metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4,4′-bipyridinium) dodeca­tungsto­silicate 4,4′-bi­pyridine hexa­hydrate

aJilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China, and bNortheast Forestry University, People's Republic of China
*Correspondence e-mail: fengxia_ma@126.com

(Received 13 June 2008; accepted 28 August 2008; online 6 September 2008)

The title compound, (C10H10N2)2[SiW12O40]·C10H8N2·6H2O or (4,4′-bipyH2)2[SiW12O40].(4,4′-bipy)·6H2O (4,4′-bipy is 4,4′-bipyridine), was prepared under hydro­thermal conditions. The asymmetric unit contains a discrete Keggin-type [SiW12O40]4− anion (located on a twofold axis), one 4,4′-bipy (located on a twofold axis), two (4,4′-bipyH2)2+ cations and six uncoordinated water mol­ecules. The polyoxoanion is constructed from a central SiO4 tetra­hedron which shares its O atoms with four trinuclear W3O13 groups, each of which is made up of three edge-sharing WO6 octa­hedra. The water mol­ecules and [SiW12O40]4− anions are linked through hydrogen bonds.

Related literature

For related literature, see: Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-2.]); Kurth et al. (2001[Kurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.]); Misono (1987[Misono, M. (1987). Cat. Rev. Sci. Eng. 29, 269-321.]); Pope (1983[Pope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.]). H4SiW12O40.nH2O was prepared according to literature procedures (Rocchiccioli-Deltcheff et al., 1983[Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R. & Thouvenot, R. (1983). Inorg. Chem. 22, 207-216.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10N2)2[SiW12O40]·C10H8N2·6H2O

  • Mr = 3454.85

  • Monoclinic, C 2/c

  • a = 15.491 (5) Å

  • b = 18.096 (5) Å

  • c = 20.921 (5) Å

  • β = 100.834 (5)°

  • V = 5760 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 23.99 mm−1

  • T = 293 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.041, Tmax = 0.095

  • 15853 measured reflections

  • 5652 independent reflections

  • 5214 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.101

  • S = 1.10

  • 5652 reflections

  • 455 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 3.60 e Å−3

  • Δρmin = −3.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O3W 0.89 (10) 2.15 (11) 2.699 (11) 119 (7)
O1W—H1B⋯O2W 0.81 (9) 2.31 (9) 2.749 (12) 115 (10)
O1W—H1B⋯O20 0.81 (9) 2.54 (11) 2.844 (10) 104 (8)
N1—H1N⋯O2W 0.78 (9) 1.97 (9) 2.754 (12) 172 (14)
O3W—H3A⋯O18 0.91 (9) 2.24 (10) 2.878 (10) 127 (9)

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyoxometalates (POMs) have been known for more than 200 years, but continue to receive attention due to their versatile structures and applications in medicine, materials science, catalysis (Misono, 1987; Pope, 1983; Hill, 1998).

The structure of the title compound is built from one independent 4,4'–bipyridines (4,4'-bipy) (placed on twofold axis by N3/C13/C14/N4) and two protonated 4,4'–bipyridines (4,4'-bipyH2)2+, and Keggin–type anion [SiW12O40]4- (placed on twofold axis) and six water molecules (Fig. 1). In the well known Keggin structure, there are 12 WO6–octahedra and one SiO4–tetrahedron. The 12 WO6–octahedra can be categorized into four W3O13 trinuclear groups, each of which is made of three edge–sharing WO6–octahedra and are joined to each other by sharing corners. The SiO4–tetrahedron is located in the centre of the polyoxoanion by sharing its O atoms with the four W3O13–groups. In the Keggin anion, the Si—O and W—O distances as well as the corresponding angles are very similar to those of H4SiW12O40 (Kurth et al., 2001). The water molecules and [SiW12O40]4- anions are linked through hydrogen bonds. It can be seen that all of the H atoms come from water molecules. The O atoms, which come from the [SiW12O40]4- anions, are also involved in hydrogen bonds and play the role of acceptors.

Related literature top

For related literature, see: Hill (1998); Kurth et al. (2001); Misono (1987); Pope (1983). H4SiW12O40.nH2O was prepared according to literature procedures (Rocchiccioli-Deltcheff et al., 1983).

Experimental top

The H4SiW12O40.nH2O was prepared according to the method given by Rocchiccioli-Deltcheff et al., (1983). The starting mixture of H4SiW12O40.nH2O (0.302 g), 4,4'-bipy (0.026 g), and H2O (10 ml) was adjusted to pH = 5.6 by addition of 2 mol.L-1 NaOH under stirring for 30 min. The final solution was transferred into a 25 ml teflon lined autoclave and was heated at 453 K for 96 h. Then, the autoclave was cooled with a rate of 10 K.h-1 to room temperature. Black block–like crystals were filtered off, washed with distilled water and dried at ambient temperature (45% yield on W).

Refinement top

All H atoms on C atoms were poisitioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso = 1.2Ueq(C). The H atoms bonded to N atom and O atoms of water molecules were located in a difference Fourier map and refined isotropically. In the final Fourier map, the highest peak is 0.85Å away from W3 and the deepest hole is 0.55Å from W4.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitraryv radius. Symmetry codes: i = -x+2, y, -z+3/2; ii = -x+1, y, -z+3/2.
Bis(4,4'-bipyridinium) dodecatungstosilicate 4,4'-bipyridine hexahydrate top
Crystal data top
(C10H10N2)2[SiW12O40]·C10H8N2·6H2OF(000) = 6128
Mr = 3454.85Dx = 3.984 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 5214 reflections
a = 15.491 (5) Åθ = 1.8–26.0°
b = 18.096 (5) ŵ = 23.99 mm1
c = 20.921 (5) ÅT = 293 K
β = 100.834 (5)°Block, black
V = 5760 (3) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5652 independent reflections
Radiation source: Rotor target5214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 1.8°
ω scansh = 1914
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2222
Tmin = 0.041, Tmax = 0.095l = 2325
15853 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.049P)2 + 129.9363P]
where P = (Fo2 + 2Fc2)/3
5652 reflections(Δ/σ)max = 0.002
455 parametersΔρmax = 3.60 e Å3
8 restraintsΔρmin = 3.50 e Å3
Crystal data top
(C10H10N2)2[SiW12O40]·C10H8N2·6H2OV = 5760 (3) Å3
Mr = 3454.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.491 (5) ŵ = 23.99 mm1
b = 18.096 (5) ÅT = 293 K
c = 20.921 (5) Å0.15 × 0.12 × 0.10 mm
β = 100.834 (5)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5652 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5214 reflections with I > 2σ(I)
Tmin = 0.041, Tmax = 0.095Rint = 0.042
15853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0398 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.049P)2 + 129.9363P]
where P = (Fo2 + 2Fc2)/3
5652 reflectionsΔρmax = 3.60 e Å3
455 parametersΔρmin = 3.50 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as largeas those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si11.00000.14417 (15)0.75000.0055 (5)
W10.98109 (2)0.004870 (18)0.865205 (16)0.01358 (10)
W20.81326 (2)0.150489 (19)0.823667 (17)0.01562 (10)
W30.83728 (2)0.008359 (18)0.701365 (16)0.01280 (10)
W40.86857 (2)0.136541 (19)0.593364 (17)0.01711 (10)
W50.83464 (2)0.280029 (18)0.712749 (16)0.01327 (10)
W61.03445 (2)0.282564 (18)0.639007 (16)0.01417 (10)
C10.7254 (7)0.6611 (5)0.4178 (5)0.0264 (14)
H10.77140.66640.39530.032*
C20.6599 (7)0.7125 (5)0.4101 (5)0.0254 (13)
H20.65980.75200.38160.031*
C30.5934 (6)0.7045 (5)0.4454 (5)0.0210 (13)
C40.5952 (7)0.6445 (5)0.4877 (5)0.0223 (13)
H40.55150.63860.51230.027*
C50.6624 (7)0.5948 (5)0.4922 (5)0.0266 (13)
H50.66490.55440.52000.032*
C60.5183 (6)0.7587 (5)0.4376 (5)0.0210 (13)
C70.4350 (6)0.7337 (5)0.4437 (5)0.0219 (13)
H70.42620.68430.45300.026*
C80.3650 (7)0.7838 (5)0.4357 (5)0.0228 (14)
H80.30900.76810.43960.027*
C90.4582 (6)0.8799 (5)0.4160 (5)0.0240 (14)
H90.46480.92970.40690.029*
C100.5303 (7)0.8325 (5)0.4228 (5)0.0227 (13)
H100.58500.84980.41750.027*
C110.5736 (6)0.0110 (5)0.7442 (4)0.0195 (13)
H110.62350.03790.74010.023*
C120.5755 (6)0.0660 (5)0.7443 (4)0.0174 (12)
H120.62690.09080.74060.021*
C130.50000.1061 (7)0.75000.0159 (14)
C140.50000.1881 (6)0.75000.0146 (14)
C150.5682 (6)0.2278 (5)0.7320 (4)0.0174 (12)
H150.61470.20290.71930.021*
C160.5676 (6)0.3045 (5)0.7328 (4)0.0206 (13)
H160.61410.33070.72140.025*
N10.7246 (6)0.6045 (5)0.4565 (4)0.0265 (13)
H1N0.770 (5)0.584 (6)0.461 (6)0.040*
N20.3794 (6)0.8539 (4)0.4226 (4)0.0252 (14)
H2N0.334 (5)0.875 (6)0.419 (6)0.038*
N30.50000.0457 (6)0.75000.0192 (16)
N40.50000.3407 (6)0.75000.0192 (16)
O10.9447 (4)0.0617 (3)0.9112 (3)0.0163 (12)
O21.0599 (4)0.0597 (3)0.9308 (3)0.0120 (10)
O31.0822 (4)0.0439 (3)0.8440 (3)0.0122 (10)
O50.8959 (4)0.0815 (3)0.8665 (3)0.0116 (9)
O60.8667 (4)0.2281 (3)0.8797 (3)0.0134 (9)
O70.7236 (4)0.1323 (3)0.8568 (3)0.0165 (11)
O80.7635 (4)0.2270 (3)0.7623 (3)0.0146 (8)
O90.7957 (4)0.0824 (3)0.7520 (3)0.0141 (8)
O100.9299 (4)0.1957 (3)0.7773 (3)0.0104 (8)
O110.9167 (4)0.0197 (3)0.7808 (3)0.0135 (9)
O120.7571 (4)0.0570 (3)0.6969 (3)0.0198 (12)
O130.9484 (4)0.0926 (3)0.6913 (3)0.0096 (8)
O140.7932 (4)0.0625 (3)0.6220 (3)0.0135 (9)
O150.8026 (4)0.1562 (3)0.5197 (3)0.0184 (12)
O160.9609 (4)0.2067 (3)0.5959 (3)0.0136 (9)
O170.8220 (4)0.2048 (3)0.6488 (3)0.0146 (9)
O180.7599 (4)0.3442 (3)0.6770 (3)0.0198 (12)
O191.1124 (4)0.3313 (3)0.7084 (3)0.0136 (10)
O201.0266 (5)0.3501 (3)0.5807 (3)0.0214 (13)
O210.9400 (4)0.3087 (3)0.6807 (3)0.0159 (9)
O1W0.9247 (5)0.4797 (4)0.5870 (4)0.0332 (12)
H1A0.890 (7)0.469 (7)0.615 (4)0.050*
H1B0.920 (8)0.457 (6)0.553 (4)0.050*
O2W0.8790 (5)0.5277 (4)0.4605 (4)0.0319 (13)
H2A0.932 (7)0.547 (6)0.463 (5)0.048*
H2B0.859 (7)0.506 (6)0.427 (4)0.048*
O3W0.7508 (5)0.4587 (4)0.5805 (4)0.0380 (13)
H3A0.780 (8)0.416 (4)0.594 (5)0.057*
H3B0.763 (9)0.487 (5)0.618 (4)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0050 (12)0.0012 (11)0.0111 (12)0.0000.0033 (10)0.000
W10.0161 (2)0.00723 (17)0.01860 (19)0.00094 (13)0.00648 (14)0.00361 (12)
W20.0143 (2)0.01192 (18)0.02205 (19)0.00164 (13)0.00714 (14)0.00002 (13)
W30.0121 (2)0.00709 (17)0.01982 (18)0.00403 (12)0.00457 (13)0.00200 (12)
W40.0176 (2)0.01453 (19)0.01848 (19)0.00010 (14)0.00146 (14)0.00044 (13)
W50.0137 (2)0.00674 (17)0.01943 (18)0.00445 (12)0.00332 (13)0.00175 (12)
W60.0179 (2)0.00714 (17)0.01819 (18)0.00104 (13)0.00512 (14)0.00300 (12)
C10.022 (3)0.022 (3)0.037 (3)0.000 (2)0.010 (2)0.002 (2)
C20.023 (3)0.019 (2)0.035 (3)0.001 (2)0.008 (2)0.000 (2)
C30.018 (3)0.017 (2)0.029 (3)0.000 (2)0.007 (2)0.002 (2)
C40.019 (2)0.018 (2)0.031 (2)0.001 (2)0.007 (2)0.001 (2)
C50.023 (3)0.022 (3)0.034 (3)0.001 (2)0.005 (2)0.001 (2)
C60.020 (3)0.015 (2)0.028 (3)0.002 (2)0.005 (2)0.000 (2)
C70.020 (3)0.017 (2)0.030 (3)0.003 (2)0.006 (2)0.000 (2)
C80.019 (3)0.019 (3)0.032 (3)0.003 (3)0.009 (3)0.002 (3)
C90.023 (3)0.016 (3)0.033 (3)0.002 (3)0.006 (3)0.002 (3)
C100.021 (3)0.016 (2)0.031 (3)0.000 (2)0.007 (2)0.000 (2)
C110.018 (2)0.012 (2)0.029 (2)0.001 (2)0.003 (2)0.002 (2)
C120.016 (2)0.011 (2)0.025 (2)0.000 (2)0.003 (2)0.000 (2)
C130.015 (3)0.010 (3)0.022 (3)0.0000.002 (2)0.000
C140.014 (3)0.009 (3)0.021 (3)0.0000.004 (2)0.000
C150.016 (2)0.011 (2)0.025 (2)0.000 (2)0.004 (2)0.000 (2)
C160.020 (3)0.014 (2)0.028 (3)0.002 (2)0.004 (2)0.002 (2)
N10.020 (3)0.021 (2)0.038 (3)0.004 (2)0.005 (2)0.004 (2)
N20.023 (3)0.019 (3)0.034 (3)0.006 (2)0.008 (2)0.001 (2)
N30.018 (3)0.011 (3)0.029 (3)0.0000.004 (3)0.000
N40.019 (3)0.013 (3)0.025 (3)0.0000.002 (3)0.000
O10.018 (3)0.010 (3)0.023 (3)0.001 (2)0.007 (2)0.007 (2)
O20.011 (2)0.0089 (19)0.016 (2)0.0007 (18)0.0036 (17)0.0043 (17)
O30.013 (2)0.005 (2)0.019 (2)0.0014 (18)0.0047 (18)0.0035 (18)
O50.0132 (18)0.0082 (17)0.0149 (17)0.0005 (16)0.0060 (15)0.0017 (15)
O60.0144 (19)0.0075 (18)0.0190 (18)0.0021 (16)0.0049 (17)0.0011 (16)
O70.015 (3)0.014 (2)0.021 (2)0.003 (2)0.006 (2)0.000 (2)
O80.0131 (17)0.0107 (16)0.0201 (16)0.0028 (15)0.0037 (15)0.0016 (15)
O90.0138 (16)0.0097 (15)0.0194 (15)0.0000 (14)0.0050 (14)0.0002 (14)
O100.0116 (17)0.0047 (16)0.0155 (16)0.0012 (15)0.0039 (15)0.0004 (14)
O110.0158 (18)0.0084 (17)0.0171 (18)0.0005 (16)0.0049 (16)0.0026 (16)
O120.016 (3)0.014 (3)0.030 (3)0.004 (2)0.007 (2)0.002 (2)
O130.0106 (16)0.0052 (16)0.0142 (16)0.0010 (15)0.0054 (14)0.0004 (14)
O140.0119 (18)0.0090 (17)0.0194 (17)0.0019 (16)0.0025 (16)0.0018 (16)
O150.019 (3)0.016 (3)0.019 (3)0.002 (2)0.002 (2)0.004 (2)
O160.0141 (19)0.0090 (18)0.0189 (18)0.0006 (17)0.0061 (16)0.0016 (16)
O170.0140 (17)0.0103 (16)0.0193 (16)0.0017 (15)0.0023 (15)0.0004 (15)
O180.022 (3)0.016 (2)0.023 (3)0.009 (2)0.007 (2)0.007 (2)
O190.015 (2)0.005 (2)0.021 (2)0.0026 (18)0.0053 (18)0.0020 (18)
O200.025 (3)0.015 (3)0.026 (3)0.000 (2)0.008 (2)0.012 (2)
O210.0165 (18)0.0096 (17)0.0224 (18)0.0011 (16)0.0053 (16)0.0014 (16)
O1W0.029 (2)0.026 (2)0.044 (2)0.001 (2)0.006 (2)0.005 (2)
O2W0.025 (3)0.026 (3)0.045 (3)0.001 (2)0.008 (2)0.003 (2)
O3W0.032 (3)0.033 (2)0.048 (3)0.001 (2)0.005 (2)0.007 (2)
Geometric parameters (Å, º) top
Si1—O101.614 (6)C3—C41.397 (13)
Si1—O10i1.614 (6)C3—C61.507 (13)
Si1—O131.627 (5)C4—C51.366 (13)
Si1—O13i1.627 (5)C4—H40.9300
W1—O11.703 (6)C5—N11.337 (14)
W1—O111.911 (5)C5—H50.9300
W1—O51.918 (6)C6—C101.391 (13)
W1—O31.921 (6)C6—C71.395 (14)
W1—O21.931 (6)C7—C81.400 (13)
W1—O13i2.366 (5)C7—H70.9300
W2—O71.697 (6)C8—N21.325 (12)
W2—O51.889 (5)C8—H80.9300
W2—O61.915 (6)C9—N21.340 (13)
W2—O91.921 (6)C9—C101.394 (14)
W2—O81.945 (6)C9—H90.9300
W2—O102.353 (6)C10—H100.9300
W3—O121.706 (6)C11—N31.327 (11)
W3—O91.894 (6)C11—C121.395 (12)
W3—O141.939 (6)C11—H110.9300
W3—O111.940 (5)C12—C131.400 (11)
W3—O3i1.948 (6)C12—H120.9300
W3—O132.338 (5)C13—C12ii1.400 (11)
W4—O151.719 (6)C13—C141.483 (17)
W4—O2i1.904 (6)C14—C15ii1.388 (11)
W4—O161.907 (6)C14—C151.388 (11)
W4—O171.924 (6)C15—C161.387 (12)
W4—O141.943 (6)C15—H150.9300
W4—O132.325 (5)C16—N41.341 (11)
W5—O181.709 (6)C16—H160.9300
W5—O171.894 (6)N1—H1N0.79 (6)
W5—O81.909 (6)N2—H2N0.79 (6)
W5—O19i1.935 (6)N3—C11ii1.327 (11)
W5—O211.948 (6)N4—C16ii1.341 (11)
W5—O102.363 (5)O2—W4i1.904 (6)
W6—O201.715 (6)O3—W3i1.948 (6)
W6—O211.898 (6)O6—W6i1.923 (6)
W6—O161.900 (6)O10—W6i2.341 (5)
W6—O191.919 (6)O13—W1i2.366 (5)
W6—O6i1.923 (6)O19—W5i1.935 (6)
W6—O10i2.341 (5)O1W—H1A0.89 (6)
C1—N11.306 (13)O1W—H1B0.81 (6)
C1—C21.364 (14)O2W—H2A0.88 (9)
C1—H10.9300O2W—H2B0.80 (6)
C2—C31.383 (14)O3W—H3A0.92 (6)
C2—H20.9300O3W—H3B0.93 (6)
O10—Si1—O10i109.4 (4)O19—W6—O6i88.7 (2)
O10—Si1—O13109.3 (3)O20—W6—O10i170.4 (3)
O10i—Si1—O13109.4 (3)O21—W6—O10i85.3 (2)
O10—Si1—O13i109.4 (3)O16—W6—O10i84.6 (2)
O10i—Si1—O13i109.3 (3)O19—W6—O10i73.5 (2)
O13—Si1—O13i110.0 (4)O6i—W6—O10i74.0 (2)
O1—W1—O11100.7 (3)N1—C1—C2120.9 (10)
O1—W1—O5101.7 (3)N1—C1—H1119.5
O11—W1—O586.6 (2)C2—C1—H1119.5
O1—W1—O3100.2 (3)C1—C2—C3118.5 (10)
O11—W1—O389.2 (2)C1—C2—H2120.8
O5—W1—O3158.2 (2)C3—C2—H2120.8
O1—W1—O2101.2 (3)C2—C3—C4119.5 (9)
O11—W1—O2158.0 (2)C2—C3—C6120.7 (9)
O5—W1—O287.9 (2)C4—C3—C6119.8 (9)
O3—W1—O288.0 (2)C5—C4—C3118.6 (10)
O1—W1—O13i172.0 (2)C5—C4—H4120.7
O11—W1—O13i84.5 (2)C3—C4—H4120.7
O5—W1—O13i84.6 (2)N1—C5—C4119.7 (9)
O3—W1—O13i73.7 (2)N1—C5—H5120.2
O2—W1—O13i73.8 (2)C4—C5—H5120.2
O7—W2—O5102.2 (3)C10—C6—C7119.7 (9)
O7—W2—O6100.6 (3)C10—C6—C3121.1 (9)
O5—W2—O691.0 (2)C7—C6—C3119.2 (8)
O7—W2—O9100.8 (3)C6—C7—C8119.3 (9)
O5—W2—O986.0 (2)C6—C7—H7120.4
O6—W2—O9158.5 (3)C8—C7—H7120.4
O7—W2—O898.9 (3)N2—C8—C7119.2 (9)
O5—W2—O8158.8 (3)N2—C8—H8120.4
O6—W2—O887.4 (2)C7—C8—H8120.4
O9—W2—O887.8 (2)N2—C9—C10120.0 (9)
O7—W2—O10170.8 (2)N2—C9—H9120.0
O5—W2—O1085.5 (2)C10—C9—H9120.0
O6—W2—O1073.8 (2)C6—C10—C9118.4 (9)
O9—W2—O1084.7 (2)C6—C10—H10120.8
O8—W2—O1073.8 (2)C9—C10—H10120.8
O12—W3—O9101.6 (3)N3—C11—C12119.3 (9)
O12—W3—O1499.7 (3)N3—C11—H11120.3
O9—W3—O1491.1 (2)C12—C11—H11120.3
O12—W3—O11101.7 (3)C11—C12—C13120.1 (9)
O9—W3—O1186.2 (2)C11—C12—H12119.9
O14—W3—O11158.5 (2)C13—C12—H12119.9
O12—W3—O3i99.4 (3)C12ii—C13—C12117.5 (11)
O9—W3—O3i158.7 (2)C12ii—C13—C14121.2 (6)
O14—W3—O3i89.0 (2)C12—C13—C14121.2 (6)
O11—W3—O3i85.9 (2)C15ii—C14—C15117.5 (11)
O12—W3—O13171.3 (2)C15ii—C14—C13121.2 (6)
O9—W3—O1385.6 (2)C15—C14—C13121.2 (5)
O14—W3—O1374.9 (2)C16—C15—C14120.5 (9)
O11—W3—O1383.6 (2)C16—C15—H15119.7
O3i—W3—O1373.9 (2)C14—C15—H15119.7
O15—W4—O2i101.0 (3)N4—C16—C15120.0 (9)
O15—W4—O16101.7 (3)N4—C16—H16120.0
O2i—W4—O1691.3 (2)C15—C16—H16120.0
O15—W4—O17100.4 (3)C1—N1—C5122.8 (9)
O2i—W4—O17158.6 (2)C1—N1—H1N109 (9)
O16—W4—O1785.4 (3)C5—N1—H1N127 (9)
O15—W4—O1497.4 (3)C8—N2—C9123.4 (9)
O2i—W4—O1489.5 (2)C8—N2—H2N108 (9)
O16—W4—O14160.3 (2)C9—N2—H2N129 (9)
O17—W4—O1486.7 (2)C11ii—N3—C11123.6 (11)
O15—W4—O13171.5 (2)C16ii—N4—C16121.4 (11)
O2i—W4—O1375.2 (2)W4i—O2—W1120.5 (3)
O16—W4—O1386.1 (2)W1—O3—W3i121.0 (3)
O17—W4—O1383.5 (2)W2—O5—W1151.4 (3)
O14—W4—O1375.1 (2)W2—O6—W6i121.3 (3)
O18—W5—O17102.0 (3)W5—O8—W2121.2 (3)
O18—W5—O899.6 (3)W3—O9—W2151.4 (3)
O17—W5—O891.6 (3)Si1—O10—W6i125.0 (3)
O18—W5—O19i101.0 (3)Si1—O10—W2124.4 (3)
O17—W5—O19i156.7 (2)W6i—O10—W290.93 (19)
O8—W5—O19i88.5 (3)Si1—O10—W5124.1 (3)
O18—W5—O21102.2 (3)W6i—O10—W591.59 (19)
O17—W5—O2186.0 (3)W2—O10—W590.8 (2)
O8—W5—O21158.1 (2)W1—O11—W3150.2 (3)
O19i—W5—O2185.3 (2)Si1—O13—W4125.0 (3)
O18—W5—O10171.0 (3)Si1—O13—W3124.9 (3)
O17—W5—O1084.8 (2)W4—O13—W391.37 (19)
O8—W5—O1074.2 (2)Si1—O13—W1i123.6 (3)
O19i—W5—O1072.7 (2)W4—O13—W1i90.46 (18)
O21—W5—O1084.0 (2)W3—O13—W1i91.39 (18)
O20—W6—O21101.0 (3)W3—O14—W4118.5 (3)
O20—W6—O16102.7 (3)W6—O16—W4150.9 (3)
O21—W6—O1687.3 (3)W5—O17—W4152.4 (3)
O20—W6—O1999.3 (3)W6—O19—W5i122.0 (3)
O21—W6—O1988.2 (3)W6—O21—W5149.3 (3)
O16—W6—O19158.0 (2)H1A—O1W—H1B119 (9)
O20—W6—O6i99.9 (3)H2A—O2W—H2B117 (10)
O21—W6—O6i159.0 (2)H3A—O3W—H3B102 (6)
O16—W6—O6i87.8 (2)
Symmetry codes: (i) x+2, y, z+3/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O3W0.89 (10)2.15 (11)2.699 (11)119 (7)
O1W—H1B···O2W0.81 (9)2.31 (9)2.749 (12)115 (10)
O1W—H1B···O200.81 (9)2.54 (11)2.844 (10)104 (8)
N1—H1N···O2W0.78 (9)1.97 (9)2.754 (12)172 (14)
O3W—H3A···O180.91 (9)2.24 (10)2.878 (10)127 (9)

Experimental details

Crystal data
Chemical formula(C10H10N2)2[SiW12O40]·C10H8N2·6H2O
Mr3454.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)15.491 (5), 18.096 (5), 20.921 (5)
β (°) 100.834 (5)
V3)5760 (3)
Z4
Radiation typeMo Kα
µ (mm1)23.99
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.041, 0.095
No. of measured, independent and
observed [I > 2σ(I)] reflections
15853, 5652, 5214
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.10
No. of reflections5652
No. of parameters455
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.049P)2 + 129.9363P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.60, 3.50

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O3W0.89 (10)2.15 (11)2.699 (11)119 (7)
O1W—H1B···O2W0.81 (9)2.31 (9)2.749 (12)115 (10)
O1W—H1B···O200.81 (9)2.54 (11)2.844 (10)104 (8)
N1—H1N···O2W0.78 (9)1.97 (9)2.754 (12)172 (14)
O3W—H3A···O180.91 (9)2.24 (10)2.878 (10)127 (9)
 

Acknowledgements

The authors thank Jilin Agricultural Science and Technology College (China) for support.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHill, C. L. (1998). Chem. Rev. 98, 1–2.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKurth, D. G., Volkmer, D., Pope, M. T. & Müller, A. (2001). Polyoxometalate Chemistry, p. 301. Dordrecht: Kluwer.  Google Scholar
First citationMisono, M. (1987). Cat. Rev. Sci. Eng. 29, 269–321.  CrossRef CAS Web of Science Google Scholar
First citationPope, M. T. (1983). Heteropoly and Isopoly Oxometalates. Berlin: Springer.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRocchiccioli-Deltcheff, C., Fournier, M., Franck, R. & Thouvenot, R. (1983). Inorg. Chem. 22, 207–216.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds