organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Chloro­benz­yl)-1H-isochromen-1-one

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii' 565, 53210 Pardubice, Czech Republic
*Correspondence e-mail: nasimhrama@yahoo.com

(Received 11 September 2008; accepted 20 September 2008; online 27 September 2008)

The asymmetric unit of the title compound, C16H11ClO2, a chemically synthesized isocoumarin, contains three independent mol­ecules. The benzopyran and benzene rings are approximately perpendicular to each other, forming dihedral angles ranging from 83.08 (14) to 87.43 (11)°. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O hydrogen-bonding inter­actions, forming chains running parallel to the a axis.

Related literature

For the properties and applications of isocumarins, see: Barry (1964[Barry, R. D. (1964). Chem. Rev. 64, 239-241.]); Powers et al. (2002[Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev. 102, 4639-4643.]); Sturtz et al. (2002[Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem. 50, 6979-6984.]). For the crystal structure of a related compound, see: Abid et al. (2006[Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895-o2896.]). For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Rossi et al. (2003[Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067-2081.]); Thomas & Jens (1999[Thomas, L. & Jens, B. J. (1999). Nat. Prod. 62, 1182-1187.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClO2

  • Mr = 270.70

  • Triclinic, [P \overline 1]

  • a = 8.1411 (8) Å

  • b = 15.0269 (14) Å

  • c = 16.4080 (16) Å

  • α = 91.696 (8)°

  • β = 98.478 (8)°

  • γ = 102.624 (6)°

  • V = 1933.4 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 (1) K

  • 0.36 × 0.28 × 0.13 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.930, Tmax = 0.978

  • 33806 measured reflections

  • 8770 independent reflections

  • 5387 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.280

  • S = 1.15

  • 8770 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C216—H216⋯O11 0.93 2.56 3.437 (6) 158
C116—H116⋯O21 0.93 2.58 3.396 (6) 147
C26—H26⋯O22i 0.93 2.45 3.339 (7) 161
C36—H36⋯O32i 0.93 2.52 3.409 (6) 160
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory activity (Powers et al.,2002). Naturally occurring halo-isocoumarins and their halogeno-3,4-dihydroiscoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing a 3-chlorobenzyl substituent, has been synthesized and its crystal structure is reported here.

The asymmetric unit of the title compound contains three crystallographically independent molecules of similar geometry (Fig.1). The molecules are not planar, the dihedral angles formed by the benzopyran ring with the corresponding benzene ring being 83.08 (14), 87.43 (11) and 84.25 (14)° for the molecules containing Cl11, Cl21 and Cl31, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with those reported for 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1) into chains running parallel to the a axis (Fig. 2).

Related literature top

For the properties and applications of isocumarins, see: Barry (1964); Powers et al. (2002); Sturtz et al. (2002). For the crystal structure of a related compound, see: Abid et al. (2006).

For related literature, see: Allen et al. (1987); Rossi et al. (2003); Thomas & Jens (1999).

Experimental top

A mixture of 2-(3-chlorophenyl)acetic acid (4.76 g, 28 mmol) and thionyl chloride (2.94 ml, 34 mmol) was heated for 30 min in the presence of a few drops of DMF under reflux at 343 K to give 2-(3-chlorophenyl)acetyl chloride. Completion of the reaction was indicated by the disappearance of gas evolution. The removal of excess thionyl chloride was carried out under reduced pressure to afford 2-(3-chlorophenyl)acetyl chloride. Homophthalic acid (1.3 g, 7.2 mmol) was then added and the solution was refluxed for 6 hrs at 473 K with stirring. The reaction mixture was extracted with ethyl acetate (3 times 100 ml), and an aqueous solution of sodium carbonate (5%, 200 ml) was added to remove the unreacted homophthalic acid. The organic layer was separated, concentrated and chromatographed on silica gel using petroleum ether (313–353 K fractions) as eluent to afford the title compound (yield 62%; m.p. 350–351 K). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The poor diffraction quality of the crystal may account for the high Rint, weighted and unweighted R factors.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed approximately along the a axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
3-(3-Chlorobenzyl)-1H-isochromen-1-one top
Crystal data top
C16H11ClO2Z = 6
Mr = 270.70F(000) = 840
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Melting point: 350(1) K
a = 8.1411 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.0269 (14) ÅCell parameters from 33934 reflections
c = 16.4080 (16) Åθ = 1–27.5°
α = 91.696 (8)°µ = 0.29 mm1
β = 98.478 (8)°T = 150 K
γ = 102.624 (6)°Block, colourless
V = 1933.4 (3) Å30.36 × 0.28 × 0.13 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
8770 independent reflections
Radiation source: fine-focus sealed tube5387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.8°
ϕ and ω scans to fill the Ewald sphereh = 1010
Absorption correction: integration
(Gaussian; Coppens et al., 1970)
k = 1919
Tmin = 0.930, Tmax = 0.978l = 2121
33806 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.280H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0832P)2 + 3.9759P]
where P = (Fo2 + 2Fc2)/3
8770 reflections(Δ/σ)max < 0.001
514 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H11ClO2γ = 102.624 (6)°
Mr = 270.70V = 1933.4 (3) Å3
Triclinic, P1Z = 6
a = 8.1411 (8) ÅMo Kα radiation
b = 15.0269 (14) ŵ = 0.29 mm1
c = 16.4080 (16) ÅT = 150 K
α = 91.696 (8)°0.36 × 0.28 × 0.13 mm
β = 98.478 (8)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
8770 independent reflections
Absorption correction: integration
(Gaussian; Coppens et al., 1970)
5387 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.978Rint = 0.096
33806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0930 restraints
wR(F2) = 0.280H-atom parameters constrained
S = 1.15Δρmax = 0.51 e Å3
8770 reflectionsΔρmin = 0.38 e Å3
514 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl110.0861 (2)0.69111 (11)0.78787 (9)0.0721 (4)
Cl310.1878 (2)0.34414 (12)0.45567 (9)0.0764 (5)
Cl210.2374 (3)0.96729 (13)0.13645 (9)0.0865 (6)
O120.3053 (4)0.8902 (2)0.4163 (2)0.0466 (8)
C340.0819 (5)0.5570 (3)0.1009 (2)0.0369 (9)
O320.4217 (4)0.5627 (2)0.09538 (19)0.0452 (7)
O220.3792 (4)0.7443 (2)0.2320 (2)0.0506 (8)
C140.0400 (6)0.8964 (3)0.4355 (2)0.0383 (9)
C230.1317 (6)0.8252 (3)0.1859 (3)0.0401 (10)
H230.07980.86990.15400.048*
C190.0270 (6)0.9565 (3)0.3839 (3)0.0386 (9)
C110.2077 (6)0.9547 (3)0.3750 (3)0.0438 (10)
O310.4003 (4)0.6731 (2)0.0103 (2)0.0534 (8)
O110.2803 (5)1.0049 (3)0.3363 (2)0.0646 (10)
C310.3272 (6)0.6231 (3)0.0492 (3)0.0394 (9)
C290.1117 (6)0.7056 (3)0.2811 (2)0.0413 (10)
C350.0900 (6)0.5559 (3)0.1035 (3)0.0456 (11)
H350.13770.51560.13620.055*
C240.0311 (6)0.7732 (3)0.2336 (3)0.0391 (9)
O210.3788 (5)0.6358 (3)0.3182 (2)0.0649 (10)
C1100.3759 (6)0.7710 (3)0.5034 (3)0.0513 (12)
H110A0.46320.73920.45900.062*
H110B0.42760.80880.53600.062*
C320.3542 (5)0.5006 (3)0.1420 (2)0.0370 (9)
C3110.4318 (5)0.3711 (3)0.2324 (3)0.0416 (10)
C130.0723 (6)0.8334 (3)0.4773 (3)0.0414 (10)
H130.02870.79370.51240.050*
C220.2965 (6)0.8114 (3)0.1858 (3)0.0417 (10)
C210.2929 (6)0.6906 (3)0.2800 (3)0.0471 (11)
C1130.1807 (6)0.6609 (3)0.6859 (3)0.0458 (11)
C1120.2401 (6)0.7239 (3)0.6380 (3)0.0476 (11)
H1120.23170.78240.66080.057*
C2120.3309 (6)0.9170 (3)0.0091 (3)0.0516 (12)
H2120.37520.85900.01660.062*
C120.2366 (6)0.8308 (3)0.4666 (3)0.0400 (10)
C390.1497 (5)0.6193 (3)0.0524 (2)0.0349 (9)
C180.0777 (7)1.0171 (3)0.3405 (3)0.0488 (11)
H180.03151.05590.30540.059*
C3100.4898 (6)0.4452 (3)0.1844 (3)0.0458 (11)
H310A0.58820.41810.14350.055*
H310B0.52510.48590.22190.055*
C330.1936 (6)0.4969 (3)0.1461 (3)0.0402 (10)
H330.15130.45490.17870.048*
C2110.3426 (6)0.9338 (3)0.0915 (3)0.0472 (11)
C170.2471 (7)1.0200 (3)0.3494 (3)0.0548 (13)
H170.31641.06060.32030.066*
C380.0470 (6)0.6788 (3)0.0070 (3)0.0443 (10)
H380.09210.72040.02500.053*
C3120.3485 (6)0.3892 (3)0.3126 (3)0.0443 (10)
H3120.32970.44750.33800.053*
C3130.2922 (6)0.3210 (4)0.3550 (3)0.0505 (12)
C1110.3126 (6)0.7018 (3)0.5568 (3)0.0456 (11)
C260.2337 (7)0.7326 (4)0.2817 (3)0.0620 (14)
H260.35020.74080.28150.074*
C150.2150 (6)0.9013 (4)0.4447 (3)0.0514 (12)
H150.26340.86350.48000.062*
C2100.4238 (6)0.8580 (4)0.1400 (3)0.0551 (13)
H210A0.48420.88220.17900.066*
H210B0.50650.81320.10250.066*
C2140.1859 (7)1.0727 (3)0.0021 (4)0.0608 (14)
H2140.13341.11920.02790.073*
C3160.4589 (7)0.2834 (4)0.1968 (3)0.0588 (13)
H3160.51540.26990.14290.071*
C360.1877 (6)0.6143 (3)0.0579 (3)0.0533 (12)
H360.30190.61290.05970.064*
C1140.1934 (9)0.5750 (4)0.6558 (4)0.0702 (17)
H1140.15410.53250.68890.084*
C250.1436 (6)0.7850 (4)0.2350 (3)0.0537 (12)
H250.19980.82890.20380.064*
C2130.2522 (7)0.9871 (3)0.0338 (3)0.0531 (12)
C270.1542 (8)0.6675 (4)0.3290 (3)0.0605 (14)
H270.21740.63300.36120.073*
C370.1202 (6)0.6752 (3)0.0099 (3)0.0521 (12)
H370.18870.71400.02100.062*
C3150.4023 (8)0.2162 (3)0.2408 (4)0.0642 (15)
H3150.42120.15750.21620.077*
C2160.2756 (7)1.0201 (4)0.1280 (3)0.0584 (13)
H2160.28321.03210.18310.070*
C3140.3189 (7)0.2345 (3)0.3200 (4)0.0571 (13)
H3140.28110.18910.34970.068*
C160.3164 (7)0.9627 (4)0.4017 (3)0.0583 (13)
H160.43270.96520.40780.070*
C280.0167 (7)0.6535 (3)0.3290 (3)0.0540 (13)
H280.07020.60950.36100.065*
C2150.1957 (9)1.0890 (4)0.0837 (4)0.0730 (17)
H2150.14981.14690.10930.088*
C1150.2687 (11)0.5514 (4)0.5746 (4)0.089 (2)
H1150.27850.49240.55270.107*
C1160.3259 (9)0.6148 (4)0.5254 (3)0.0667 (16)
H1160.37450.59800.47070.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl110.0741 (10)0.0797 (10)0.0526 (8)0.0050 (8)0.0034 (7)0.0057 (7)
Cl310.0903 (11)0.0920 (11)0.0506 (8)0.0367 (9)0.0020 (7)0.0105 (7)
Cl210.1028 (13)0.0933 (12)0.0544 (8)0.0025 (10)0.0208 (8)0.0008 (8)
O120.0378 (17)0.0530 (19)0.0531 (18)0.0140 (14)0.0116 (14)0.0182 (15)
C340.032 (2)0.043 (2)0.036 (2)0.0082 (17)0.0075 (17)0.0017 (17)
O320.0337 (16)0.0549 (19)0.0517 (18)0.0161 (14)0.0098 (14)0.0185 (15)
O220.0402 (18)0.057 (2)0.057 (2)0.0092 (15)0.0171 (15)0.0186 (16)
C140.041 (2)0.042 (2)0.035 (2)0.0130 (18)0.0101 (18)0.0014 (18)
C230.041 (2)0.041 (2)0.041 (2)0.0087 (18)0.0126 (19)0.0096 (18)
C190.043 (2)0.038 (2)0.037 (2)0.0101 (18)0.0108 (18)0.0015 (17)
C110.049 (3)0.045 (3)0.041 (2)0.016 (2)0.009 (2)0.0130 (19)
O310.0475 (19)0.057 (2)0.061 (2)0.0210 (16)0.0082 (16)0.0224 (16)
O110.061 (2)0.073 (2)0.072 (2)0.029 (2)0.0198 (19)0.036 (2)
C310.044 (2)0.039 (2)0.038 (2)0.0132 (19)0.0074 (18)0.0084 (18)
C290.053 (3)0.039 (2)0.031 (2)0.0072 (19)0.0074 (19)0.0004 (17)
C350.035 (2)0.047 (3)0.058 (3)0.0152 (19)0.009 (2)0.011 (2)
C240.042 (2)0.036 (2)0.040 (2)0.0106 (18)0.0081 (18)0.0016 (18)
O210.067 (2)0.063 (2)0.063 (2)0.0004 (19)0.0221 (19)0.0241 (18)
C1100.042 (3)0.057 (3)0.056 (3)0.008 (2)0.013 (2)0.019 (2)
C320.036 (2)0.041 (2)0.033 (2)0.0084 (18)0.0047 (17)0.0063 (17)
C3110.032 (2)0.045 (2)0.047 (2)0.0045 (18)0.0101 (18)0.011 (2)
C130.047 (3)0.042 (2)0.041 (2)0.018 (2)0.0117 (19)0.0103 (19)
C220.048 (3)0.039 (2)0.038 (2)0.0057 (19)0.0154 (19)0.0094 (18)
C210.056 (3)0.041 (2)0.043 (2)0.003 (2)0.012 (2)0.006 (2)
C1130.047 (3)0.048 (3)0.041 (2)0.004 (2)0.012 (2)0.011 (2)
C1120.049 (3)0.037 (2)0.055 (3)0.002 (2)0.011 (2)0.004 (2)
C2120.045 (3)0.047 (3)0.058 (3)0.003 (2)0.002 (2)0.005 (2)
C120.040 (2)0.039 (2)0.043 (2)0.0098 (18)0.0086 (18)0.0100 (18)
C390.033 (2)0.036 (2)0.034 (2)0.0064 (16)0.0062 (16)0.0011 (16)
C180.055 (3)0.042 (2)0.050 (3)0.007 (2)0.015 (2)0.008 (2)
C3100.038 (2)0.053 (3)0.048 (3)0.010 (2)0.011 (2)0.012 (2)
C330.044 (2)0.040 (2)0.040 (2)0.0149 (19)0.0073 (19)0.0097 (18)
C2110.040 (3)0.046 (3)0.057 (3)0.012 (2)0.006 (2)0.015 (2)
C170.060 (3)0.049 (3)0.055 (3)0.001 (2)0.027 (2)0.003 (2)
C380.047 (3)0.043 (2)0.044 (2)0.009 (2)0.011 (2)0.0070 (19)
C3120.044 (3)0.043 (2)0.048 (2)0.0092 (19)0.011 (2)0.008 (2)
C3130.050 (3)0.060 (3)0.045 (3)0.014 (2)0.016 (2)0.012 (2)
C1110.043 (3)0.044 (2)0.049 (3)0.0022 (19)0.014 (2)0.011 (2)
C260.051 (3)0.075 (4)0.068 (3)0.027 (3)0.013 (3)0.015 (3)
C150.041 (3)0.060 (3)0.056 (3)0.015 (2)0.011 (2)0.007 (2)
C2100.042 (3)0.064 (3)0.063 (3)0.015 (2)0.014 (2)0.018 (3)
C2140.065 (3)0.044 (3)0.068 (3)0.001 (2)0.009 (3)0.011 (2)
C3160.061 (3)0.058 (3)0.054 (3)0.009 (3)0.005 (2)0.002 (2)
C360.036 (2)0.055 (3)0.071 (3)0.009 (2)0.014 (2)0.007 (2)
C1140.103 (5)0.044 (3)0.066 (4)0.020 (3)0.011 (3)0.014 (3)
C250.047 (3)0.064 (3)0.056 (3)0.018 (2)0.018 (2)0.014 (2)
C2130.052 (3)0.055 (3)0.050 (3)0.007 (2)0.007 (2)0.011 (2)
C270.069 (4)0.063 (3)0.052 (3)0.027 (3)0.001 (3)0.009 (2)
C370.047 (3)0.049 (3)0.061 (3)0.006 (2)0.019 (2)0.012 (2)
C3150.076 (4)0.038 (3)0.080 (4)0.013 (3)0.019 (3)0.002 (3)
C2160.071 (4)0.055 (3)0.052 (3)0.022 (3)0.006 (3)0.004 (2)
C3140.063 (3)0.042 (3)0.072 (4)0.017 (2)0.020 (3)0.019 (2)
C160.042 (3)0.066 (3)0.068 (3)0.007 (2)0.020 (2)0.006 (3)
C280.076 (4)0.045 (3)0.041 (2)0.012 (2)0.009 (2)0.011 (2)
C2150.098 (5)0.043 (3)0.068 (4)0.006 (3)0.004 (3)0.003 (3)
C1150.153 (7)0.049 (3)0.065 (4)0.034 (4)0.001 (4)0.002 (3)
C1160.104 (5)0.051 (3)0.043 (3)0.014 (3)0.010 (3)0.006 (2)
Geometric parameters (Å, º) top
Cl11—C1131.737 (5)C212—H2120.9299
Cl31—C3131.730 (5)C39—C381.395 (6)
Cl21—C2131.728 (5)C18—C171.356 (7)
O12—C111.375 (5)C18—H180.9300
O12—C121.384 (5)C310—H310A0.9700
C34—C351.398 (6)C310—H310B0.9700
C34—C391.398 (6)C33—H330.9300
C34—C331.439 (6)C211—C2161.374 (7)
O32—C311.377 (5)C211—C2101.499 (7)
O32—C321.378 (5)C17—C161.382 (8)
O22—C211.374 (6)C17—H170.9299
O22—C221.394 (5)C38—C371.369 (7)
C14—C151.395 (6)C38—H380.9300
C14—C191.398 (6)C312—C3131.377 (6)
C14—C131.432 (6)C312—H3120.9300
C23—C221.311 (6)C313—C3141.365 (7)
C23—C241.422 (6)C111—C1161.366 (7)
C23—H230.9299C26—C251.367 (7)
C19—C181.394 (6)C26—C271.375 (8)
C19—C111.451 (6)C26—H260.9301
C11—O111.197 (5)C15—C161.381 (7)
O31—C311.199 (5)C15—H150.9300
C31—C391.452 (6)C210—H210A0.9700
C29—C281.396 (7)C210—H210B0.9701
C29—C241.406 (6)C214—C2131.360 (7)
C29—C211.440 (7)C214—C2151.371 (8)
C35—C361.368 (7)C214—H2140.9301
C35—H350.9300C316—C3151.379 (8)
C24—C251.391 (7)C316—H3160.9300
O21—C211.211 (5)C36—C371.378 (7)
C110—C121.498 (6)C36—H360.9300
C110—C1111.506 (6)C114—C1151.383 (8)
C110—H110A0.9700C114—H1140.9300
C110—H110B0.9699C25—H250.9300
C32—C331.313 (6)C27—C281.361 (8)
C32—C3101.503 (6)C27—H270.9299
C311—C3121.379 (6)C37—H370.9301
C311—C3161.383 (7)C315—C3141.364 (8)
C311—C3101.502 (6)C315—H3150.9299
C13—C121.315 (6)C216—C2151.383 (8)
C13—H130.9301C216—H2160.9300
C22—C2101.500 (7)C314—H3140.9300
C113—C1141.346 (7)C16—H160.9300
C113—C1121.372 (6)C28—H280.9300
C112—C1111.375 (7)C215—H2150.9301
C112—H1120.9301C115—C1161.379 (8)
C212—C2131.378 (7)C115—H1150.9299
C212—C2111.388 (7)C116—H1160.9301
C11—O12—C12122.6 (3)C216—C211—C212119.0 (4)
C35—C34—C39118.9 (4)C216—C211—C210120.8 (5)
C35—C34—C33123.0 (4)C212—C211—C210120.2 (5)
C39—C34—C33118.0 (4)C18—C17—C16120.0 (5)
C31—O32—C32122.6 (3)C18—C17—H17119.9
C21—O22—C22122.0 (4)C16—C17—H17120.1
C15—C14—C19118.3 (4)C37—C38—C39119.5 (4)
C15—C14—C13122.7 (4)C37—C38—H38120.3
C19—C14—C13119.0 (4)C39—C38—H38120.2
C22—C23—C24121.3 (4)C313—C312—C311119.9 (4)
C22—C23—H23119.3C313—C312—H312120.1
C24—C23—H23119.4C311—C312—H312120.0
C18—C19—C14120.6 (4)C314—C313—C312121.6 (5)
C18—C19—C11120.0 (4)C314—C313—Cl31118.7 (4)
C14—C19—C11119.4 (4)C312—C313—Cl31119.7 (4)
O11—C11—O12116.5 (4)C116—C111—C112118.1 (5)
O11—C11—C19126.5 (4)C116—C111—C110120.6 (5)
O12—C11—C19117.0 (4)C112—C111—C110121.4 (4)
O31—C31—O32116.6 (4)C25—C26—C27120.9 (5)
O31—C31—C39126.7 (4)C25—C26—H26119.7
O32—C31—C39116.6 (3)C27—C26—H26119.4
C28—C29—C24120.2 (4)C16—C15—C14120.0 (5)
C28—C29—C21120.3 (4)C16—C15—H15120.0
C24—C29—C21119.4 (4)C14—C15—H15120.0
C36—C35—C34119.7 (4)C211—C210—C22112.5 (4)
C36—C35—H35120.2C211—C210—H210A109.4
C34—C35—H35120.1C22—C210—H210A109.3
C25—C24—C29118.0 (4)C211—C210—H210B108.9
C25—C24—C23123.3 (4)C22—C210—H210B108.8
C29—C24—C23118.7 (4)H210A—C210—H210B107.9
C12—C110—C111112.5 (4)C213—C214—C215118.8 (5)
C12—C110—H110A108.9C213—C214—H214120.7
C111—C110—H110A109.0C215—C214—H214120.5
C12—C110—H110B109.3C315—C316—C311120.4 (5)
C111—C110—H110B109.3C315—C316—H316119.9
H110A—C110—H110B107.8C311—C316—H316119.7
C33—C32—O32121.5 (4)C35—C36—C37121.2 (5)
C33—C32—C310129.2 (4)C35—C36—H36119.3
O32—C32—C310109.3 (4)C37—C36—H36119.5
C312—C311—C316118.5 (4)C113—C114—C115118.1 (5)
C312—C311—C310120.7 (4)C113—C114—H114120.9
C316—C311—C310120.8 (4)C115—C114—H114121.0
C12—C13—C14120.7 (4)C26—C25—C24120.7 (5)
C12—C13—H13119.6C26—C25—H25119.6
C14—C13—H13119.6C24—C25—H25119.7
C23—C22—O22120.9 (4)C214—C213—C212121.9 (5)
C23—C22—C210129.5 (4)C214—C213—Cl21118.3 (4)
O22—C22—C210109.6 (4)C212—C213—Cl21119.8 (4)
O21—C21—O22115.7 (5)C28—C27—C26120.3 (5)
O21—C21—C29126.7 (5)C28—C27—H27119.8
O22—C21—C29117.6 (4)C26—C27—H27120.0
C114—C113—C112121.4 (5)C38—C37—C36120.4 (4)
C114—C113—Cl11118.4 (4)C38—C37—H37119.8
C112—C113—Cl11120.2 (4)C36—C37—H37119.8
C113—C112—C111121.1 (4)C314—C315—C316120.9 (5)
C113—C112—H112119.5C314—C315—H315119.5
C111—C112—H112119.4C316—C315—H315119.6
C213—C212—C211119.3 (5)C211—C216—C215120.5 (5)
C213—C212—H212120.4C211—C216—H216119.7
C211—C212—H212120.3C215—C216—H216119.8
C13—C12—O12121.1 (4)C315—C314—C313118.6 (5)
C13—C12—C110129.7 (4)C315—C314—H314120.9
O12—C12—C110109.2 (4)C313—C314—H314120.4
C38—C39—C34120.3 (4)C15—C16—C17120.8 (5)
C38—C39—C31119.4 (4)C15—C16—H16119.5
C34—C39—C31120.3 (4)C17—C16—H16119.6
C17—C18—C19120.2 (5)C27—C28—C29119.9 (5)
C17—C18—H18119.8C27—C28—H28120.1
C19—C18—H18120.0C29—C28—H28120.0
C311—C310—C32113.3 (4)C214—C215—C216120.5 (5)
C311—C310—H310A109.2C214—C215—H215119.9
C32—C310—H310A109.0C216—C215—H215119.6
C311—C310—H310B108.8C116—C115—C114120.9 (5)
C32—C310—H310B108.6C116—C115—H115119.8
H310A—C310—H310B107.7C114—C115—H115119.4
C32—C33—C34121.0 (4)C111—C116—C115120.5 (5)
C32—C33—H33119.5C111—C116—H116119.9
C34—C33—H33119.5C115—C116—H116119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C216—H216···O110.932.563.437 (6)158
C116—H116···O210.932.583.396 (6)147
C26—H26···O22i0.932.453.339 (7)161
C36—H36···O32i0.932.523.409 (6)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H11ClO2
Mr270.70
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)8.1411 (8), 15.0269 (14), 16.4080 (16)
α, β, γ (°)91.696 (8), 98.478 (8), 102.624 (6)
V3)1933.4 (3)
Z6
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.36 × 0.28 × 0.13
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionIntegration
(Gaussian; Coppens et al., 1970)
Tmin, Tmax0.930, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
33806, 8770, 5387
Rint0.096
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.280, 1.15
No. of reflections8770
No. of parameters514
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.38

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C216—H216···O110.932.563.437 (6)158.2
C116—H116···O210.932.583.396 (6)146.9
C26—H26···O22i0.932.453.339 (7)160.5
C36—H36···O32i0.932.523.409 (6)159.7
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (Project VZ0021627501) and the Higher Education Commission, Islamabad, Pakistan.

References

First citationAbid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBarry, R. D. (1964). Chem. Rev. 64, 239–241.  CrossRef Web of Science Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology. Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPowers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev. 102, 4639–4643.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem. 50, 6979–6984.  Google Scholar
First citationThomas, L. & Jens, B. J. (1999). Nat. Prod. 62, 1182–1187.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds