organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,4,5,6-Penta­bromo­phenol

aDepartment Chemie und Biochemie, Ludwig-Maximilians-Universität, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 3 September 2008; accepted 6 September 2008; online 13 September 2008)

The title compound, C6HBr5O, is the perbrominated derivative of phenol. The mol­ecule shows non-crystallographic mirror symmetry. Bond lengths between the C and Br atoms are normal. In the crystal structure, O—H⋯O hydrogen bonds connect the mol­ecules into infinite strands. Dispersive Br⋯Br contacts are observed. No significant ππ stacking is obvious.

Related literature

For the structure of the perfluorinated derivative of phenol, see: Das et al. (2006[Das, D., Banerjee, R., Mondal, R., Howard, J. A. K., Boese, R. & Desiraju, G. R. (2006). Chem. Commun. pp. 555-557.]); Gdaniec (2007[Gdaniec, M. (2007). CrystEngComm, 9, 286-288.]). For the structure of 2,3,4,5,6-penta­chloro­phenol, see: Sakurai (1962[Sakurai, T. (1962). Acta Cryst. 15, 1164-1173.]).

[Scheme 1]

Experimental

Crystal data
  • C6HBr5O

  • Mr = 488.57

  • Monoclinic, C 2/c

  • a = 32.3058 (15) Å

  • b = 3.9957 (2) Å

  • c = 16.1887 (8) Å

  • β = 112.118 (3)°

  • V = 1935.93 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 20.70 mm−1

  • T = 200 (2) K

  • 0.28 × 0.08 × 0.05 mm

Data collection
  • Nonius Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.062, Tmax = 0.355

  • 13465 measured reflections

  • 2219 independent reflections

  • 1930 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.074

  • S = 1.03

  • 2219 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.84 2.19 2.844 (4) 134
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During efforts to obtain tetraaryloxy derivatives of orthocarbonic acid it was interesting to determine the influence of bonding to one central carbon atom on geometric parameters of the ligands. Thus the crystal structure of 2,3,4,5,6-pentabromophenol was determined.

In the molecule (Fig. 1), C—C—C angles adopt values covering a range from 119.1 (3)° on the C atom bonded to the hydroxy group to 120.7 (3)° on one of the C atoms in ortho-position to the hydroxy group. The alterations between the C—C—C angles thus are less pronounced than in the perfluorinated derivative of phenol, where the angle on the C atom bearing the hydroxy group was found at a value slightly above 116° (Gdaniec, 2007). The values more closely resemble the ones apparent in the molecular structure of the perchlorinated derivative, yet the smallest C—C—C angle is not present on the C atom bearing the hydroxy group in that compound (Sakurai, 1962).

In the crystal structure H-bonds connect the molecules to infinite strands along [010] (Fig. 2). A bifurcation of the hydrogen bond between oxygen and one of the halogen atoms in ortho-position was not observed. This is in contrast to 2,3,4,5,6–pentachlorophenol, where the presence of such a bifurcated hydrogen bond was substantiated upon nuclear quadrupole resonance spectra for the Cl atoms (Sakurai, 1962). Additionally, dispersive Br···Br interactions between the Br atoms in both meta-positions to the hydroxy group are observed. The range of these interactions falls by about 0.1 Å below the sum of van der Waals radii of the respective atoms. These connect the molecules to chains along [001]. No significant π-stacking is apparent in the crystal structure. The molecular packing is shown in Fig. 3.

Related literature top

For the structure of the perfluorinated derivative of phenol, see: Das et al. (2006); Gdaniec (2007). For the structure of 2,3,4,5,6-pentachlorophenol, see: Sakurai (1962).

Experimental top

The compound was obtained commercially from Aldrich. Crystals suitable for X-ray diffraction were obtained upon recrystallization of the compound from boiling toluene.

Refinement top

The H atom was located in a difference map and refined as riding on its parent O atom with an Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels. The displacement ellipsoids are drawn at 50% probability level. H atom is presented as a small sphere of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing diagram, viewed along [010].
2,3,4,5,6-Pentabromophenol top
Crystal data top
C6HBr5OF(000) = 1760
Mr = 488.57Dx = 3.353 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8265 reflections
a = 32.3058 (15) Åθ = 3.1–27.5°
b = 3.9957 (2) ŵ = 20.70 mm1
c = 16.1887 (8) ÅT = 200 K
β = 112.118 (3)°Rod, colourless
V = 1935.93 (17) Å30.28 × 0.08 × 0.05 mm
Z = 8
Data collection top
Nonius Kappa CCD
diffractometer
2219 independent reflections
Radiation source: Rotating anode1930 reflections with I > 2σ(I)
MONTEL, graded multilayered X-ray optics monochromatorRint = 0.054
Rotation images; thick slices scansθmax = 27.6°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 4141
Tmin = 0.062, Tmax = 0.355k = 45
13465 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: FullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0374P)2 + 5.8817P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2219 reflectionsΔρmax = 0.88 e Å3
111 parametersΔρmin = 1.02 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00087 (8)
Crystal data top
C6HBr5OV = 1935.93 (17) Å3
Mr = 488.57Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.3058 (15) ŵ = 20.70 mm1
b = 3.9957 (2) ÅT = 200 K
c = 16.1887 (8) Å0.28 × 0.08 × 0.05 mm
β = 112.118 (3)°
Data collection top
Nonius Kappa CCD
diffractometer
2219 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1930 reflections with I > 2σ(I)
Tmin = 0.062, Tmax = 0.355Rint = 0.054
13465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.03Δρmax = 0.88 e Å3
2219 reflectionsΔρmin = 1.02 e Å3
111 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.204848 (13)0.51248 (10)0.41077 (2)0.03029 (14)
Br20.096769 (13)0.38703 (10)0.36125 (2)0.02821 (13)
Br30.024427 (13)0.61492 (11)0.16493 (3)0.03106 (14)
Br40.060474 (12)0.97946 (11)0.02144 (2)0.02709 (13)
Br50.169251 (13)1.09979 (10)0.07733 (2)0.02651 (13)
O10.22213 (8)0.8423 (7)0.26447 (18)0.0289 (6)
H10.22710.96430.22700.043*
C10.17732 (11)0.7978 (9)0.2394 (2)0.0213 (7)
C20.16196 (12)0.6421 (9)0.2996 (2)0.0216 (7)
C30.11662 (12)0.5889 (9)0.2773 (2)0.0211 (7)
C40.08601 (11)0.6883 (9)0.1945 (2)0.0213 (7)
C50.10107 (12)0.8416 (8)0.1339 (2)0.0209 (7)
C60.14663 (12)0.8957 (8)0.1567 (2)0.0197 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0248 (2)0.0387 (3)0.0229 (2)0.00504 (16)0.00385 (16)0.00541 (16)
Br20.0300 (2)0.0331 (2)0.0244 (2)0.00243 (15)0.01352 (16)0.00349 (14)
Br30.0171 (2)0.0443 (3)0.0318 (2)0.00324 (15)0.00924 (16)0.00412 (16)
Br40.0201 (2)0.0377 (2)0.0212 (2)0.00309 (15)0.00524 (15)0.00423 (14)
Br50.0238 (2)0.0331 (2)0.0255 (2)0.00301 (14)0.01252 (16)0.00230 (14)
O10.0160 (12)0.0393 (16)0.0315 (14)0.0005 (11)0.0091 (11)0.0025 (12)
C10.0146 (16)0.0222 (16)0.0260 (17)0.0013 (14)0.0066 (13)0.0031 (14)
C20.0188 (18)0.0236 (18)0.0201 (16)0.0003 (14)0.0048 (13)0.0015 (13)
C30.0237 (19)0.0211 (16)0.0208 (17)0.0001 (13)0.0110 (14)0.0028 (13)
C40.0146 (16)0.0261 (17)0.0244 (17)0.0029 (14)0.0087 (13)0.0038 (14)
C50.0196 (17)0.0237 (17)0.0184 (15)0.0001 (14)0.0061 (13)0.0027 (13)
C60.0213 (17)0.0215 (17)0.0207 (16)0.0026 (14)0.0129 (13)0.0009 (13)
Geometric parameters (Å, º) top
Br1—C21.884 (3)C1—C61.389 (5)
Br2—C31.888 (4)C1—C21.395 (5)
Br3—C41.886 (3)C2—C31.387 (5)
Br4—C51.882 (3)C3—C41.391 (5)
Br5—C61.886 (4)C4—C51.390 (5)
O1—C11.360 (4)C5—C61.393 (5)
O1—H10.8400
C1—O1—H1109.5C5—C4—C3119.7 (3)
O1—C1—C6122.9 (3)C5—C4—Br3120.4 (2)
O1—C1—C2117.9 (3)C3—C4—Br3120.0 (3)
C6—C1—C2119.1 (3)C4—C5—C6119.8 (3)
C3—C2—C1120.3 (3)C4—C5—Br4120.7 (3)
C3—C2—Br1122.1 (3)C6—C5—Br4119.5 (3)
C1—C2—Br1117.6 (3)C1—C6—C5120.7 (3)
C2—C3—C4120.4 (3)C1—C6—Br5117.4 (3)
C2—C3—Br2119.3 (3)C5—C6—Br5121.9 (3)
C4—C3—Br2120.3 (3)
O1—C1—C2—C3179.7 (3)C3—C4—C5—C60.2 (5)
C6—C1—C2—C30.6 (5)Br3—C4—C5—C6179.7 (3)
O1—C1—C2—Br10.7 (4)C3—C4—C5—Br4179.9 (3)
C6—C1—C2—Br1179.8 (3)Br3—C4—C5—Br40.1 (4)
C1—C2—C3—C40.4 (5)O1—C1—C6—C5179.4 (3)
Br1—C2—C3—C4180.0 (3)C2—C1—C6—C50.4 (5)
C1—C2—C3—Br2178.5 (3)O1—C1—C6—Br50.2 (5)
Br1—C2—C3—Br21.1 (4)C2—C1—C6—Br5179.2 (3)
C2—C3—C4—C50.0 (5)C4—C5—C6—C10.0 (5)
Br2—C3—C4—C5178.9 (3)Br4—C5—C6—C1179.7 (3)
C2—C3—C4—Br3179.9 (3)C4—C5—C6—Br5179.6 (3)
Br2—C3—C4—Br31.1 (4)Br4—C5—C6—Br50.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.842.192.844 (4)134
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6HBr5O
Mr488.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)32.3058 (15), 3.9957 (2), 16.1887 (8)
β (°) 112.118 (3)
V3)1935.93 (17)
Z8
Radiation typeMo Kα
µ (mm1)20.70
Crystal size (mm)0.28 × 0.08 × 0.05
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.062, 0.355
No. of measured, independent and
observed [I > 2σ(I)] reflections
13465, 2219, 1930
Rint0.054
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.03
No. of reflections2219
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 1.02

Computer programs: COLLECT (Nonius, 2004), DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.842.192.844 (4)134.1
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Peter Mayer for professional support.

References

First citationDas, D., Banerjee, R., Mondal, R., Howard, J. A. K., Boese, R. & Desiraju, G. R. (2006). Chem. Commun. pp. 555–557.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGdaniec, M. (2007). CrystEngComm, 9, 286–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSakurai, T. (1962). Acta Cryst. 15, 1164–1173.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds