organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di­phenyl­ethane-1,2-diyl diiso­nico­tinate monohydrate

aMaterials Chemistry Laboratory, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: xieyima@hotmail.com

(Received 14 June 2008; accepted 17 July 2008; online 24 September 2008)

In the novel title compound, C26H20N2O4·H2O, the two phenyl rings make a dihedral angle of 45.3 (1)° with each other, and the dihedral angle between the two pyridyl planes is 69.8 (1)°.

Related literature

For general background, see: Aspinall et al. (2003[Aspinall, H. C., Greeves, N. & McIver, E. G. (2003). Tetrahedron, 59, 10453-10463.]); Takenaka et al. (2006[Takenaka, Y., Ito, H., Hasegawa, M. & Iguchi, K. (2006). Tetrahedron, 62, 3380-3388.]); MacMahon et al. (2001[MacMahon, S. R., Fong, P. S., Baran, S. I., Wilson, S. R. & Schuster, D. I. (2001). J. Org. Chem. 66, 5449-5455.]); Schuster et al. (2005[Schuster, C., Knollmueller, M. & Gaertner, P. (2005). Tetrahedron Asymmetry, 16, 2631-2647.]). For related structures, see: Shi et al. (2006[Shi, S.-M., Jia, B., Wu, Y., Liu, X.-D. & Hu, Z.-Q. (2006). Acta Cryst. E62, o2278-o2280.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20N2O4·H2O

  • Mr = 442.46

  • Monoclinic, P 21

  • a = 11.925 (10) Å

  • b = 5.826 (5) Å

  • c = 17.787 (15) Å

  • β = 105.629 (10)°

  • V = 1190.1 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.32 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker,2000[Bruker, (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.981

  • 6535 measured reflections

  • 2566 independent reflections

  • 1816 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.086

  • S = 1.10

  • 2566 reflections

  • 304 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯N2i 0.84 (4) 2.48 (5) 2.921 (4) 113 (4)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker, (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker, (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of chiral molecules containing pyridine rings has attracted considerable attention in recent years (Aspinall, et al., 2003; Takenaka, et al., 2006; MacMahon, et al., 2001; Schuster, et al., 2005). In the title compound, (I), C26H20NO2, all bond lengths and angles show normal values (Shi, et al., 2006). The chiral molecule (Figure 1) consists of two benzene rings and two pyridine rings. The dihedral angle between the two benzene ring is 45.28°. The torsion angle C2—C1—C7—O2 is -44.2 (2)°; the torsional angle The packing arrangement in a unit cell of the title molecule is shown in Figure 2.

Related literature top

For related literature, see: Aspinall et al. (2003); Takenaka et al. (2006); MacMahon et al. (2001); Schuster et al. (2005); Shi et al. (2006).It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

The title compound, was synthesized by the reaction of trans-1,2-stilbene with nicotinic acid in dichloromethane. The single crystals of (I) suitable for X-ray diffraction were obtained from an ethanol solution by slow evaporation.

Refinement top

The H atoms bonded to N atom were located from difference density maps and refined isotropically. The H atoms bonded to C atoms were located geometrically and treated as riding, with C—H distances of 0.95–1.00 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for others. Due to the absence of heavy atoms corresponding to Si, it was impossible to determine the absolute configuration in this case. At this stage, the Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing diagram in the crystal for (I).
(1R,2R)-1,2-Diphenylethane-1,2-diyl diisonicotinate monohydrate top
Crystal data top
C26H20N2O4·H2OF(000) = 464
Mr = 442.46Dx = 1.235 Mg m3
Monoclinic, P21Melting point: 327 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.925 (10) ÅCell parameters from 1142 reflections
b = 5.826 (5) Åθ = 2.4–21.6°
c = 17.787 (15) ŵ = 0.09 mm1
β = 105.629 (10)°T = 291 K
V = 1190.1 (17) Å3Acicular, colorless
Z = 20.32 × 0.24 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2566 independent reflections
Radiation source: sealed tube1816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker,2000)
h = 1414
Tmin = 0.979, Tmax = 0.981k = 77
6535 measured reflectionsl = 2118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
2566 reflections(Δ/σ)max < 0.001
304 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.11 e Å3
Crystal data top
C26H20N2O4·H2OV = 1190.1 (17) Å3
Mr = 442.46Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.925 (10) ŵ = 0.09 mm1
b = 5.826 (5) ÅT = 291 K
c = 17.787 (15) Å0.32 × 0.24 × 0.22 mm
β = 105.629 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2566 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2000)
1816 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.024
6535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.13 e Å3
2566 reflectionsΔρmin = 0.11 e Å3
304 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1366 (3)0.0950 (8)0.1997 (2)0.0617 (9)
H10.18430.01980.24260.074*
C20.0250 (3)0.0040 (7)0.1606 (2)0.0610 (10)
H20.00020.13190.17840.073*
C30.0446 (3)0.1107 (7)0.0988 (2)0.0658 (10)
H30.11710.04860.07440.079*
C40.0107 (3)0.3060 (7)0.0718 (2)0.0644 (10)
H40.05980.37830.02870.077*
C50.1006 (3)0.4042 (7)0.1088 (2)0.0604 (9)
H50.12370.53950.08950.072*
C60.1729 (3)0.2994 (6)0.17230 (19)0.0526 (8)
C70.2931 (2)0.3938 (6)0.20841 (16)0.0479 (8)
H70.29800.55240.19120.058*
C80.3874 (3)0.2465 (7)0.18741 (17)0.0520 (8)
H80.38540.08920.20650.062*
C90.3699 (2)0.2474 (6)0.10007 (17)0.0454 (7)
C100.3172 (3)0.0645 (7)0.05519 (19)0.0575 (9)
H100.29380.06210.07900.069*
C110.2988 (3)0.0677 (7)0.0256 (2)0.0592 (9)
H110.26470.05760.05550.071*
C120.3315 (3)0.2587 (7)0.06095 (19)0.0545 (8)
H120.31650.26390.11500.065*
C130.3855 (3)0.4387 (7)0.01715 (19)0.0560 (9)
H130.40930.56400.04140.067*
C140.4059 (2)0.4372 (6)0.06493 (19)0.0511 (8)
H140.44270.56040.09490.061*
C150.3427 (3)0.5843 (7)0.3341 (2)0.0534 (8)
C160.3422 (3)0.5479 (7)0.4175 (2)0.0586 (9)
C170.2955 (3)0.3621 (7)0.4423 (2)0.0629 (10)
H170.26440.24690.40660.076*
C180.2919 (3)0.3359 (7)0.5200 (2)0.0611 (10)
H180.25950.20510.53560.073*
C190.3806 (3)0.6880 (6)0.5480 (2)0.0611 (10)
H190.40730.80480.58400.073*
C200.3910 (3)0.7229 (7)0.4693 (2)0.0639 (10)
H200.42700.85070.45480.077*
C210.5955 (3)0.2419 (6)0.22411 (18)0.0478 (8)
C220.7001 (3)0.3845 (6)0.25533 (17)0.0504 (8)
C230.7001 (3)0.5913 (7)0.29022 (18)0.0551 (9)
H230.63120.65130.29710.066*
C240.8028 (3)0.7121 (7)0.3155 (2)0.0608 (10)
H240.80090.85280.33980.073*
C250.9004 (3)0.4385 (8)0.2745 (2)0.0661 (10)
H250.97060.38180.26900.079*
C260.8048 (3)0.2999 (7)0.2472 (2)0.0590 (9)
H260.81010.15790.22450.071*
N10.3370 (3)0.5066 (6)0.57225 (18)0.0654 (8)
N20.9046 (3)0.6389 (6)0.30715 (18)0.0660 (9)
O10.31042 (17)0.3875 (4)0.29344 (11)0.0516 (6)
O20.36767 (19)0.7536 (5)0.30737 (14)0.0629 (7)
O30.49642 (18)0.3587 (4)0.22757 (12)0.0531 (6)
O40.59297 (19)0.0481 (5)0.19752 (13)0.0587 (6)
O50.0848 (2)0.9233 (6)0.40864 (18)0.0779 (9)
H5A0.059 (4)0.815 (9)0.424 (3)0.093*
H5B0.047 (3)0.947 (8)0.362 (3)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.065 (3)0.058 (2)0.0020 (18)0.0136 (18)0.0043 (19)
C20.063 (2)0.059 (3)0.061 (2)0.0087 (17)0.0178 (19)0.0038 (18)
C30.062 (2)0.069 (3)0.064 (2)0.010 (2)0.0140 (19)0.015 (2)
C40.060 (2)0.067 (3)0.062 (2)0.0080 (19)0.0089 (18)0.005 (2)
C50.0522 (18)0.063 (2)0.064 (2)0.0058 (18)0.0123 (16)0.001 (2)
C60.0556 (19)0.057 (2)0.0475 (18)0.0030 (16)0.0178 (15)0.0043 (17)
C70.0533 (17)0.057 (2)0.0308 (15)0.0098 (16)0.0067 (13)0.0048 (15)
C80.0542 (18)0.062 (2)0.0420 (17)0.0031 (16)0.0175 (15)0.0039 (16)
C90.0432 (15)0.053 (2)0.0411 (18)0.0037 (15)0.0136 (14)0.0001 (16)
C100.0568 (19)0.065 (2)0.050 (2)0.0001 (18)0.0130 (16)0.0030 (19)
C110.061 (2)0.061 (2)0.054 (2)0.0055 (19)0.0127 (17)0.0121 (19)
C120.0562 (18)0.067 (2)0.0429 (19)0.0085 (18)0.0180 (16)0.0023 (18)
C130.0502 (17)0.064 (2)0.0525 (19)0.0065 (17)0.0121 (15)0.0081 (18)
C140.0488 (17)0.059 (2)0.0481 (18)0.0065 (17)0.0179 (14)0.0004 (17)
C150.0568 (19)0.052 (2)0.053 (2)0.0120 (17)0.0188 (16)0.0071 (19)
C160.064 (2)0.062 (2)0.0490 (18)0.0077 (18)0.0140 (16)0.0006 (18)
C170.066 (2)0.066 (3)0.055 (2)0.0181 (18)0.0140 (18)0.0070 (19)
C180.067 (2)0.059 (2)0.055 (2)0.0162 (18)0.0121 (17)0.0051 (18)
C190.065 (2)0.060 (2)0.057 (2)0.0133 (19)0.0159 (17)0.0154 (19)
C200.0620 (19)0.063 (2)0.065 (2)0.0051 (18)0.0138 (18)0.0064 (19)
C210.0522 (17)0.058 (2)0.0351 (16)0.0071 (16)0.0142 (14)0.0124 (16)
C220.0616 (19)0.060 (2)0.0320 (15)0.0033 (17)0.0170 (14)0.0072 (16)
C230.060 (2)0.065 (3)0.0394 (17)0.0064 (17)0.0124 (15)0.0017 (17)
C240.060 (2)0.063 (3)0.058 (2)0.0028 (18)0.0136 (18)0.0088 (18)
C250.063 (2)0.064 (3)0.072 (2)0.001 (2)0.0174 (19)0.011 (2)
C260.0579 (19)0.061 (2)0.058 (2)0.0075 (17)0.0152 (17)0.0077 (18)
N10.0718 (19)0.066 (2)0.0574 (17)0.0158 (16)0.0152 (15)0.0097 (16)
N20.0662 (18)0.066 (2)0.065 (2)0.0032 (15)0.0164 (15)0.0170 (17)
O10.0563 (13)0.0607 (16)0.0372 (12)0.0064 (12)0.0117 (10)0.0014 (11)
O20.0610 (14)0.0649 (17)0.0592 (15)0.0069 (13)0.0100 (12)0.0042 (14)
O30.0570 (12)0.0594 (15)0.0429 (11)0.0088 (11)0.0134 (10)0.0027 (11)
O40.0579 (13)0.0690 (17)0.0498 (13)0.0184 (13)0.0153 (10)0.0072 (13)
O50.0623 (17)0.073 (2)0.079 (2)0.0134 (15)0.0127 (14)0.0160 (17)
Geometric parameters (Å, º) top
C1—C61.399 (5)C15—O21.168 (4)
C1—C21.427 (5)C15—O11.354 (4)
C1—H10.9300C15—C161.502 (5)
C2—C31.339 (5)C16—C171.344 (5)
C2—H20.9300C16—C201.392 (5)
C3—C41.339 (6)C17—C181.402 (5)
C3—H30.9300C17—H170.9300
C4—C51.433 (5)C18—N11.369 (5)
C4—H40.9300C18—H180.9300
C5—C61.367 (5)C19—N11.302 (5)
C5—H50.9300C19—C201.452 (5)
C6—C71.507 (4)C19—H190.9300
C7—O11.471 (3)C20—H200.9300
C7—C81.538 (4)C21—O41.221 (5)
C7—H70.9800C21—O31.379 (4)
C8—O31.459 (4)C21—C221.477 (5)
C8—C91.511 (4)C22—C231.355 (5)
C8—H80.9800C22—C261.386 (4)
C9—C101.377 (5)C23—C241.379 (5)
C9—C141.394 (5)C23—H230.9300
C10—C111.394 (5)C24—N21.333 (4)
C10—H100.9300C24—H240.9300
C11—C121.385 (5)C25—N21.298 (5)
C11—H110.9300C25—C261.374 (5)
C12—C131.361 (5)C25—H250.9300
C12—H120.9300C26—H260.9300
C13—C141.414 (5)O5—H5A0.78 (5)
C13—H130.9300O5—H5B0.84 (4)
C14—H140.9300
C6—C1—C2118.9 (3)C9—C14—C13118.7 (3)
C6—C1—H1120.6C9—C14—H14120.7
C2—C1—H1120.6C13—C14—H14120.7
C3—C2—C1121.2 (4)O2—C15—O1124.4 (3)
C3—C2—H2119.4O2—C15—C16126.2 (4)
C1—C2—H2119.4O1—C15—C16109.4 (3)
C4—C3—C2120.6 (4)C17—C16—C20120.7 (3)
C4—C3—H3119.7C17—C16—C15123.3 (3)
C2—C3—H3119.7C20—C16—C15116.0 (4)
C3—C4—C5120.4 (4)C16—C17—C18122.4 (3)
C3—C4—H4119.8C16—C17—H17118.8
C5—C4—H4119.8C18—C17—H17118.8
C6—C5—C4120.1 (4)N1—C18—C17118.6 (3)
C6—C5—H5119.9N1—C18—H18120.7
C4—C5—H5119.9C17—C18—H18120.7
C5—C6—C1118.8 (3)N1—C19—C20125.3 (3)
C5—C6—C7120.3 (3)N1—C19—H19117.3
C1—C6—C7120.7 (3)C20—C19—H19117.3
O1—C7—C6106.5 (2)C16—C20—C19113.9 (4)
O1—C7—C8109.0 (2)C16—C20—H20123.0
C6—C7—C8111.5 (3)C19—C20—H20123.0
O1—C7—H7109.9O4—C21—O3122.8 (3)
C6—C7—H7109.9O4—C21—C22126.6 (3)
C8—C7—H7109.9O3—C21—C22110.6 (3)
O3—C8—C9111.1 (2)C23—C22—C26118.4 (3)
O3—C8—C7104.2 (3)C23—C22—C21124.6 (3)
C9—C8—C7109.9 (3)C26—C22—C21117.0 (3)
O3—C8—H8110.5C22—C23—C24119.6 (3)
C9—C8—H8110.5C22—C23—H23120.2
C7—C8—H8110.5C24—C23—H23120.2
C10—C9—C14120.1 (3)N2—C24—C23123.8 (4)
C10—C9—C8120.6 (3)N2—C24—H24118.1
C14—C9—C8119.3 (3)C23—C24—H24118.1
C9—C10—C11120.5 (4)N2—C25—C26128.0 (4)
C9—C10—H10119.7N2—C25—H25116.0
C11—C10—H10119.7C26—C25—H25116.0
C12—C11—C10119.6 (3)C25—C26—C22116.0 (3)
C12—C11—H11120.2C25—C26—H26122.0
C10—C11—H11120.2C22—C26—H26122.0
C13—C12—C11120.5 (3)C19—N1—C18118.9 (3)
C13—C12—H12119.8C25—N2—C24114.2 (4)
C11—C12—H12119.8C15—O1—C7117.9 (3)
C12—C13—C14120.6 (3)C21—O3—C8114.7 (3)
C12—C13—H13119.7H5A—O5—H5B108 (4)
C14—C13—H13119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N2i0.84 (4)2.48 (5)2.921 (4)113 (4)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC26H20N2O4·H2O
Mr442.46
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)11.925 (10), 5.826 (5), 17.787 (15)
β (°) 105.629 (10)
V3)1190.1 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker,2000)
Tmin, Tmax0.979, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6535, 2566, 1816
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.086, 1.10
No. of reflections2566
No. of parameters304
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.11

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···N2i0.84 (4)2.48 (5)2.921 (4)113 (4)
Symmetry code: (i) x1, y, z.
 

Footnotes

Contribution No 20272019.

Current address: Department of Chemistry and Chemical Engineering, Jiangsu Polytechnic University, People's Republic of China.

Acknowledgements

We thank the Natural Science Foundation of China (No. 20272019) and the Key Laboratory of Fine Petrochemical Engineering of Jiangsu Province (KF0503) for financial support.

References

First citationAspinall, H. C., Greeves, N. & McIver, E. G. (2003). Tetrahedron, 59, 10453–10463.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker, (2000). SMART, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationMacMahon, S. R., Fong, P. S., Baran, S. I., Wilson, S. R. & Schuster, D. I. (2001). J. Org. Chem. 66, 5449–5455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchuster, C., Knollmueller, M. & Gaertner, P. (2005). Tetrahedron Asymmetry, 16, 2631–2647.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, S.-M., Jia, B., Wu, Y., Liu, X.-D. & Hu, Z.-Q. (2006). Acta Cryst. E62, o2278–o2280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTakenaka, Y., Ito, H., Hasegawa, M. & Iguchi, K. (2006). Tetrahedron, 62, 3380–3388.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds