organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-(1H-tetra­zol-5-yl)pyridin-1-ium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 14 September 2008; accepted 24 September 2008; online 27 September 2008)

In the cation of the title compound, C6H7N6+·NO3, the pyridine and tetra­zole rings are essentially coplanar, exhibiting a dihedral angle of 6.30 (6)°. In the crystal structure, N—H⋯O, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds form a three-dimensional network.

Related literature

For general background on the chemistry of tetra­zole derivatives, see: Dunica et al. (1991[Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395-2400.]); Wittenberger & Donner (1993[Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.]); Zou et al. (2007[Zou, Y., Hong, S., Park, M., Chun, H. & Lah, M. S. (2007). Chem. Commun. 28, 5182-5184.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]). For the crystal structures of related compounds, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]).

[Scheme 1]

Experimental

Crystal data
  • C6H7N6+·NO3

  • Mr = 225.19

  • Monoclinic, P 21 /c

  • a = 8.3797 (17) Å

  • b = 6.9314 (14) Å

  • c = 15.881 (3) Å

  • β = 94.31 (3)°

  • V = 919.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 (2) K

  • 0.30 × 0.22 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.916, Tmax = 0.970

  • 8766 measured reflections

  • 2023 independent reflections

  • 1520 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.120

  • S = 1.07

  • 2023 reflections

  • 173 parameters

  • All H-atom parameters refined

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.95 (2) 2.55 (2) 3.328 (2) 138.7 (18)
N1—H1A⋯O3i 0.95 (2) 1.84 (3) 2.764 (2) 163 (2)
N5—H5⋯O1ii 0.91 (2) 2.11 (2) 2.989 (2) 163 (2)
N5—H5⋯O3ii 0.91 (2) 2.21 (2) 2.908 (2) 133.3 (19)
N6—H6A⋯O1iii 0.88 (3) 2.31 (3) 3.074 (3) 145 (2)
N6—H6B⋯O2iii 0.90 (3) 2.48 (3) 2.908 (2) 110 (2)
N6—H6B⋯N2iv 0.90 (3) 2.32 (3) 3.176 (3) 158 (3)
C1—H1⋯O3ii 0.96 (2) 2.60 (2) 3.124 (2) 114.4 (16)
C1—H1⋯O2i 0.96 (2) 2.38 (2) 3.308 (2) 161.5 (18)
C3—H3⋯N4v 0.95 (2) 2.55 (2) 3.305 (3) 136.3 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y+1, z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

The tetrazole functional group has found a wide range of applications in coordination chemistry as ligand, in medicinal chemistry as a metabolically stable surrogate for the carboxylic acid group, and in materials science as high density energy material (Wang et al., 2005; Xiong et al., 2002; Zou et al., 2007; Dunica et al., 1991; Wittenberger & Donner, 1993). We report here the crystal structure of the title compound, 5-(1H-tetrazol-5-yl)pyridin-2-amine-1-ium nitrate.

In the cation of the title compound (Fig. 1) the pyridine and tetrazole rings are essentially coplanar with a dihedral angle of only 6.30 (6)°. Bond distances and angles of the tetrazole ring are within the usual range (Wang et al., 2005; Dai & Fu, 2008). The pyridine N atom is protonated. The crystal packing is consolidated by N—H···O, N—H···N, C—H···O and C—H···N hydrogen bonds to form a three-dimentional network. (Table 1, Fig. 2).

Related literature top

For general background on the chemistry of tetrazole derivatives, see: Dunica et al. (1991); Wittenberger & Donner (1993); Zou et al. (2007); Xiong et al. (2002). For the crystal structures of related compounds, see: Dai & Fu (2008); Wang et al. (2005).

Experimental top

2-Amino-5-cyanopyridine (30 mmol), NaN3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding nitrate acid (6 M) till pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol/nitric acid (50:1 v/v) solution.

Refinement top

All H atoms were located in difference Fourier maps and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis showing the three-dimensionnal hydrogen bonding network (dashed lines). Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
2-Amino-5-(1H-tetrazol-5-yl)pyridin-1-ium nitrate top
Crystal data top
C6H7N6+·NO3F(000) = 464
Mr = 225.19Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1772 reflections
a = 8.3797 (17) Åθ = 2.4–27.1°
b = 6.9314 (14) ŵ = 0.13 mm1
c = 15.881 (3) ÅT = 298 K
β = 94.31 (3)°Block, colourless
V = 919.8 (3) Å30.30 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2023 independent reflections
Radiation source: fine-focus sealed tube1520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 13.6612 pixels mm-1θmax = 27.1°, θmin = 3.2°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 88
Tmin = 0.916, Tmax = 0.970l = 2020
8766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.2064P]
where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C6H7N6+·NO3V = 919.8 (3) Å3
Mr = 225.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3797 (17) ŵ = 0.13 mm1
b = 6.9314 (14) ÅT = 298 K
c = 15.881 (3) Å0.30 × 0.22 × 0.20 mm
β = 94.31 (3)°
Data collection top
Rigaku Mercury2 (2x2 bin mode)
diffractometer
2023 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1520 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.970Rint = 0.041
8766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.120All H-atom parameters refined
S = 1.07Δρmax = 0.15 e Å3
2023 reflectionsΔρmin = 0.18 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49052 (18)0.0891 (2)0.58329 (9)0.0552 (4)
O20.3288 (2)0.0420 (2)0.68089 (9)0.0632 (5)
O30.46287 (18)0.3054 (2)0.67890 (10)0.0588 (4)
N70.42643 (19)0.1424 (2)0.64808 (10)0.0406 (4)
N10.2311 (2)0.0535 (2)0.27752 (10)0.0416 (4)
C20.2037 (2)0.2485 (3)0.40803 (11)0.0359 (4)
C50.2593 (2)0.5628 (3)0.51712 (11)0.0401 (4)
N50.3153 (2)0.5556 (2)0.43967 (10)0.0427 (4)
C40.1695 (2)0.4035 (3)0.54193 (12)0.0411 (5)
C60.1714 (2)0.0831 (3)0.35207 (11)0.0367 (4)
N40.0781 (2)0.0636 (3)0.36762 (11)0.0526 (5)
N60.2911 (3)0.7171 (3)0.56527 (13)0.0550 (5)
C30.1443 (2)0.2500 (3)0.48954 (12)0.0399 (4)
N20.1724 (2)0.1144 (2)0.24520 (10)0.0497 (5)
C10.2875 (2)0.4049 (3)0.38512 (12)0.0414 (5)
N30.0808 (2)0.1835 (3)0.29971 (11)0.0577 (5)
H6A0.345 (3)0.815 (4)0.5462 (15)0.066 (8)*
H6B0.260 (4)0.723 (4)0.618 (2)0.092 (10)*
H1A0.306 (3)0.126 (3)0.2484 (15)0.066 (7)*
H40.132 (2)0.408 (3)0.5949 (13)0.045 (5)*
H30.085 (3)0.143 (3)0.5074 (13)0.052 (6)*
H10.325 (3)0.423 (3)0.3298 (14)0.056 (6)*
H50.370 (3)0.658 (3)0.4211 (14)0.061 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0669 (10)0.0599 (10)0.0416 (8)0.0075 (8)0.0238 (7)0.0058 (7)
O20.0879 (12)0.0556 (9)0.0497 (9)0.0239 (9)0.0292 (9)0.0047 (7)
O30.0629 (10)0.0531 (9)0.0633 (10)0.0168 (8)0.0236 (8)0.0186 (7)
N70.0451 (9)0.0430 (9)0.0345 (8)0.0031 (7)0.0084 (7)0.0002 (7)
N10.0519 (10)0.0426 (9)0.0314 (8)0.0025 (8)0.0094 (7)0.0003 (7)
C20.0373 (10)0.0387 (10)0.0321 (9)0.0009 (8)0.0055 (7)0.0016 (8)
C50.0445 (10)0.0413 (11)0.0344 (9)0.0030 (8)0.0015 (8)0.0005 (8)
N50.0499 (10)0.0397 (9)0.0391 (9)0.0064 (8)0.0081 (8)0.0028 (7)
C40.0457 (11)0.0481 (11)0.0302 (9)0.0006 (9)0.0077 (8)0.0010 (8)
C60.0395 (10)0.0406 (10)0.0306 (9)0.0012 (8)0.0063 (8)0.0029 (7)
N40.0623 (11)0.0533 (11)0.0440 (10)0.0183 (9)0.0154 (9)0.0049 (8)
N60.0739 (14)0.0439 (11)0.0475 (11)0.0070 (10)0.0060 (10)0.0057 (9)
C30.0414 (10)0.0445 (11)0.0344 (10)0.0052 (9)0.0076 (8)0.0037 (8)
N20.0650 (11)0.0454 (10)0.0392 (9)0.0052 (9)0.0077 (8)0.0030 (8)
C10.0469 (11)0.0453 (11)0.0331 (10)0.0040 (9)0.0101 (8)0.0021 (8)
N30.0750 (13)0.0515 (11)0.0475 (10)0.0159 (10)0.0118 (9)0.0056 (8)
Geometric parameters (Å, º) top
O1—N71.2517 (19)N5—C11.366 (2)
O2—N71.221 (2)N5—H50.91 (2)
O3—N71.260 (2)C4—C31.358 (3)
N1—C61.336 (2)C4—H40.92 (2)
N1—N21.350 (2)C6—N41.317 (2)
N1—H1A0.95 (2)N4—N31.363 (2)
C2—C11.356 (3)N6—H6A0.88 (3)
C2—C31.422 (2)N6—H6B0.90 (3)
C2—C61.463 (3)C3—H30.95 (2)
C5—N61.330 (3)N2—N31.292 (2)
C5—N51.350 (2)C1—H10.96 (2)
C5—C41.409 (3)
O2—N7—O1121.71 (17)C5—C4—H4117.3 (12)
O2—N7—O3119.76 (16)N4—C6—N1108.35 (17)
O1—N7—O3118.53 (16)N4—C6—C2125.21 (16)
C6—N1—N2108.63 (16)N1—C6—C2126.44 (17)
C6—N1—H1A131.0 (14)C6—N4—N3106.09 (16)
N2—N1—H1A120.3 (14)C5—N6—H6A120.5 (16)
C1—C2—C3117.54 (18)C5—N6—H6B120.9 (19)
C1—C2—C6122.64 (16)H6A—N6—H6B119 (2)
C3—C2—C6119.82 (17)C4—C3—C2120.98 (18)
N6—C5—N5119.03 (19)C4—C3—H3119.4 (13)
N6—C5—C4123.88 (19)C2—C3—H3119.6 (13)
N5—C5—C4117.09 (17)N3—N2—N1106.44 (16)
C5—N5—C1123.48 (17)C2—C1—N5120.56 (17)
C5—N5—H5119.1 (15)C2—C1—H1123.9 (13)
C1—N5—H5117.4 (15)N5—C1—H1115.4 (13)
C3—C4—C5120.32 (18)N2—N3—N4110.49 (17)
C3—C4—H4122.4 (13)
N6—C5—N5—C1179.14 (19)C2—C6—N4—N3179.73 (19)
C4—C5—N5—C10.9 (3)C5—C4—C3—C21.7 (3)
N6—C5—C4—C3179.0 (2)C1—C2—C3—C40.6 (3)
N5—C5—C4—C31.0 (3)C6—C2—C3—C4178.50 (18)
N2—N1—C6—N40.7 (2)C6—N1—N2—N30.4 (2)
N2—N1—C6—C2179.74 (18)C3—C2—C1—N51.2 (3)
C1—C2—C6—N4173.07 (19)C6—C2—C1—N5179.71 (18)
C3—C2—C6—N46.0 (3)C5—N5—C1—C22.0 (3)
C1—C2—C6—N17.5 (3)N1—N2—N3—N40.0 (2)
C3—C2—C6—N1173.47 (18)C6—N4—N3—N20.5 (2)
N1—C6—N4—N30.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.95 (2)2.55 (2)3.328 (2)138.7 (18)
N1—H1A···O3i0.95 (2)1.84 (3)2.764 (2)163 (2)
N5—H5···O1ii0.91 (2)2.11 (2)2.989 (2)163 (2)
N5—H5···O3ii0.91 (2)2.21 (2)2.908 (2)133.3 (19)
N6—H6A···O1iii0.88 (3)2.31 (3)3.074 (3)145 (2)
N6—H6B···O2iii0.90 (3)2.48 (3)2.908 (2)110 (2)
N6—H6B···N2iv0.90 (3)2.32 (3)3.176 (3)158 (3)
C1—H1···O3ii0.96 (2)2.60 (2)3.124 (2)114.4 (16)
C1—H1···O2i0.96 (2)2.38 (2)3.308 (2)161.5 (18)
C3—H3···N4v0.95 (2)2.55 (2)3.305 (3)136.3 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H7N6+·NO3
Mr225.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3797 (17), 6.9314 (14), 15.881 (3)
β (°) 94.31 (3)
V3)919.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.22 × 0.20
Data collection
DiffractometerRigaku Mercury2 (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.916, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
8766, 2023, 1520
Rint0.041
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.120, 1.07
No. of reflections2023
No. of parameters173
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.15, 0.18

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.95 (2)2.55 (2)3.328 (2)138.7 (18)
N1—H1A···O3i0.95 (2)1.84 (3)2.764 (2)163 (2)
N5—H5···O1ii0.91 (2)2.11 (2)2.989 (2)163 (2)
N5—H5···O3ii0.91 (2)2.21 (2)2.908 (2)133.3 (19)
N6—H6A···O1iii0.88 (3)2.31 (3)3.074 (3)145 (2)
N6—H6B···O2iii0.90 (3)2.48 (3)2.908 (2)110 (2)
N6—H6B···N2iv0.90 (3)2.32 (3)3.176 (3)158 (3)
C1—H1···O3ii0.96 (2)2.60 (2)3.124 (2)114.4 (16)
C1—H1···O2i0.96 (2)2.38 (2)3.308 (2)161.5 (18)
C3—H3···N4v0.95 (2)2.55 (2)3.305 (3)136.3 (16)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y, z+1.
 

Acknowledgements

This work was supported by a Start-up Grant from Southeast University to Professor R.-G. Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem. 56, 2395–2400.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141.  CrossRef CAS Web of Science Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar
First citationZou, Y., Hong, S., Park, M., Chun, H. & Lah, M. S. (2007). Chem. Commun. 28, 5182–5184.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds