organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1984-o1985

A P,O,P′-tridentate mixed-donor scorpionate ligand: 6-[4,6-bis­­(di­phenyl­phosphino)-10H-phenoxazin-10-yl]hexan-1-ol

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: bala@ukzn.ac.za

(Received 3 July 2008; accepted 18 September 2008; online 20 September 2008)

The title compound, C42H39NO2P2, is a P,O,P′-tridentate scorpionate-type ligand and has one mol­ecule in the asymmetric unit. The angles involving the P atoms range from 100.21 (7) to 104.89 (7)°. The N-hexa­nol group was found to be disordered and was refined over two positions with final occupancies of 0.683 (3) and 0.317 (3) which affected the C—O and C—N bond lengths. The bond lengths for C—O range from 1.402 (2) to 1.415 (2) Å and for C—N from 1.410 (2) to 1.448 (3) Å for the major disorder component; the corresponding ranges for the minor disorder component are 1.429 (3)–1.408 (3) and 1.474 (3)–1.474 (4) Å.

Related literature

For scorpionate type ligands based on the nixantphos backbone, see: Marimuthu et al. (2008a[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008a). Acta Cryst. E64, o772.],b[Marimuthu, T., Bala, M. D. & Friedrich, H. B. (2008b). Acta Cryst. E64, o711.]). For scorpionate ligands, see: Pettinari, (2004[Pettinari, C. (2004). Chim. Ind. 12, 110-118.]); Trofimenko (1993[Trofimenko, S. (1993). Chem. Rev. 93, 943-980.]); Leung, (2007[Leung, W. (2007). Coord. Chem. Rev. 251, 2266-2279.]); Mayer et al. (1994[Mayer, H. A., Otto, H., Kuhbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem. 472, 347-354.]). For hydrogen bonding, see: Chen & Craven (1995[Chen, L. & Craven, B. M. (1995). Acta Cryst. B51, 1081-1097.]); Monge et al. (1978[Monge, A., Martínez-Ripoll, M. & García-Blanco, S. (1978). Acta Cryst. B34, 2847-2850.]). For details of the synthesis, see: Reymond et al. (1996[Reymond, J. L., Koch, T., Schroer, J. & Tierney, E. (1996). Proc. Natl Acad. Sci. USA, 93, 4251-4256.]); Van der Veen et al. (2000[Van der Veen, L. A., Keeven, P. H., Schoemaker, G. C., Reek, J. N. H., Kamer, P. C. J., van Leeuwen, P., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 872-883.]). For a related structure, see: Osiński et al. (2005[Osiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115-o3116.]).

[Scheme 1]

Experimental

Crystal data
  • C42H39NO2P2

  • Mr = 651.68

  • Triclinic, [P \overline 1]

  • a = 10.4258 (2) Å

  • b = 11.1402 (3) Å

  • c = 15.3590 (4) Å

  • α = 75.777 (1)°

  • β = 88.583 (1)°

  • γ = 79.453 (2)°

  • V = 1699.60 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 173 (2) K

  • 0.51 × 0.31 × 0.29 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 30269 measured reflections

  • 8211 independent reflections

  • 6458 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.08

  • 8211 reflections

  • 489 parameters

  • 115 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was synthesized as part of our on going investigation of scorpionate type ligands based on the nixantphos backbone (Marimuthu et al.,2008a,b). Scorpionate ligands coordinate to metal centres to give unique types of coordination compounds. These compounds exhibit a characteristic type of geometry, enforced by the pincers and the third donor which comes across the plane (formed by metal and pincers) to coordinate to the metal (Pettinari, 2004). The common feature of most scorpionate ligands is that they uniformly contain a single type of donor atom, typically N– (Trofimenko, 1993), O– (Leung, 2007), or P– (Mayer et al., 1994). In contrast, this research is focused on the preparation of chelating P-donor ligands based on a nixantphos backbone functionalized by various hard and soft donors that serve as the third binding site of the ligands. The funtionalized N-hexanol group was found to be disordered and was refined over two positions with final occupancies of 0.68 and 0.32. If the nixantphos moiety is considered as the 'head' of the compound (I) and the hexanol chain as its 'tail', then the packing in (I) can be described as stacked in a 'head' to 'tail' arrangement. Due to this arrangement several intermolecular interactions especially of type O2—H···O1 are observed between the 'heads' and 'tails' of adjacent molecules. The H···O1 interatomic lengths range from 2.733 to 3.346 Å. Although these are unusually long for classical hydrogen bonding (Chen and Craven, 1995; Monge et al., 1978), the interactions are significant in maintaining the integrity of the disordered crystal structure. The bond angles involving the P atoms range from 100.21 (7) ° to 104.89 (7) °.

Related literature top

For scorpionate type ligands based on the nixantphos backbone, see: Marimuthu et al. (2008a,b). For scorionate ligands, see: Pettinari, (2004); Trofimenko (1993); Leung, (2007); Mayer et al. (1994). For hydrogen bonding, see: Chen & Craven (1995); Monge et al. (1978). For details of the synthesis, see: Reymond et al. (1996); Van der Veen et al. (2000). For a related structure, see: Osiński et al. (2005).

Experimental top

A two part synthesis involving: a) alkylation (Reymond et al., 1996), and b) deprotection (van der Veen et al., 2000) was adapted from literature. Nixantphos (0.20 g, 0.36 mmol) was dissolved in 4 ml of dry DMF to which NaH (0.22 g, 0.54 millimol, 60% dispersed in mineral oil) was added, followed by the addition of (6-bromohexyloxy)(tertbutyl)dimethylsilane (0.18 g, 0.63 millimol). The resulting mixture was stirred overnight at 100 °C. The reaction was cooled to room temperature and hydrolysed with 10 ml of water. The organic phase was extracted with 4 x 15 ml ethyl acetate and the combined fractions dried over sodium sulfate. Thereafter the solvent was removed in vacuo and the residue chromatographed with 10% hexane/ethyl acetate to give the protected precursor of the title compound (I). The precursor was dissolved in 25 ml THF, and 2.5 equivalents of tetra-n-butylammoniumflouride trihydrate was added. The reaction was left to stir overnight at room temperature and was followed by aqueous work-up. The resulting crude product of compound (I) was chromatographed with 20% hexane/ethyl acetate and recrystalized from a solution of dichloromethane/ethanol (1:1) to yield 23% of pale yellow crystals of pure (I). m.p. 440–441 K.

Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, δ, p.p.m): = 1.67–1.24 (m, CH2), 3.46 (t, CH2OH), 3.65 (t, NCH2),5.97 (d, 2H; J(H,H) = 7.8 Hz), 6.41 (d, 2H; J(H,H) = 7.8 Hz), 6.64 (t, 2H; J(H,H) = 7.8 Hz), 7.20–7.18 (m, 20H).

13C NMR (400 MHz, CDCl3, δ, p.p.m): = 24.9 (CH2),25.8 (CH2), 27.0 (CH2), 32.9 (CH2), 44.8 (CH2), 63.0 (OCH2), 111.7 (CH), 123.6, 125.1 (CH), 128.1 (CH), 128.1 (CH), 128.1 (CH), 128.2 (CH), 134.0 (m, CH), 137.0 (t, C), 147.1 (t, CO).

31P NMR (600 MHz, CDCl3, δ, p.p.m): = -19.2.

MS m/z -[fragment]-(%): 651.2485 –[M] – (34%), calculated = 651.25 for C42H39NO2P2.

FTIR: cm-1 = 3582(s, OH), 3043(m), 3047(m), 2919(m), 2848(m), 1943(m), 1874(m), 1803(m), 1574(s), 1545(s), 1550(w), 1459, 1414(s), 1375(s), 1269(w), 1224(m), 1176(s), 1089 (CO), 742(s), 692(s).

Refinement top

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculations based on F2 using SHELXTL. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms. The N-hexanol group was found to be disordered and was refined over two positions using a combination of SADI, SAME, DELU and SIMU restraints, with final occupancies of 0.683 (3) and 0.317 (3).

All hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms (C — H = 0.95 - 0.99 Å) with Uiso(H) = 1.2 Ueq(C) for aryl H or 1.5 Ueq(C) for alkyl.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex. Thermal ellipsoids are shown at 50% probability levels.
6-[4,6-bis(diphenylphosphino)-10H-phenoxazin-10-yl]hexan-1-ol top
Crystal data top
C42H39NO2P2Z = 2
Mr = 651.68F(000) = 688
Triclinic, P1Dx = 1.273 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.4258 (2) ÅCell parameters from 5800 reflections
b = 11.1402 (3) Åθ = 2.4–28.4°
c = 15.3590 (4) ŵ = 0.17 mm1
α = 75.777 (1)°T = 173 K
β = 88.583 (1)°Prismic, yellow
γ = 79.453 (2)°0.51 × 0.31 × 0.29 mm
V = 1699.60 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 28.0°, θmin = 1.4°
ϕ and ω scansh = 1313
30269 measured reflectionsk = 1414
8211 independent reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.218P]
where P = (Fo2 + 2Fc2)/3
8211 reflections(Δ/σ)max = 0.001
489 parametersΔρmax = 0.42 e Å3
115 restraintsΔρmin = 0.30 e Å3
Crystal data top
C42H39NO2P2γ = 79.453 (2)°
Mr = 651.68V = 1699.60 (7) Å3
Triclinic, P1Z = 2
a = 10.4258 (2) ÅMo Kα radiation
b = 11.1402 (3) ŵ = 0.17 mm1
c = 15.3590 (4) ÅT = 173 K
α = 75.777 (1)°0.51 × 0.31 × 0.29 mm
β = 88.583 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6458 reflections with I > 2σ(I)
30269 measured reflectionsRint = 0.043
8211 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042115 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.08Δρmax = 0.42 e Å3
8211 reflectionsΔρmin = 0.30 e Å3
489 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.10850 (18)0.95659 (15)0.14870 (12)0.0403 (4)
C20.04581 (16)1.07476 (14)0.15453 (11)0.0341 (4)
H20.05601.14690.10870.041*
C30.03150 (17)1.08802 (15)0.22679 (12)0.0386 (4)
H30.07291.16980.23070.046*
C40.04999 (17)0.98523 (15)0.29330 (12)0.0363 (4)
H40.10370.99650.34260.044*
C50.00996 (14)0.86440 (13)0.28850 (10)0.0263 (3)
C60.08763 (16)0.85335 (14)0.21642 (12)0.0348 (4)
C70.21739 (16)0.71321 (15)0.14128 (11)0.0338 (4)
C80.26737 (14)0.58992 (14)0.14232 (10)0.0261 (3)
C90.34299 (16)0.56684 (16)0.07008 (11)0.0350 (4)
H90.37940.48270.06870.042*
C100.36543 (17)0.66473 (17)0.00077 (11)0.0381 (4)
H100.41690.64740.04810.046*
C110.31406 (16)0.78831 (16)0.00116 (11)0.0347 (4)
H110.32970.85510.04740.042*
C120.23980 (18)0.81449 (15)0.07248 (12)0.0393 (4)
C130.2513 (3)1.0437 (2)0.02672 (16)0.0311 (6)0.683 (3)
H13A0.34081.01480.00800.037*0.683 (3)
H13B0.25611.10770.06070.037*0.683 (3)
C140.1672 (2)1.1065 (2)0.05704 (17)0.0350 (6)0.683 (3)
H14A0.07661.13360.03940.042*0.683 (3)
H14B0.16581.04490.09360.042*0.683 (3)
C150.2183 (2)1.2209 (2)0.11373 (16)0.0357 (6)0.683 (3)
H15A0.15201.26850.16060.043*0.683 (3)
H15B0.23041.27700.07480.043*0.683 (3)
C160.3457 (4)1.1862 (4)0.1583 (3)0.0408 (10)0.683 (3)
H16A0.41211.14000.11110.049*0.683 (3)
H16B0.33381.12830.19590.049*0.683 (3)
C170.3969 (4)1.2969 (4)0.2162 (3)0.0381 (11)0.683 (3)
H17A0.41471.35140.17750.046*0.683 (3)
H17B0.32761.34670.26020.046*0.683 (3)
C13B0.1715 (5)1.0427 (5)0.0122 (3)0.0339 (12)0.317 (3)
H13C0.09171.10850.02220.041*0.317 (3)
H13D0.18961.01510.06850.041*0.317 (3)
C14B0.2856 (6)1.0974 (6)0.0113 (4)0.0476 (15)0.317 (3)
H14C0.36531.03170.01930.057*0.317 (3)
H14D0.26861.12050.06930.057*0.317 (3)
C15B0.3105 (7)1.2130 (5)0.0593 (4)0.0532 (17)0.317 (3)
H15C0.22551.26770.08020.064*0.317 (3)
H15D0.36041.26100.03060.064*0.317 (3)
C16B0.3839 (9)1.1846 (9)0.1399 (5)0.045 (2)0.317 (3)
H16C0.32851.14910.17470.054*0.317 (3)
H16D0.46331.12060.11930.054*0.317 (3)
C17B0.4226 (10)1.3013 (9)0.1998 (7)0.045 (3)0.317 (3)
H17C0.34431.35780.23160.054*0.317 (3)
H17D0.46181.34730.16300.054*0.317 (3)
C180.51909 (17)1.26407 (17)0.26682 (12)0.0400 (4)
H18A0.59141.21740.22420.048*
H18B0.50381.21050.30690.048*
C210.14465 (15)0.69008 (15)0.43719 (10)0.0297 (3)
C220.20133 (17)0.56556 (16)0.47588 (11)0.0374 (4)
H220.16180.49910.46670.045*
C230.31469 (19)0.5377 (2)0.52756 (12)0.0483 (5)
H230.35250.45240.55360.058*
C240.37245 (18)0.6324 (2)0.54126 (13)0.0506 (5)
H240.45100.61270.57610.061*
C250.31694 (18)0.7565 (2)0.50468 (14)0.0477 (5)
H250.35590.82210.51580.057*
C260.20443 (16)0.78555 (17)0.45171 (12)0.0390 (4)
H260.16800.87110.42520.047*
C310.12692 (15)0.78316 (14)0.44558 (11)0.0289 (3)
C320.09950 (16)0.80924 (17)0.52627 (11)0.0360 (4)
H320.01150.79570.54670.043*
C330.19952 (19)0.85480 (18)0.57712 (13)0.0447 (4)
H330.17960.87200.63230.054*
C340.32668 (19)0.87525 (19)0.54871 (13)0.0488 (5)
H340.39480.90590.58420.059*
C350.35526 (18)0.8513 (2)0.46878 (15)0.0544 (5)
H350.44330.86690.44810.065*
C360.25611 (17)0.80432 (19)0.41813 (13)0.0443 (4)
H360.27710.78620.36340.053*
C410.35700 (14)0.33337 (13)0.22967 (10)0.0259 (3)
C420.32873 (17)0.22495 (15)0.21177 (11)0.0332 (4)
H420.24190.22230.19600.040*
C430.42648 (18)0.11970 (16)0.21672 (12)0.0401 (4)
H430.40580.04590.20430.048*
C440.55208 (18)0.12183 (16)0.23939 (12)0.0402 (4)
H440.61820.04960.24310.048*
C450.58230 (17)0.22873 (16)0.25679 (12)0.0384 (4)
H450.66950.23050.27210.046*
C460.48592 (15)0.33387 (15)0.25208 (11)0.0327 (4)
H460.50780.40730.26430.039*
C510.08077 (14)0.43856 (13)0.20881 (11)0.0278 (3)
C520.01832 (16)0.43793 (14)0.27117 (12)0.0335 (4)
H520.00060.44600.32960.040*
C530.14243 (16)0.42574 (15)0.24918 (13)0.0397 (4)
H530.20930.42570.29240.048*
C540.16890 (17)0.41373 (16)0.16488 (13)0.0416 (4)
H540.25460.40740.14930.050*
C550.07114 (17)0.41088 (16)0.10282 (12)0.0381 (4)
H550.08910.40020.04510.046*
C560.05286 (16)0.42354 (15)0.12440 (11)0.0334 (4)
H560.11960.42200.08120.040*
N10.2074 (2)0.93759 (18)0.08664 (16)0.0336 (6)0.683 (3)
N1B0.1493 (5)0.9347 (3)0.0605 (2)0.0303 (12)0.317 (3)
O10.1616 (2)0.73286 (17)0.22274 (13)0.0313 (5)0.683 (3)
O1B0.1088 (4)0.7331 (3)0.1957 (3)0.0310 (11)0.317 (3)
O20.55085 (14)1.37799 (13)0.31765 (9)0.0533 (4)
H2A0.61551.36240.34950.080*
P10.00697 (4)0.71914 (4)0.37224 (3)0.02700 (11)
P20.23648 (4)0.46903 (3)0.24223 (3)0.02641 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (10)0.0244 (8)0.0439 (10)0.0034 (7)0.0186 (8)0.0049 (7)
C20.0402 (9)0.0205 (7)0.0384 (9)0.0043 (6)0.0050 (7)0.0023 (6)
C30.0459 (10)0.0220 (7)0.0445 (10)0.0017 (7)0.0055 (8)0.0081 (7)
C40.0406 (9)0.0274 (8)0.0384 (9)0.0002 (7)0.0085 (7)0.0088 (7)
C50.0253 (7)0.0235 (7)0.0288 (8)0.0030 (6)0.0007 (6)0.0053 (6)
C60.0393 (9)0.0198 (7)0.0409 (9)0.0003 (6)0.0120 (7)0.0045 (7)
C70.0366 (9)0.0267 (8)0.0364 (9)0.0040 (6)0.0157 (7)0.0074 (7)
C80.0260 (7)0.0249 (7)0.0275 (8)0.0038 (6)0.0012 (6)0.0075 (6)
C90.0390 (9)0.0311 (8)0.0328 (9)0.0021 (7)0.0051 (7)0.0106 (7)
C100.0397 (9)0.0426 (9)0.0305 (9)0.0024 (7)0.0097 (7)0.0109 (7)
C110.0372 (9)0.0347 (8)0.0301 (8)0.0071 (7)0.0086 (7)0.0044 (7)
C120.0458 (10)0.0259 (8)0.0433 (10)0.0056 (7)0.0181 (8)0.0055 (7)
C130.0376 (14)0.0273 (12)0.0290 (12)0.0123 (10)0.0002 (10)0.0036 (9)
C140.0378 (13)0.0321 (13)0.0327 (13)0.0079 (10)0.0005 (10)0.0024 (10)
C150.0464 (14)0.0261 (11)0.0297 (12)0.0035 (10)0.0017 (10)0.0000 (9)
C160.052 (2)0.0308 (15)0.0396 (17)0.0127 (14)0.0084 (15)0.0063 (13)
C170.058 (2)0.0271 (15)0.0310 (17)0.0115 (14)0.0083 (16)0.0093 (12)
C13B0.045 (3)0.029 (3)0.027 (3)0.009 (2)0.006 (2)0.004 (2)
C14B0.055 (3)0.049 (3)0.049 (3)0.028 (3)0.013 (3)0.018 (2)
C15B0.069 (4)0.045 (3)0.057 (3)0.031 (3)0.026 (3)0.023 (2)
C16B0.057 (5)0.037 (3)0.050 (4)0.022 (3)0.014 (3)0.019 (3)
C17B0.064 (5)0.041 (4)0.039 (4)0.025 (3)0.012 (4)0.017 (3)
C180.0402 (9)0.0393 (9)0.0395 (10)0.0092 (7)0.0001 (7)0.0059 (8)
C210.0262 (7)0.0312 (8)0.0290 (8)0.0011 (6)0.0053 (6)0.0057 (6)
C220.0415 (9)0.0339 (9)0.0318 (9)0.0008 (7)0.0040 (7)0.0044 (7)
C230.0465 (11)0.0516 (11)0.0336 (10)0.0133 (9)0.0009 (8)0.0020 (8)
C240.0333 (9)0.0767 (15)0.0350 (10)0.0043 (9)0.0031 (8)0.0111 (10)
C250.0340 (9)0.0641 (13)0.0479 (11)0.0133 (9)0.0014 (8)0.0162 (10)
C260.0308 (8)0.0389 (9)0.0453 (10)0.0067 (7)0.0012 (7)0.0066 (8)
C310.0263 (7)0.0265 (7)0.0324 (8)0.0051 (6)0.0054 (6)0.0049 (6)
C320.0313 (8)0.0427 (9)0.0333 (9)0.0058 (7)0.0034 (7)0.0087 (7)
C330.0479 (11)0.0519 (11)0.0355 (10)0.0082 (9)0.0119 (8)0.0147 (8)
C340.0414 (10)0.0536 (11)0.0462 (11)0.0011 (8)0.0195 (9)0.0098 (9)
C350.0274 (9)0.0783 (15)0.0539 (12)0.0019 (9)0.0074 (8)0.0157 (11)
C360.0285 (9)0.0632 (12)0.0427 (10)0.0077 (8)0.0024 (7)0.0167 (9)
C410.0309 (8)0.0223 (7)0.0228 (7)0.0006 (6)0.0019 (6)0.0055 (6)
C420.0385 (9)0.0286 (8)0.0331 (9)0.0023 (6)0.0054 (7)0.0110 (7)
C430.0545 (11)0.0266 (8)0.0395 (10)0.0015 (7)0.0046 (8)0.0146 (7)
C440.0431 (10)0.0333 (9)0.0378 (9)0.0110 (7)0.0022 (8)0.0099 (7)
C450.0295 (8)0.0385 (9)0.0420 (10)0.0003 (7)0.0021 (7)0.0050 (8)
C460.0323 (8)0.0280 (8)0.0368 (9)0.0044 (6)0.0014 (7)0.0067 (7)
C510.0272 (7)0.0208 (7)0.0320 (8)0.0009 (6)0.0008 (6)0.0027 (6)
C520.0372 (9)0.0241 (7)0.0385 (9)0.0036 (6)0.0081 (7)0.0087 (7)
C530.0324 (9)0.0288 (8)0.0566 (12)0.0050 (7)0.0129 (8)0.0094 (8)
C540.0313 (9)0.0296 (8)0.0584 (12)0.0061 (7)0.0049 (8)0.0002 (8)
C550.0410 (10)0.0333 (9)0.0353 (9)0.0093 (7)0.0087 (7)0.0032 (7)
C560.0347 (8)0.0316 (8)0.0296 (8)0.0061 (7)0.0011 (7)0.0003 (7)
N10.0397 (13)0.0247 (10)0.0343 (12)0.0076 (9)0.0098 (11)0.0031 (8)
N1B0.034 (3)0.022 (2)0.033 (3)0.0073 (18)0.013 (2)0.0041 (18)
O10.0354 (12)0.0214 (8)0.0294 (11)0.0051 (8)0.0100 (9)0.0005 (7)
O1B0.027 (2)0.0205 (18)0.038 (3)0.0042 (17)0.0124 (19)0.0000 (17)
O20.0518 (8)0.0506 (8)0.0500 (8)0.0079 (6)0.0098 (6)0.0001 (6)
P10.0266 (2)0.02380 (19)0.0298 (2)0.00413 (15)0.00407 (15)0.00582 (16)
P20.0285 (2)0.02239 (19)0.0277 (2)0.00139 (14)0.00210 (15)0.00764 (15)
Geometric parameters (Å, º) top
C1—C21.381 (2)C16B—H16D0.9900
C1—C61.394 (2)C17B—C181.500 (5)
C1—N11.410 (2)C17B—H17C0.9900
C1—N1B1.474 (3)C17B—H17D0.9900
C2—C31.377 (2)C18—O21.408 (2)
C2—H20.9500C18—H18A0.9900
C3—C41.374 (2)C18—H18B0.9900
C3—H30.9500C21—C261.391 (2)
C4—C51.395 (2)C21—C221.392 (2)
C4—H40.9500C21—P11.8250 (16)
C5—C61.372 (2)C22—C231.384 (3)
C5—P11.8370 (15)C22—H220.9500
C6—O11.402 (2)C23—C241.366 (3)
C6—O1B1.429 (3)C23—H230.9500
C7—C81.373 (2)C24—C251.380 (3)
C7—C121.394 (2)C24—H240.9500
C7—O1B1.408 (3)C25—C261.386 (2)
C7—O11.415 (2)C25—H250.9500
C8—C91.393 (2)C26—H260.9500
C8—P21.8414 (15)C31—C361.382 (2)
C9—C101.374 (2)C31—C321.388 (2)
C9—H90.9500C31—P11.8275 (16)
C10—C111.384 (2)C32—C331.384 (2)
C10—H100.9500C32—H320.9500
C11—C121.385 (2)C33—C341.367 (3)
C11—H110.9500C33—H330.9500
C12—N11.420 (2)C34—C351.369 (3)
C12—N1B1.464 (3)C34—H340.9500
C13—N11.448 (3)C35—C361.382 (3)
C13—C141.517 (3)C35—H350.9500
C13—H13A0.9900C36—H360.9500
C13—H13B0.9900C41—C421.385 (2)
C14—C151.532 (3)C41—C461.397 (2)
C14—H14A0.9900C41—P21.8264 (14)
C14—H14B0.9900C42—C431.393 (2)
C15—C161.510 (4)C42—H420.9500
C15—H15A0.9900C43—C441.369 (3)
C15—H15B0.9900C43—H430.9500
C16—C171.508 (3)C44—C451.374 (3)
C16—H16A0.9900C44—H440.9500
C16—H16B0.9900C45—C461.385 (2)
C17—C181.510 (3)C45—H450.9500
C17—H17A0.9900C46—H460.9500
C17—H17B0.9900C51—C521.391 (2)
C13B—N1B1.474 (4)C51—C561.392 (2)
C13B—C14B1.520 (5)C51—P21.8284 (16)
C13B—H13C0.9900C52—C531.384 (2)
C13B—H13D0.9900C52—H520.9500
C14B—C15B1.524 (5)C53—C541.374 (3)
C14B—H14C0.9900C53—H530.9500
C14B—H14D0.9900C54—C551.380 (3)
C15B—C16B1.508 (5)C54—H540.9500
C15B—H15C0.9900C55—C561.383 (2)
C15B—H15D0.9900C55—H550.9500
C16B—C17B1.512 (5)C56—H560.9500
C16B—H16C0.9900O2—H2A0.8400
C2—C1—C6117.85 (15)C16B—C17B—H17C109.8
C2—C1—N1122.95 (16)C18—C17B—H17D109.8
C6—C1—N1118.37 (15)C16B—C17B—H17D109.8
C2—C1—N1B119.71 (19)H17C—C17B—H17D108.2
C6—C1—N1B117.95 (19)O2—C18—C17B105.1 (4)
C3—C2—C1120.00 (15)O2—C18—C17107.4 (2)
C3—C2—H2120.0O2—C18—H18A110.2
C1—C2—H2120.0C17B—C18—H18A98.1
C4—C3—C2121.30 (15)C17—C18—H18A110.2
C4—C3—H3119.4O2—C18—H18B110.2
C2—C3—H3119.4C17B—C18—H18B123.7
C3—C4—C5120.09 (15)C17—C18—H18B110.2
C3—C4—H4120.0H18A—C18—H18B108.5
C5—C4—H4120.0C26—C21—C22118.56 (15)
C6—C5—C4117.69 (14)C26—C21—P1123.49 (12)
C6—C5—P1117.70 (11)C22—C21—P1117.93 (13)
C4—C5—P1124.60 (12)C23—C22—C21120.57 (18)
C5—C6—C1123.05 (14)C23—C22—H22119.7
C5—C6—O1114.86 (15)C21—C22—H22119.7
C1—C6—O1121.33 (15)C24—C23—C22120.29 (18)
C5—C6—O1B115.83 (19)C24—C23—H23119.9
C1—C6—O1B117.6 (2)C22—C23—H23119.9
C8—C7—C12123.22 (14)C23—C24—C25120.13 (18)
C8—C7—O1B115.96 (19)C23—C24—H24119.9
C12—C7—O1B117.7 (2)C25—C24—H24119.9
C8—C7—O1115.02 (15)C24—C25—C26120.11 (19)
C12—C7—O1120.76 (15)C24—C25—H25119.9
C7—C8—C9117.48 (14)C26—C25—H25119.9
C7—C8—P2117.19 (11)C25—C26—C21120.32 (17)
C9—C8—P2125.24 (11)C25—C26—H26119.8
C10—C9—C8120.60 (15)C21—C26—H26119.8
C10—C9—H9119.7C36—C31—C32118.01 (15)
C8—C9—H9119.7C36—C31—P1116.18 (13)
C9—C10—C11120.92 (15)C32—C31—P1125.79 (12)
C9—C10—H10119.5C33—C32—C31120.40 (16)
C11—C10—H10119.5C33—C32—H32119.8
C10—C11—C12119.90 (15)C31—C32—H32119.8
C10—C11—H11120.1C34—C33—C32120.68 (18)
C12—C11—H11120.1C34—C33—H33119.7
C11—C12—C7117.88 (14)C32—C33—H33119.7
C11—C12—N1122.58 (16)C33—C34—C35119.63 (17)
C7—C12—N1118.43 (16)C33—C34—H34120.2
C11—C12—N1B119.68 (19)C35—C34—H34120.2
C7—C12—N1B118.50 (19)C34—C35—C36120.06 (18)
N1—C13—C14115.7 (2)C34—C35—H35120.0
N1—C13—H13A108.4C36—C35—H35120.0
C14—C13—H13A108.4C35—C36—C31121.21 (18)
N1—C13—H13B108.4C35—C36—H36119.4
C14—C13—H13B108.4C31—C36—H36119.4
H13A—C13—H13B107.4C42—C41—C46118.02 (14)
C13—C14—C15111.7 (2)C42—C41—P2125.36 (12)
C13—C14—H14A109.3C46—C41—P2116.03 (11)
C15—C14—H14A109.3C41—C42—C43120.58 (16)
C13—C14—H14B109.3C41—C42—H42119.7
C15—C14—H14B109.3C43—C42—H42119.7
H14A—C14—H14B107.9C44—C43—C42120.48 (16)
C16—C15—C14113.2 (2)C44—C43—H43119.8
C16—C15—H15A108.9C42—C43—H43119.8
C14—C15—H15A108.9C43—C44—C45119.83 (15)
C16—C15—H15B108.9C43—C44—H44120.1
C14—C15—H15B108.9C45—C44—H44120.1
H15A—C15—H15B107.7C44—C45—C46120.17 (16)
C17—C16—C15114.4 (3)C44—C45—H45119.9
C17—C16—H16A108.7C46—C45—H45119.9
C15—C16—H16A108.7C45—C46—C41120.91 (15)
C17—C16—H16B108.7C45—C46—H46119.5
C15—C16—H16B108.7C41—C46—H46119.5
H16A—C16—H16B107.6C52—C51—C56118.34 (15)
C16—C17—C18115.4 (3)C52—C51—P2116.88 (12)
C16—C17—H17A108.4C56—C51—P2124.67 (12)
C18—C17—H17A108.4C53—C52—C51120.89 (16)
C16—C17—H17B108.4C53—C52—H52119.6
C18—C17—H17B108.4C51—C52—H52119.6
H17A—C17—H17B107.5C54—C53—C52119.95 (16)
N1B—C13B—C14B111.0 (5)C54—C53—H53120.0
N1B—C13B—H13C109.4C52—C53—H53120.0
C14B—C13B—H13C109.4C53—C54—C55120.06 (16)
N1B—C13B—H13D109.4C53—C54—H54120.0
C14B—C13B—H13D109.4C55—C54—H54120.0
H13C—C13B—H13D108.0C54—C55—C56120.15 (17)
C13B—C14B—C15B113.8 (4)C54—C55—H55119.9
C13B—C14B—H14C108.8C56—C55—H55119.9
C15B—C14B—H14C108.8C55—C56—C51120.58 (16)
C13B—C14B—H14D108.8C55—C56—H56119.7
C15B—C14B—H14D108.8C51—C56—H56119.7
H14C—C14B—H14D107.7C1—N1—C12116.48 (16)
C16B—C15B—C14B114.8 (5)C1—N1—C13120.66 (18)
C16B—C15B—H15C108.6C12—N1—C13121.43 (18)
C14B—C15B—H15C108.6C12—N1B—C13B119.2 (3)
C16B—C15B—H15D108.6C12—N1B—C1109.9 (3)
C14B—C15B—H15D108.6C13B—N1B—C1118.8 (3)
H15C—C15B—H15D107.5C6—O1—C7114.79 (16)
C15B—C16B—C17B111.7 (5)C7—O1B—C6113.6 (3)
C15B—C16B—H16C109.3C18—O2—H2A109.5
C17B—C16B—H16C109.3C21—P1—C31102.21 (7)
C15B—C16B—H16D109.3C21—P1—C5100.61 (7)
C17B—C16B—H16D109.3C31—P1—C5100.22 (7)
H16C—C16B—H16D107.9C41—P2—C51104.89 (7)
C18—C17B—C16B109.4 (5)C41—P2—C8101.27 (7)
C18—C17B—H17C109.8C51—P2—C8100.21 (7)
C6—C1—C2—C31.7 (3)C43—C44—C45—C460.5 (3)
N1—C1—C2—C3167.7 (2)C44—C45—C46—C410.0 (3)
N1B—C1—C2—C3157.4 (3)C42—C41—C46—C450.4 (2)
C1—C2—C3—C41.2 (3)P2—C41—C46—C45171.23 (13)
C2—C3—C4—C50.0 (3)C56—C51—C52—C531.5 (2)
C3—C4—C5—C60.7 (3)P2—C51—C52—C53174.79 (12)
C3—C4—C5—P1179.70 (14)C51—C52—C53—C540.2 (2)
C4—C5—C6—C10.1 (3)C52—C53—C54—C551.5 (2)
P1—C5—C6—C1179.75 (15)C53—C54—C55—C561.8 (2)
C4—C5—C6—O1170.02 (18)C54—C55—C56—C510.4 (2)
P1—C5—C6—O19.6 (2)C52—C51—C56—C551.3 (2)
C4—C5—C6—O1B158.4 (3)P2—C51—C56—C55174.75 (12)
P1—C5—C6—O1B22.0 (3)C2—C1—N1—C12164.7 (2)
C2—C1—C6—C51.1 (3)C6—C1—N1—C1226.0 (3)
N1—C1—C6—C5168.8 (2)N1B—C1—N1—C1271.4 (3)
N1B—C1—C6—C5157.2 (3)C2—C1—N1—C131.9 (4)
C2—C1—C6—O1170.58 (19)C6—C1—N1—C13167.5 (2)
N1—C1—C6—O10.7 (3)N1B—C1—N1—C1395.1 (5)
N1B—C1—C6—O133.3 (3)C11—C12—N1—C1166.2 (2)
C2—C1—C6—O1B156.8 (3)C7—C12—N1—C126.1 (3)
N1—C1—C6—O1B33.3 (3)N1B—C12—N1—C172.3 (3)
N1B—C1—C6—O1B0.7 (4)C11—C12—N1—C130.2 (4)
C12—C7—C8—C90.6 (3)C7—C12—N1—C13167.4 (2)
O1B—C7—C8—C9159.0 (3)N1B—C12—N1—C1394.1 (5)
O1—C7—C8—C9169.19 (17)C14—C13—N1—C181.6 (3)
C12—C7—C8—P2176.11 (14)C14—C13—N1—C1284.3 (3)
O1B—C7—C8—P224.3 (3)C11—C12—N1B—C13B22.6 (6)
O1—C7—C8—P27.5 (2)C7—C12—N1B—C13B179.8 (4)
C7—C8—C9—C100.2 (2)N1—C12—N1B—C13B82.0 (6)
P2—C8—C9—C10176.62 (13)C11—C12—N1B—C1164.8 (2)
C8—C9—C10—C110.3 (3)C7—C12—N1B—C138.0 (4)
C9—C10—C11—C120.5 (3)N1—C12—N1B—C160.2 (3)
C10—C11—C12—C71.3 (3)C14B—C13B—N1B—C1274.1 (6)
C10—C11—C12—N1166.5 (2)C14B—C13B—N1B—C164.7 (6)
C10—C11—C12—N1B158.6 (3)C2—C1—N1B—C12166.4 (2)
C8—C7—C12—C111.3 (3)C6—C1—N1B—C1237.9 (4)
O1B—C7—C12—C11158.0 (3)N1—C1—N1B—C1261.1 (3)
O1—C7—C12—C11169.31 (19)C2—C1—N1B—C13B24.1 (6)
C8—C7—C12—N1166.94 (19)C6—C1—N1B—C13B179.8 (4)
O1B—C7—C12—N133.8 (3)N1—C1—N1B—C13B81.2 (6)
O1—C7—C12—N11.1 (3)C5—C6—O1—C7165.88 (18)
C8—C7—C12—N1B158.9 (3)C1—C6—O1—C723.8 (3)
O1B—C7—C12—N1B0.3 (4)O1B—C6—O1—C767.1 (4)
O1—C7—C12—N1B33.1 (3)C8—C7—O1—C6167.55 (18)
N1—C13—C14—C15177.5 (2)C12—C7—O1—C623.5 (3)
C13—C14—C15—C1669.7 (3)O1B—C7—O1—C668.7 (4)
C14—C15—C16—C17178.8 (3)C8—C7—O1B—C6160.1 (3)
C15—C16—C17—C18175.8 (4)C12—C7—O1B—C639.1 (5)
N1B—C13B—C14B—C15B177.6 (4)O1—C7—O1B—C665.0 (4)
C13B—C14B—C15B—C16B79.7 (8)C5—C6—O1B—C7161.6 (3)
C14B—C15B—C16B—C17B171.5 (8)C1—C6—O1B—C738.9 (5)
C15B—C16B—C17B—C18167.7 (8)O1—C6—O1B—C766.6 (3)
C16B—C17B—C18—O2178.7 (7)C26—C21—P1—C3170.00 (15)
C16B—C17B—C18—C1780.3 (18)C22—C21—P1—C31108.41 (13)
C16—C17—C18—O2179.2 (3)C26—C21—P1—C533.01 (15)
C16—C17—C18—C17B97.5 (19)C22—C21—P1—C5148.57 (13)
C26—C21—C22—C230.0 (2)C36—C31—P1—C21174.17 (13)
P1—C21—C22—C23178.52 (13)C32—C31—P1—C214.35 (16)
C21—C22—C23—C240.0 (3)C36—C31—P1—C582.51 (14)
C22—C23—C24—C251.0 (3)C32—C31—P1—C598.97 (15)
C23—C24—C25—C261.9 (3)C6—C5—P1—C2179.94 (14)
C24—C25—C26—C211.9 (3)C4—C5—P1—C2199.67 (15)
C22—C21—C26—C250.9 (3)C6—C5—P1—C31175.44 (13)
P1—C21—C26—C25177.50 (14)C4—C5—P1—C314.94 (16)
C36—C31—C32—C330.1 (3)C42—C41—P2—C518.63 (15)
P1—C31—C32—C33178.37 (14)C46—C41—P2—C51179.58 (12)
C31—C32—C33—C340.2 (3)C42—C41—P2—C8112.52 (14)
C32—C33—C34—C350.5 (3)C46—C41—P2—C876.54 (13)
C33—C34—C35—C361.3 (3)C52—C51—P2—C41123.64 (12)
C34—C35—C36—C311.4 (3)C56—C51—P2—C4160.29 (14)
C32—C31—C36—C350.7 (3)C52—C51—P2—C8131.68 (12)
P1—C31—C36—C35179.31 (17)C56—C51—P2—C844.39 (14)
C46—C41—C42—C430.4 (2)C7—C8—P2—C41163.73 (13)
P2—C41—C42—C43170.36 (13)C9—C8—P2—C4112.66 (16)
C41—C42—C43—C440.0 (3)C7—C8—P2—C5188.68 (13)
C42—C43—C44—C450.5 (3)C9—C8—P2—C5194.93 (15)

Experimental details

Crystal data
Chemical formulaC42H39NO2P2
Mr651.68
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.4258 (2), 11.1402 (3), 15.3590 (4)
α, β, γ (°)75.777 (1), 88.583 (1), 79.453 (2)
V3)1699.60 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.51 × 0.31 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
30269, 8211, 6458
Rint0.043
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.08
No. of reflections8211
No. of parameters489
No. of restraints115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

We thank Dr Manuel Fernandez for the data collection, and SASOL, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationBruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L. & Craven, B. M. (1995). Acta Cryst. B51, 1081–1097.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLeung, W. (2007). Coord. Chem. Rev. 251, 2266–2279.  Web of Science CrossRef CAS Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008a). Acta Cryst. E64, o772.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarimuthu, T., Bala, M. D. & Friedrich, H. B. (2008b). Acta Cryst. E64, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMayer, H. A., Otto, H., Kuhbauch, H., Fawzi, R. & Steimann, M. (1994). J. Organomet. Chem. 472, 347–354.  CrossRef CAS Web of Science Google Scholar
First citationMonge, A., Martínez-Ripoll, M. & García-Blanco, S. (1978). Acta Cryst. B34, 2847–2850.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOsiński, P. W., Schürmann, M., Preut, H., Haag, R. & Eilbracht, P. (2005). Acta Cryst. E61, o3115–o3116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPettinari, C. (2004). Chim. Ind. 12, 110–118.  Google Scholar
First citationReymond, J. L., Koch, T., Schroer, J. & Tierney, E. (1996). Proc. Natl Acad. Sci. USA, 93, 4251-4256.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrofimenko, S. (1993). Chem. Rev. 93, 943–980.  CrossRef CAS Web of Science Google Scholar
First citationVan der Veen, L. A., Keeven, P. H., Schoemaker, G. C., Reek, J. N. H., Kamer, P. C. J., van Leeuwen, P., Lutz, M. & Spek, A. L. (2000). Organometallics, 19, 872–883.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1984-o1985
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds