metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-3-(2-hy­droxy­ethyl)-2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-olato-κ3N,O:O]bis­[aqua­chloridocopper(II)]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 13 August 2008; accepted 8 September 2008; online 13 September 2008)

In the dinuclear centrosymmetric copper(II) title compound, [Cu2(C11H11N2O2)2Cl2(H2O)2], each CuII ion has a slightly distorted trigonal-bipyramidal geometry and is coordinated by one N and one O atom from one 3-(2-hydroxy­ethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, another O atom from the second ligand, one water mol­ecule and one Cl atom. The crystal structure involves inter­molecular C—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds

Related literature

For related literature, see: Bayot et al. (2006[Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390-1394.]); Chen et al. (2007[Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.]); Sun et al. (2008[Sun, Y., Jiang, X.-D. & Li, X.-B. (2008). Acta Cryst. E64, m801.]); Wu et al. (2006[Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281-m282.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C11H11N2O2)2Cl2(H2O)2]

  • Mr = 672.45

  • Monoclinic, P 21 /n

  • a = 9.391 (3) Å

  • b = 11.322 (3) Å

  • c = 11.905 (4) Å

  • β = 102.414 (18)°

  • V = 1236.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 293 (2) K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.890, Tmax = 1.000 (expected range = 0.759–0.853)

  • 12472 measured reflections

  • 2826 independent reflections

  • 2249 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.115

  • S = 1.01

  • 2826 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O2i 0.82 2.13 2.742 (4) 131
O5—H5D⋯O1ii 0.96 2.11 2.788 (4) 127
O2—H2A⋯Cl1iii 0.75 (6) 2.37 (6) 3.078 (4) 158 (6)
C9—H9A⋯Cl1 0.96 2.49 3.275 (4) 139
C3—H3A⋯Cl1iv 0.93 2.72 3.387 (4) 130
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1, y, z; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Chen et al., 2007). Quinolin-8-ol is one such ligand and several crystal structures of complexes containing it have been reported (Wu et al., 2006). Our group has recently reported a new manganese compound with this 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands (Sun et al., 2008). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), each Cu(II) ion has a slightly distorted trigonal–bipyramidal geometry and is coordinated by one N atoms and one O atom from one 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, the another O atom of the second 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, together with one water molecule and one Cl atom (Fig. 1). The bond lengths and angles are shown in Table 1. In the crystal structure, the intermolecular O—H···O hydrogen bonds connect the molecules of (I) into a two-dimensional layer along the [010] axis, Fig. 2. Two neighboring net framework layers are interconnected through intermolecular C—H···Cl, O—H···Cl hydrogen bonds forming a three-dimensionnal framework along the [100] axis, Fig. 3, Table 2.

Related literature top

For related literature, see: Bayot et al. (2006); Chen et al. (2007); Sun et al. (2008); Wu et al. (2006).

Experimental top

All chemicals used (reagent grade) were commercially available. a aqueous solution (5 ml) of CuCl2 (28 mg, 0.1 mmol) was added with constant stirring to a ethanol solution (10 ml) containing 3-(2-hydroxyethyl)-2-methyl-9-hydroxylpyrido[1,2-a] pyrimidin-4-one (22 mg, 0.1 mmol) then filtered off. After a few days, colorless well shaped single crystals in the form of prisms deposited in the other liquid. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement top

H atoms bound to carbon were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C). The H of hydroxyl and water were refined independently with isotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Two-dimensional net framework of the title compound viewed along b axis. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Three-dimensional net framework of the title compound viewed along a axis. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.
Bis[µ-3-(2-hydroxyethyl)-2-methyl-4-oxo- 4H-pyrido[1,2-a]pyrimidin-9-olato- κ3N,O:O]bis[aquachloridocopper(II)] top
Crystal data top
[Cu2(C11H11N2O2)2Cl2(H2O)2]F(000) = 684
Mr = 672.45Dx = 1.807 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2976 reflections
a = 9.391 (3) Åθ = 2.5–27.5°
b = 11.322 (3) ŵ = 1.99 mm1
c = 11.905 (4) ÅT = 293 K
β = 102.414 (18)°Prism, colorless
V = 1236.2 (6) Å30.25 × 0.12 × 0.08 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2826 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.192 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1414
Tmin = 0.890, Tmax = 1.000l = 1515
12472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.8671P]
where P = (Fo2 + 2Fc2)/3
2826 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Cu2(C11H11N2O2)2Cl2(H2O)2]V = 1236.2 (6) Å3
Mr = 672.45Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.391 (3) ŵ = 1.99 mm1
b = 11.322 (3) ÅT = 293 K
c = 11.905 (4) Å0.25 × 0.12 × 0.08 mm
β = 102.414 (18)°
Data collection top
Rigaku SCXmini
diffractometer
2826 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2249 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.056
12472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.49 e Å3
2826 reflectionsΔρmin = 0.47 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.09275 (4)0.92674 (4)0.60256 (3)0.02472 (15)
C10.3469 (3)1.0520 (3)0.5971 (3)0.0230 (7)
C20.2373 (4)1.1028 (3)0.5076 (3)0.0241 (7)
C30.2761 (4)1.1877 (3)0.4388 (3)0.0315 (8)
H3A0.20691.21980.37880.038*
C40.4213 (4)1.2264 (3)0.4592 (3)0.0335 (8)
H4A0.44741.28550.41330.040*
C50.5234 (4)1.1795 (3)0.5441 (3)0.0309 (8)
H5A0.61901.20670.55660.037*
C60.6009 (4)1.0432 (3)0.7013 (3)0.0294 (8)
C70.5562 (4)0.9521 (3)0.7664 (3)0.0284 (8)
C80.4116 (4)0.9186 (3)0.7479 (3)0.0259 (7)
C90.3610 (4)0.8284 (3)0.8226 (3)0.0342 (9)
H9A0.25760.81760.79780.051*
H9B0.38330.85500.90100.051*
H9C0.40970.75480.81690.051*
C100.6746 (4)0.8972 (3)0.8572 (3)0.0319 (8)
H10A0.64150.82090.87860.038*
H10B0.76010.88410.82540.038*
C110.7161 (5)0.9729 (4)0.9631 (3)0.0421 (10)
H11A0.76001.04530.94320.051*
H11B0.62850.99390.98930.051*
O10.7242 (3)1.0832 (2)0.7112 (3)0.0412 (7)
O20.8149 (3)0.9165 (3)1.0542 (3)0.0441 (8)
O30.1054 (2)1.0586 (2)0.4999 (2)0.0313 (6)
O50.0115 (3)1.0044 (3)0.7446 (2)0.0542 (9)
H5C0.06330.98350.80590.081*
H5D0.08660.97800.74080.081*
N10.3065 (3)0.9674 (2)0.6621 (2)0.0244 (6)
N20.4871 (3)1.0915 (2)0.6127 (2)0.0253 (6)
Cl10.07956 (10)0.73242 (8)0.63230 (9)0.0408 (3)
H2A0.775 (6)0.878 (5)1.088 (5)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0176 (2)0.0284 (2)0.0255 (2)0.00189 (17)0.00112 (16)0.00366 (16)
C10.0188 (16)0.0241 (16)0.0247 (17)0.0006 (13)0.0013 (13)0.0017 (13)
C20.0168 (15)0.0286 (17)0.0260 (17)0.0011 (13)0.0022 (13)0.0013 (13)
C30.0283 (18)0.0332 (19)0.032 (2)0.0011 (16)0.0041 (15)0.0050 (15)
C40.0291 (18)0.032 (2)0.040 (2)0.0036 (16)0.0079 (16)0.0057 (16)
C50.0222 (17)0.0316 (19)0.039 (2)0.0077 (15)0.0074 (15)0.0011 (15)
C60.0162 (16)0.0350 (19)0.0337 (19)0.0002 (14)0.0021 (14)0.0057 (15)
C70.0195 (16)0.0326 (19)0.0299 (18)0.0024 (14)0.0019 (14)0.0050 (14)
C80.0214 (16)0.0276 (17)0.0253 (17)0.0036 (14)0.0025 (13)0.0005 (13)
C90.0294 (19)0.041 (2)0.0278 (19)0.0015 (16)0.0038 (15)0.0064 (15)
C100.0212 (17)0.035 (2)0.035 (2)0.0064 (15)0.0023 (15)0.0025 (15)
C110.037 (2)0.041 (2)0.040 (2)0.0059 (18)0.0092 (17)0.0046 (18)
O10.0170 (12)0.0495 (17)0.0534 (18)0.0039 (12)0.0007 (12)0.0014 (13)
O20.0312 (16)0.061 (2)0.0326 (16)0.0038 (15)0.0087 (13)0.0010 (14)
O30.0160 (11)0.0413 (15)0.0321 (14)0.0044 (10)0.0046 (10)0.0130 (11)
O50.0263 (14)0.096 (3)0.0377 (16)0.0102 (17)0.0005 (12)0.0210 (17)
N10.0200 (14)0.0247 (14)0.0264 (15)0.0009 (11)0.0005 (11)0.0007 (11)
N20.0162 (13)0.0282 (15)0.0308 (16)0.0025 (11)0.0039 (11)0.0015 (12)
Cl10.0355 (5)0.0293 (5)0.0518 (6)0.0015 (4)0.0037 (4)0.0049 (4)
Geometric parameters (Å, º) top
Cu1—O31.949 (2)C6—N21.438 (4)
Cu1—O3i2.001 (2)C7—C81.382 (5)
Cu1—N12.033 (3)C7—C101.508 (5)
Cu1—O52.184 (3)C8—N11.375 (4)
Cu1—Cl12.2361 (11)C8—C91.496 (5)
Cu1—Cl12.2361 (11)C9—H9A0.9600
C1—N11.336 (4)C9—H9B0.9600
C1—N21.365 (4)C9—H9C0.9600
C1—C21.434 (5)C10—C111.505 (5)
C2—O31.320 (4)C10—H10A0.9700
C2—C31.363 (5)C10—H10B0.9700
C3—C41.403 (5)C11—O21.419 (5)
C3—H3A0.9300C11—H11A0.9700
C4—C51.344 (5)C11—H11B0.9700
C4—H4A0.9300O2—H2A0.75 (6)
C5—N21.377 (4)O3—Cu1i2.001 (2)
C5—H5A0.9300O5—H5C0.8200
C6—O11.225 (4)O5—H5D0.9599
C6—C71.407 (5)Cl1—Cl10.000 (3)
O3—Cu1—O3i74.24 (11)N1—C8—C7122.1 (3)
O3—Cu1—N181.74 (10)N1—C8—C9116.6 (3)
O3i—Cu1—N1155.95 (11)C7—C8—C9121.3 (3)
O3—Cu1—O5104.82 (13)C8—C9—H9A109.5
O3i—Cu1—O590.24 (11)C8—C9—H9B109.5
N1—Cu1—O597.00 (11)H9A—C9—H9B109.5
O3—Cu1—Cl1149.96 (9)C8—C9—H9C109.5
O3i—Cu1—Cl195.88 (7)H9A—C9—H9C109.5
N1—Cu1—Cl1104.60 (8)H9B—C9—H9C109.5
O5—Cu1—Cl1103.49 (10)C11—C10—C7112.6 (3)
O3—Cu1—Cl1149.96 (9)C11—C10—H10A109.1
O3i—Cu1—Cl195.88 (7)C7—C10—H10A109.1
N1—Cu1—Cl1104.60 (8)C11—C10—H10B109.1
O5—Cu1—Cl1103.49 (10)C7—C10—H10B109.1
Cl1—Cu1—Cl10.00 (7)H10A—C10—H10B107.8
N1—C1—N2122.8 (3)O2—C11—C10113.2 (3)
N1—C1—C2118.1 (3)O2—C11—H11A108.9
N2—C1—C2119.1 (3)C10—C11—H11A108.9
O3—C2—C3126.4 (3)O2—C11—H11B108.9
O3—C2—C1114.4 (3)C10—C11—H11B108.9
C3—C2—C1119.2 (3)H11A—C11—H11B107.8
C2—C3—C4119.5 (3)C11—O2—H2A111 (5)
C2—C3—H3A120.3C2—O3—Cu1115.4 (2)
C4—C3—H3A120.3C2—O3—Cu1i138.3 (2)
C5—C4—C3121.1 (3)Cu1—O3—Cu1i105.76 (11)
C5—C4—H4A119.4Cu1—O5—H5C109.5
C3—C4—H4A119.4Cu1—O5—H5D109.3
C4—C5—N2120.3 (3)H5C—O5—H5D109.3
C4—C5—H5A119.8C1—N1—C8118.1 (3)
N2—C5—H5A119.8C1—N1—Cu1110.0 (2)
O1—C6—C7127.3 (3)C8—N1—Cu1131.7 (2)
O1—C6—N2117.9 (3)C1—N2—C5120.7 (3)
C7—C6—N2114.8 (3)C1—N2—C6121.2 (3)
C8—C7—C6120.9 (3)C5—N2—C6118.1 (3)
C8—C7—C10123.3 (3)Cl1—Cl1—Cu10 (10)
C6—C7—C10115.9 (3)
N1—C1—C2—O30.1 (5)N2—C1—N1—C80.2 (5)
N2—C1—C2—O3179.9 (3)C2—C1—N1—C8180.0 (3)
N1—C1—C2—C3178.9 (3)N2—C1—N1—Cu1175.7 (3)
N2—C1—C2—C31.2 (5)C2—C1—N1—Cu14.4 (4)
O3—C2—C3—C4179.3 (3)C7—C8—N1—C11.7 (5)
C1—C2—C3—C42.1 (5)C9—C8—N1—C1177.1 (3)
C2—C3—C4—C51.3 (6)C7—C8—N1—Cu1172.7 (3)
C3—C4—C5—N20.4 (6)C9—C8—N1—Cu18.5 (5)
O1—C6—C7—C8177.8 (4)O3—Cu1—N1—C15.3 (2)
N2—C6—C7—C83.3 (5)O3i—Cu1—N1—C12.7 (4)
O1—C6—C7—C100.8 (6)O5—Cu1—N1—C1109.3 (2)
N2—C6—C7—C10178.0 (3)Cl1—Cu1—N1—C1144.7 (2)
C6—C7—C8—N13.5 (5)Cl1—Cu1—N1—C1144.7 (2)
C10—C7—C8—N1177.9 (3)O3—Cu1—N1—C8180.0 (3)
C6—C7—C8—C9175.2 (3)O3i—Cu1—N1—C8177.5 (3)
C10—C7—C8—C93.4 (5)O5—Cu1—N1—C876.0 (3)
C8—C7—C10—C11101.0 (4)Cl1—Cu1—N1—C830.0 (3)
C6—C7—C10—C1177.6 (4)Cl1—Cu1—N1—C830.0 (3)
C7—C10—C11—O2173.1 (3)N1—C1—N2—C5179.5 (3)
C3—C2—O3—Cu1174.0 (3)C2—C1—N2—C50.4 (5)
C1—C2—O3—Cu14.7 (4)N1—C1—N2—C60.1 (5)
C3—C2—O3—Cu1i3.6 (6)C2—C1—N2—C6180.0 (3)
C1—C2—O3—Cu1i175.1 (2)C4—C5—N2—C11.2 (5)
O3i—Cu1—O3—C2173.4 (3)C4—C5—N2—C6179.2 (3)
N1—Cu1—O3—C25.6 (2)O1—C6—N2—C1179.5 (3)
O5—Cu1—O3—C2100.7 (2)C7—C6—N2—C11.6 (5)
Cl1—Cu1—O3—C299.4 (3)O1—C6—N2—C50.1 (5)
Cl1—Cu1—O3—C299.4 (3)C7—C6—N2—C5178.8 (3)
O3i—Cu1—O3—Cu1i0.0O3—Cu1—Cl1—Cl10.0 (5)
N1—Cu1—O3—Cu1i178.93 (14)O3i—Cu1—Cl1—Cl10.0 (5)
O5—Cu1—O3—Cu1i85.97 (13)N1—Cu1—Cl1—Cl10.0 (5)
Cl1—Cu1—O3—Cu1i74.01 (18)O5—Cu1—Cl1—Cl10.0 (5)
Cl1—Cu1—O3—Cu1i74.01 (18)
Symmetry code: (i) x, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O2ii0.822.132.742 (4)131
O5—H5D···O1iii0.962.112.788 (4)127
O2—H2A···Cl1iv0.75 (6)2.37 (6)3.078 (4)158 (6)
C9—H9A···Cl10.962.493.275 (4)139
C3—H3A···Cl1i0.932.723.387 (4)130
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x1, y, z; (iv) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C11H11N2O2)2Cl2(H2O)2]
Mr672.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.391 (3), 11.322 (3), 11.905 (4)
β (°) 102.414 (18)
V3)1236.2 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.890, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12472, 2826, 2249
Rint0.056
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.115, 1.02
No. of reflections2826
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5C···O2i0.822.132.742 (4)131.1
O5—H5D···O1ii0.962.112.788 (4)126.7
O2—H2A···Cl1iii0.75 (6)2.37 (6)3.078 (4)158 (6)
C9—H9A···Cl10.962.493.275 (4)139.1
C3—H3A···Cl1iv0.932.723.387 (4)129.5
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y, z; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+2, z+1.
 

References

First citationBayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun. 359, 1390–1394.  CAS Google Scholar
First citationChen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y., Jiang, X.-D. & Li, X.-B. (2008). Acta Cryst. E64, m801.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds