11109.93 (16)C20—C21—H21B109.5
C12—C9—C11109.06 (16)H21A—C21—H21B109.5
C10—C9—P1110.57 (12)C20—C21—H21C109.5
C12—C9—P1107.09 (12)H21A—C21—H21C109.5
C11—C9—P1112.49 (13)H21B—C21—H21C109.5
C9—C10—H10A109.5C20—C22—H22A109.5
C9—C10—H10B109.5C20—C22—H22B109.5
H10A—C10—H10B109.5H22A—C22—H22B109.5
C9—C10—H10C109.5C20—C22—H22C109.5
H10A—C10—H10C109.5H22A—C22—H22C109.5
H10B—C10—H10C109.5H22B—C22—H22C109.5
C9—C11—H11A109.5C20—C23—H23A109.5
C9—C11—H11B109.5C20—C23—H23B109.5
H11A—C11—H11B109.5H23A—C23—H23B109.5
C9—C11—H11C109.5C20—C23—H23C109.5
H11A—C11—H11C109.5H23A—C23—H23C109.5
H11B—C11—H11C109.5H23B—C23—H23C109.5
C9—C12—H12A109.5C17—C24—H24A109.5
C9—C12—H12B109.5C17—C24—H24B109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
C9—C12—H12C109.5C17—C24—H24C109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5

Experimental details

Crystal data
Chemical formula[Ni(C24H43P2)Cl]
Mr487.68
Crystal system, space groupOrthorhombic, P212121
Temperature (K)225
a, b, c (Å)11.3394 (4), 15.0463 (5), 15.4184 (5)
V3)2630.63 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Bruker, 2004)
Tmin, Tmax0.622, 0.679
No. of measured, independent and
observed [I > 2σ(I)] reflections
84881, 10074, 8461
Rint0.048
(sin θ/λ)max1)0.771
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.09
No. of reflections10074
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.50
Absolute structureFlack (1983), with 4507 Friedel pairs
Absolute structure parameter0.006 (7)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2008).

 

Footnotes

Concurrent address: Advanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard SE, Albuquerque, NM 87106, USA.

Acknowledgements

The authors thank Eileen Duesler and Ana Felix (UNM) for the X-ray data collection. Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD), and the Department of Energy (DE-FG02-06ER15765). The Bruker X-ray diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE-0443580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract No. DE-AC04-94AL85000.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDenney, M. C., Smythe, N. A., Cetto, K. L., Kemp, R. A. & Goldberg, K. I. (2006). J. Am. Chem. Soc. 128, 2508–2509.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHollink, E., Stewart, J. C., Wei, P. & Stephan, D. W. (2003). J. Chem. Soc. Dalton Trans. pp. 3968–3974.  CrossRef Google Scholar
First citationKeith, J. M., Muller, R. P., Kemp, R. A., Goldberg, K. I., Goddard, W. A. III & Oxgaard, J. (2006). Inorg. Chem. 45, 9631–9633.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKimmich, B. F. M., Marshall, W. J., Fagan, P. J., Hauptman, E. & Bullock, R. M. (2002). Inorg. Chim. Acta, 330, 52–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, C. J. & Shaw, B. L. (1976). J. Chem. Soc. Dalton Trans. pp. 1020–1024.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds