organic compounds
N,N′-Bis(4-bromobenzylidene)butane-1,4-diamine
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my
The molecule of the title Schiff base compound, C18H18Br2N2, lies across a crystallographic inversion centre and adopts an E configuration with respect to the C=N bond. In the molecules are linked into chains along [201] through intermolecular Br⋯Br interactions [3.3747 (3) Å], which are significantly shorter than the sum of the van der Waals radii for Br atoms (3.70 Å). The is further stabilized by π–π stacking interactions [centroid–centroid distance 3.6811 (11) Å].
Related literature
For halogen–halogen interactions, see: Ramasubbu et al. (1986); Brammer et al. (2003). For the crystal structures of related compounds, see: Fun et al. (2008); Fun, Kia & Kargar (2008a,b); Fun & Kia (2008a,b). For bond-length data, see: Allen et al. (1987). For hydrogen-bondong motifs, see: Bernstein et al. (1995). For background, see: Casellato & Vigato (1977).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808028122/rz2242sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028122/rz2242Isup2.hkl
The synthetic method has been described earlier (Fun, Kia & Kargar, 2008b). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C18H18Br2N2 | F(000) = 420 |
Mr = 422.16 | Dx = 1.607 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5047 reflections |
a = 11.2612 (5) Å | θ = 2.8–33.0° |
b = 9.5213 (4) Å | µ = 4.64 mm−1 |
c = 8.2645 (4) Å | T = 100 K |
β = 100.040 (3)° | Plate, colourless |
V = 872.56 (7) Å3 | 0.52 × 0.23 × 0.08 mm |
Z = 2 |
Bruker SMART APEXII CCD area-detector diffractometer | 3843 independent reflections |
Radiation source: fine-focus sealed tube | 2600 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 35.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→18 |
Tmin = 0.192, Tmax = 0.688 | k = −15→15 |
15460 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | All H-atom parameters refined |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0376P)2 + 0.4289P] where P = (Fo2 + 2Fc2)/3 |
3843 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
C18H18Br2N2 | V = 872.56 (7) Å3 |
Mr = 422.16 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.2612 (5) Å | µ = 4.64 mm−1 |
b = 9.5213 (4) Å | T = 100 K |
c = 8.2645 (4) Å | 0.52 × 0.23 × 0.08 mm |
β = 100.040 (3)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3843 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2600 reflections with I > 2σ(I) |
Tmin = 0.192, Tmax = 0.688 | Rint = 0.037 |
15460 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.092 | All H-atom parameters refined |
S = 1.02 | Δρmax = 0.68 e Å−3 |
3843 reflections | Δρmin = −0.59 e Å−3 |
136 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.863352 (18) | 0.42295 (2) | 0.45375 (3) | 0.03180 (8) | |
N1 | 0.26074 (15) | 0.39137 (18) | 0.1162 (2) | 0.0234 (3) | |
C1 | 0.50731 (18) | 0.31392 (19) | 0.4478 (2) | 0.0208 (4) | |
C2 | 0.63137 (18) | 0.3255 (2) | 0.4915 (3) | 0.0240 (4) | |
C3 | 0.69332 (18) | 0.40815 (19) | 0.3962 (2) | 0.0222 (4) | |
C4 | 0.63436 (18) | 0.4810 (2) | 0.2596 (2) | 0.0216 (4) | |
C5 | 0.50998 (17) | 0.4680 (2) | 0.2182 (2) | 0.0200 (3) | |
C6 | 0.44549 (16) | 0.38295 (19) | 0.3101 (2) | 0.0184 (3) | |
C7 | 0.31505 (17) | 0.3638 (2) | 0.2606 (2) | 0.0204 (3) | |
C8 | 0.13050 (18) | 0.3707 (2) | 0.0806 (3) | 0.0261 (4) | |
C9 | 0.06720 (18) | 0.5093 (2) | 0.0273 (3) | 0.0245 (4) | |
H1 | 0.462 (2) | 0.260 (3) | 0.514 (3) | 0.028 (6)* | |
H2 | 0.679 (2) | 0.273 (3) | 0.586 (3) | 0.028 (6)* | |
H4 | 0.678 (2) | 0.540 (3) | 0.209 (3) | 0.032 (7)* | |
H5 | 0.470 (2) | 0.515 (3) | 0.130 (3) | 0.024 (6)* | |
H7 | 0.276 (2) | 0.330 (2) | 0.341 (3) | 0.018 (5)* | |
H8A | 0.113 (2) | 0.300 (3) | −0.016 (3) | 0.023 (6)* | |
H8B | 0.1034 (19) | 0.336 (2) | 0.172 (3) | 0.016 (5)* | |
H9A | 0.111 (3) | 0.550 (3) | −0.053 (4) | 0.034 (7)* | |
H9B | 0.092 (3) | 0.576 (3) | 0.111 (3) | 0.033 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01994 (10) | 0.03249 (12) | 0.04155 (14) | −0.00088 (8) | 0.00144 (8) | −0.00353 (9) |
N1 | 0.0197 (7) | 0.0250 (8) | 0.0255 (8) | 0.0015 (6) | 0.0042 (6) | 0.0006 (6) |
C1 | 0.0261 (9) | 0.0185 (8) | 0.0185 (8) | −0.0004 (7) | 0.0055 (7) | 0.0000 (7) |
C2 | 0.0273 (9) | 0.0214 (8) | 0.0220 (9) | 0.0017 (7) | 0.0012 (7) | −0.0003 (7) |
C3 | 0.0221 (8) | 0.0208 (8) | 0.0237 (9) | 0.0000 (7) | 0.0041 (7) | −0.0045 (7) |
C4 | 0.0248 (9) | 0.0185 (8) | 0.0230 (9) | −0.0022 (7) | 0.0088 (7) | −0.0014 (7) |
C5 | 0.0239 (9) | 0.0175 (7) | 0.0194 (9) | 0.0003 (7) | 0.0060 (7) | 0.0009 (7) |
C6 | 0.0204 (8) | 0.0156 (7) | 0.0196 (8) | 0.0008 (6) | 0.0048 (6) | −0.0013 (6) |
C7 | 0.0213 (8) | 0.0190 (8) | 0.0224 (9) | −0.0001 (7) | 0.0080 (7) | 0.0014 (7) |
C8 | 0.0201 (9) | 0.0286 (10) | 0.0301 (11) | −0.0004 (7) | 0.0055 (8) | 0.0020 (8) |
C9 | 0.0200 (8) | 0.0248 (9) | 0.0285 (10) | −0.0005 (7) | 0.0034 (7) | 0.0018 (8) |
Br1—C3 | 1.896 (2) | C5—C6 | 1.398 (3) |
N1—C7 | 1.270 (2) | C5—H5 | 0.91 (2) |
N1—C8 | 1.458 (3) | C6—C7 | 1.466 (3) |
C1—C2 | 1.385 (3) | C7—H7 | 0.92 (2) |
C1—C6 | 1.391 (3) | C8—C9 | 1.527 (3) |
C1—H1 | 0.95 (3) | C8—H8A | 1.04 (2) |
C2—C3 | 1.385 (3) | C8—H8B | 0.93 (2) |
C2—H2 | 1.00 (3) | C9—C9i | 1.512 (4) |
C3—C4 | 1.391 (3) | C9—H9A | 0.97 (3) |
C4—C5 | 1.388 (3) | C9—H9B | 0.94 (3) |
C4—H4 | 0.90 (3) | ||
C7—N1—C8 | 117.69 (18) | C1—C6—C7 | 120.26 (18) |
C2—C1—C6 | 120.93 (19) | C5—C6—C7 | 120.70 (17) |
C2—C1—H1 | 120.3 (15) | N1—C7—C6 | 122.12 (18) |
C6—C1—H1 | 118.7 (15) | N1—C7—H7 | 123.0 (14) |
C3—C2—C1 | 118.83 (18) | C6—C7—H7 | 114.8 (14) |
C3—C2—H2 | 118.2 (15) | N1—C8—C9 | 110.13 (18) |
C1—C2—H2 | 122.9 (15) | N1—C8—H8A | 107.3 (13) |
C2—C3—C4 | 121.89 (18) | C9—C8—H8A | 108.9 (13) |
C2—C3—Br1 | 119.12 (14) | N1—C8—H8B | 110.2 (13) |
C4—C3—Br1 | 118.99 (15) | C9—C8—H8B | 109.9 (14) |
C5—C4—C3 | 118.31 (19) | H8A—C8—H8B | 110.3 (19) |
C5—C4—H4 | 123.6 (17) | C9i—C9—C8 | 112.2 (2) |
C3—C4—H4 | 117.8 (17) | C9i—C9—H9A | 116.2 (16) |
C4—C5—C6 | 120.99 (18) | C8—C9—H9A | 106.1 (16) |
C4—C5—H5 | 119.6 (16) | C9i—C9—H9B | 116.7 (18) |
C6—C5—H5 | 119.4 (16) | C8—C9—H9B | 107.8 (16) |
C1—C6—C5 | 119.02 (17) | H9A—C9—H9B | 96 (2) |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C18H18Br2N2 |
Mr | 422.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 11.2612 (5), 9.5213 (4), 8.2645 (4) |
β (°) | 100.040 (3) |
V (Å3) | 872.56 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 4.64 |
Crystal size (mm) | 0.52 × 0.23 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.192, 0.688 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15460, 3843, 2600 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.807 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.092, 1.02 |
No. of reflections | 3843 |
No. of parameters | 136 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.68, −0.59 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
Footnotes
‡Additional correspondence author: tel.: +98-352-7220011 ext. 157, fax: 98-352-7228110, e-mail: hkargar@pnu.ac.ir.
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a postdoctoral research fellowship. HK thanks PNU for financial support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Brammer, L., Espallargas, M. E. & Adams, H. (2003). CrystEngComm, 5, 343–345. Web of Science CSD CrossRef Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casellato, U. & Vigato, P. A. (1977). Coord. Chem. Rev. 23, 31–50. CrossRef CAS Web of Science Google Scholar
Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64, m1081–m1082. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, m1116–m1117. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Kia, R. & Kargar, H. (2008a). Acta Cryst. E64, o1335. Web of Science CSD CrossRef IUCr Journals Google Scholar
Fun, H.-K., Kia, R. & Kargar, H. (2008b). Acta Cryst. E64, o1855. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ramasubbu, N., Parthasathy, R. & Murry-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308–4314. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The condensation of primary amines with carbonyl compounds yields Schiff bases (Casellato & Vigato, 1977) that are still one of the most prevalent mixed-donor ligand in coordination chemistry. In the past two decades, the synthesis, structure and properties of Schiff base complexes have stimulated much interest for their noteworthy contributions in single molecule-based magnetism, materials science, catalysis of many reactions like carbonylation, hydroformylation, reduction, oxidation, epoxidation and hydrolysis (Casellato & Vigato 1977). As an extension of our work (Fun et al., 2008; Fun, Kia & Kargar 2008a,b; Fun & Kia 2008a,b) on the structural characterization of Schiff base ligands, the title compound is reported here.
The molecule of the title compound (Fig 1), lies across a crystallographic inversion centre and adopts an E configuration with respect to the C═N bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The asymmetric unit of the compound is composed of one-half of the molecule. The imino group is coplanar with the benzene ring. Within the molecule, the planar units are parallel but extend in opposite directions from the methylene bridge. An interesting feature of the crystal structure is the short Br···Br [3.3747 (3) Å] interaction (Fig. 2), which is significantly shorter than the sum of the van der Waals radii for two Br atoms (3.70 Å). The directionality of these interactions, C—X···X—C (X = halogens), has been attributed to anisotropic van der Waals radii for terminally bound halogens or ascribed to donor–acceptor interactions involving a lone pair donor orbital on one halogen and a C—X σ* acceptor orbital on the other (Ramasubbu et al., 1986; Brammer et al., 2003). In the crystal structure, molecules are linked into chains along the [201] direction through the short intermolecular Br···Br interactions (Fig. 2). In addition, the crystal structure is further stabilized by π–π interaction (Fig. 3) with centroid-to-centroid distance of 3.6811 (11) Å, perpendicular interplanar distance of 3.3617 (8) Å, and centroid···centroid offset of 1.4997 (5) Å.