organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Pyrrolidin-1-yl)(p-tol­yl)meth­yl]naphthalen-2-ol

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: zhaohong@seu.edu.cn

(Received 2 September 2008; accepted 5 September 2008; online 13 September 2008)

In the title compound, C22H23NO, the dihedral angle between the naphthyl ring system and the benzene ring is 73.32 (6)°. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation. In the crystal structure, mol­ecules are linked by C—H⋯π inter­actions, resulting in zigzag chains parallel to the [10[\overline{1}]] direction.

Related literature

For general background on the chemistry of naphthalen-2-ol derivatives, see: Szatmari & Fulop (2004[Szatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155-165.]); Zhao & Sun (2005[Zhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652-m653.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23NO

  • Mr = 317.41

  • Monoclinic, P 21 /n

  • a = 10.3467 (18) Å

  • b = 16.055 (3) Å

  • c = 11.252 (2) Å

  • β = 106.810 (8)°

  • V = 1789.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.989

  • 18171 measured reflections

  • 4086 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.190

  • S = 1.06

  • 4086 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.600 (3) 145
C18—H18⋯Cg1i 0.93 2.66 3.588 (8) 173
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the C5–C10 benzene ring.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Compounds derived from naphthalen-2-ol have been of great interest in organic chemistry (Szatmari & Fulop, 2004; Zhao & Sun, 2005). We report here the crystal structure of the title compound (Fig. 1).

Bond lengths and angles in the title compound have normal values. The dihedral angle between the naphthyl and phenyl rings is 73.32 (6)°. The pyrrolidine ring adopts a twist conformation, as indicated by the puckering parameters (q2 = 0.401 (2) Å and ϕ = 169.2 (4)°; Cremer & Pople, 1975) and the small value of the displacement asymmetry parameter (ΔC2(C14) = 0.0301 (10)°; Nardelli, 1983). The molecular conformation is stabilized by a strong intramolecular O—H···N hydrogen bond (Table 1). In the crystal packing, molecules are linked through C—H···π interactions (Table 1) to form zig zag chains running along the [1 0 -1] direction.

Related literature top

For general background on the chemistry of naphthalen-2-ol derivatives, see: Szatmari & Fulop (2004); Zhao & Sun (2005). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

A dry 50 ml flask was charged with benzaldehyde (10 mmol), naphthalen-2-ol (10 mmol), and pyrrolidine (10 mmol). The mixture was stirred at 100°C for 10 h then ethanol (15 ml) was added. After heating under reflux for 30 minutes, the precipitate was filtrated off and washed 3 times with ethanol to give the title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane solution.

Refinement top

All hydrogen atoms were calculated geometrically, with C—H = 0.93-0.98 Å, O—H= 0.82 Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(C, O) for methyl and hydroxy hydrogen atoms.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O—H···N hydrogen bond is indicated by a dashed line.
1-[(Pyrrolidin-1-yl)(p-tolyl)methyl]naphthalen-2-ol top
Crystal data top
C22H23NOF(000) = 680
Mr = 317.41Dx = 1.178 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3280 reflections
a = 10.3467 (18) Åθ = 2.3–27.4°
b = 16.055 (3) ŵ = 0.07 mm1
c = 11.252 (2) ÅT = 293 K
β = 106.810 (8)°Prism, colourless
V = 1789.2 (6) Å30.25 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
4086 independent reflections
Radiation source: fine-focus sealed tube2547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.4°, θmin = 2.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.963, Tmax = 0.989l = 1414
18171 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0911P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
4086 reflections(Δ/σ)max = 0.005
219 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C22H23NOV = 1789.2 (6) Å3
Mr = 317.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3467 (18) ŵ = 0.07 mm1
b = 16.055 (3) ÅT = 293 K
c = 11.252 (2) Å0.25 × 0.22 × 0.20 mm
β = 106.810 (8)°
Data collection top
Rigaku SCXmini
diffractometer
4086 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2547 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.989Rint = 0.058
18171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.190H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
4086 reflectionsΔρmin = 0.20 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2106 (2)0.17738 (14)0.94453 (19)0.0419 (5)
C20.2318 (2)0.10314 (14)1.0087 (2)0.0484 (6)
C30.3641 (2)0.07349 (17)1.0645 (2)0.0593 (7)
H30.37620.02251.10560.071*
C40.4730 (2)0.11799 (18)1.0592 (2)0.0603 (7)
H40.55910.09701.09590.072*
C50.4578 (2)0.19606 (16)0.9986 (2)0.0511 (6)
C60.3253 (2)0.22609 (14)0.9413 (2)0.0437 (5)
C70.3143 (2)0.30541 (15)0.8828 (2)0.0526 (6)
H70.22920.32760.84550.063*
C80.4263 (3)0.34974 (18)0.8801 (3)0.0680 (8)
H80.41610.40140.84100.082*
C90.5550 (3)0.3189 (2)0.9349 (3)0.0713 (8)
H90.63020.34950.93170.086*
C100.5714 (2)0.2439 (2)0.9932 (3)0.0654 (8)
H100.65790.22361.02990.078*
C110.0689 (2)0.20844 (12)0.87783 (19)0.0396 (5)
H110.07380.23880.80370.048*
C120.0091 (2)0.08850 (15)0.7372 (2)0.0512 (6)
H12A0.08860.05440.77100.061*
H12B0.02480.12490.67400.061*
C130.1145 (2)0.03501 (16)0.6848 (2)0.0603 (7)
H13A0.10710.01710.72980.072*
H13B0.12690.02310.59770.072*
C140.2303 (2)0.08716 (16)0.7016 (3)0.0617 (7)
H14A0.28310.05550.74450.074*
H14B0.28900.10480.62180.074*
C150.1655 (2)0.16206 (16)0.7785 (2)0.0563 (7)
H15A0.17040.21070.72630.068*
H15B0.20980.17450.84150.068*
C160.01458 (19)0.26802 (13)0.95666 (19)0.0395 (5)
C170.0117 (2)0.24824 (14)1.0757 (2)0.0477 (5)
H170.04540.19721.11000.057*
C180.0407 (2)0.30347 (15)1.1441 (2)0.0528 (6)
H180.04280.28841.22330.063*
C190.0899 (2)0.38058 (15)1.0975 (2)0.0479 (6)
C200.0865 (2)0.39997 (14)0.9788 (2)0.0493 (6)
H200.11890.45140.94500.059*
C210.0361 (2)0.34482 (14)0.9096 (2)0.0458 (5)
H210.03620.35950.82960.055*
C220.1439 (3)0.44099 (18)1.1736 (3)0.0712 (8)
H22A0.12900.41931.25600.107*
H22B0.23890.44881.13580.107*
H22C0.09820.49341.17760.107*
N10.02391 (16)0.13698 (11)0.83579 (16)0.0414 (4)
O10.13049 (17)0.05359 (11)1.02090 (17)0.0641 (5)
H10.05850.07000.97440.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (11)0.0496 (13)0.0407 (12)0.0007 (9)0.0094 (9)0.0015 (9)
C20.0431 (12)0.0535 (14)0.0463 (13)0.0024 (10)0.0091 (10)0.0064 (10)
C30.0518 (14)0.0671 (17)0.0532 (15)0.0093 (13)0.0057 (12)0.0106 (12)
C40.0392 (12)0.0837 (19)0.0513 (15)0.0098 (12)0.0024 (11)0.0049 (13)
C50.0368 (11)0.0684 (16)0.0465 (13)0.0041 (11)0.0097 (10)0.0150 (11)
C60.0373 (11)0.0525 (13)0.0425 (12)0.0048 (9)0.0135 (9)0.0096 (10)
C70.0464 (13)0.0510 (14)0.0629 (16)0.0094 (11)0.0197 (11)0.0057 (11)
C80.0629 (17)0.0617 (17)0.086 (2)0.0203 (13)0.0317 (15)0.0078 (14)
C90.0527 (16)0.085 (2)0.081 (2)0.0297 (15)0.0271 (15)0.0208 (16)
C100.0368 (12)0.094 (2)0.0635 (17)0.0096 (13)0.0123 (12)0.0234 (15)
C110.0361 (10)0.0415 (12)0.0407 (12)0.0038 (9)0.0103 (9)0.0045 (9)
C120.0431 (12)0.0561 (15)0.0543 (14)0.0004 (10)0.0143 (11)0.0072 (11)
C130.0517 (14)0.0602 (16)0.0629 (16)0.0037 (12)0.0070 (12)0.0137 (12)
C140.0407 (12)0.0626 (16)0.0748 (18)0.0043 (11)0.0055 (12)0.0118 (13)
C150.0343 (12)0.0621 (16)0.0671 (16)0.0008 (10)0.0062 (11)0.0113 (12)
C160.0313 (10)0.0451 (12)0.0409 (12)0.0050 (9)0.0086 (9)0.0021 (9)
C170.0527 (13)0.0446 (13)0.0473 (13)0.0006 (10)0.0168 (11)0.0070 (10)
C180.0560 (14)0.0626 (16)0.0433 (13)0.0062 (12)0.0198 (11)0.0010 (11)
C190.0335 (11)0.0544 (14)0.0543 (15)0.0033 (10)0.0105 (10)0.0063 (11)
C200.0415 (12)0.0446 (13)0.0584 (15)0.0059 (10)0.0088 (11)0.0044 (10)
C210.0411 (11)0.0499 (14)0.0440 (13)0.0009 (10)0.0085 (10)0.0067 (10)
C220.0627 (17)0.077 (2)0.0782 (19)0.0021 (14)0.0275 (15)0.0171 (15)
N10.0309 (9)0.0458 (10)0.0463 (11)0.0024 (7)0.0093 (8)0.0028 (8)
O10.0508 (10)0.0634 (12)0.0733 (13)0.0053 (8)0.0102 (9)0.0243 (9)
Geometric parameters (Å, º) top
C1—C21.378 (3)C12—H12B0.9700
C1—C61.430 (3)C13—C141.518 (3)
C1—C111.525 (3)C13—H13A0.9700
C2—O11.354 (3)C13—H13B0.9700
C2—C31.413 (3)C14—C151.519 (3)
C3—C41.351 (4)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C4—C51.414 (4)C15—N11.476 (3)
C4—H40.9300C15—H15A0.9700
C5—C101.420 (3)C15—H15B0.9700
C5—C61.420 (3)C16—C211.384 (3)
C6—C71.423 (3)C16—C171.385 (3)
C7—C81.367 (3)C17—C181.383 (3)
C7—H70.9300C17—H170.9300
C8—C91.387 (4)C18—C191.383 (3)
C8—H80.9300C18—H180.9300
C9—C101.357 (4)C19—C201.381 (3)
C9—H90.9300C19—C221.504 (3)
C10—H100.9300C20—C211.378 (3)
C11—N11.483 (2)C20—H200.9300
C11—C161.518 (3)C21—H210.9300
C11—H110.9800C22—H22A0.9600
C12—N11.474 (3)C22—H22B0.9600
C12—C131.511 (3)C22—H22C0.9600
C12—H12A0.9700O1—H10.8200
C2—C1—C6118.6 (2)C14—C13—H13A110.9
C2—C1—C11121.71 (19)C12—C13—H13B110.9
C6—C1—C11119.71 (19)C14—C13—H13B110.9
O1—C2—C1123.4 (2)H13A—C13—H13B108.9
O1—C2—C3115.8 (2)C13—C14—C15105.88 (19)
C1—C2—C3120.8 (2)C13—C14—H14A110.6
C4—C3—C2121.0 (2)C15—C14—H14A110.6
C4—C3—H3119.5C13—C14—H14B110.6
C2—C3—H3119.5C15—C14—H14B110.6
C3—C4—C5120.8 (2)H14A—C14—H14B108.7
C3—C4—H4119.6N1—C15—C14104.57 (18)
C5—C4—H4119.6N1—C15—H15A110.8
C4—C5—C10121.5 (2)C14—C15—H15A110.8
C4—C5—C6118.6 (2)N1—C15—H15B110.8
C10—C5—C6120.0 (3)C14—C15—H15B110.8
C5—C6—C7116.8 (2)H15A—C15—H15B108.9
C5—C6—C1120.2 (2)C21—C16—C17117.6 (2)
C7—C6—C1123.0 (2)C21—C16—C11120.06 (19)
C8—C7—C6121.4 (2)C17—C16—C11122.37 (19)
C8—C7—H7119.3C18—C17—C16120.8 (2)
C6—C7—H7119.3C18—C17—H17119.6
C7—C8—C9121.0 (3)C16—C17—H17119.6
C7—C8—H8119.5C19—C18—C17121.6 (2)
C9—C8—H8119.5C19—C18—H18119.2
C10—C9—C8120.1 (2)C17—C18—H18119.2
C10—C9—H9120.0C20—C19—C18117.3 (2)
C8—C9—H9120.0C20—C19—C22121.5 (2)
C9—C10—C5120.7 (3)C18—C19—C22121.2 (2)
C9—C10—H10119.6C21—C20—C19121.4 (2)
C5—C10—H10119.6C21—C20—H20119.3
N1—C11—C16111.04 (16)C19—C20—H20119.3
N1—C11—C1110.22 (16)C20—C21—C16121.3 (2)
C16—C11—C1112.58 (17)C20—C21—H21119.4
N1—C11—H11107.6C16—C21—H21119.4
C16—C11—H11107.6C19—C22—H22A109.5
C1—C11—H11107.6C19—C22—H22B109.5
N1—C12—C13103.87 (18)H22A—C22—H22B109.5
N1—C12—H12A111.0C19—C22—H22C109.5
C13—C12—H12A111.0H22A—C22—H22C109.5
N1—C12—H12B111.0H22B—C22—H22C109.5
C13—C12—H12B111.0C12—N1—C15103.41 (17)
H12A—C12—H12B109.0C12—N1—C11112.27 (16)
C12—C13—C14104.3 (2)C15—N1—C11113.43 (17)
C12—C13—H13A110.9C2—O1—H1109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.600 (3)145
C18—H18···Cg1i0.932.663.588 (8)173
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H23NO
Mr317.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.3467 (18), 16.055 (3), 11.252 (2)
β (°) 106.810 (8)
V3)1789.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
18171, 4086, 2547
Rint0.058
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.190, 1.06
No. of reflections4086
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.600 (3)145
C18—H18···Cg1i0.932.663.588 (8)173
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to HZ.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzatmari, I. & Fulop, F. (2004). Curr. Org. Synth. 1, 155–165.  Web of Science CrossRef CAS Google Scholar
First citationZhao, B. & Sun, Y.-X. (2005). Acta Cryst. E61, m652–m653.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds