organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(2-Hydr­­oxy-1-naphth­yl)methyl­ene­amino]-1,3-benzo­thia­zole

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com

(Received 9 September 2008; accepted 16 September 2008; online 20 September 2008)

In the title compound, C18H12N2OS, the dihedral angle between the mean planes of the aromatic ring systems is 7.26 (8)°. There is an intra­molecular O—H⋯N hydrogen bond, forming a six-membered ring. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into a one-dimensional chain.

Related literature

For general background, see: Lindoy et al. (1976[Lindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724-1727.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2OS

  • Mr = 304.36

  • Monoclinic, P 21 /n

  • a = 9.7439 (13) Å

  • b = 15.1506 (16) Å

  • c = 9.8082 (14) Å

  • β = 101.788 (2)°

  • V = 1417.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 (2) K

  • 0.29 × 0.24 × 0.16 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.936, Tmax = 0.964

  • 6948 measured reflections

  • 2493 independent reflections

  • 1492 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.122

  • S = 1.06

  • 2493 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯N1i 0.93 2.63 3.389 (4) 140
O1—H1⋯N2 0.82 1.84 2.576 (2) 148
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are known to be important due to their applications in the preparation of dyes, liquid crystals and powerful corrosion inhibitors. Further more, they are used in the mechanism of many biochemical processes (Lindoy et al., 1976). We report here the synthesis and crystal structure of the title compound, a new Schiff base compound.

The molecular structure of the title compound is shown in Fig. 1. This compound is nonplanar, with a dihedral angle of 7.39 (5)° between the two benzene rings. There exists an intramolecular O—H···N hydrogen bond, forming a six-membered ring. An E configuration with respect to the C?N bond is shown by the molecule, with a C—N?C—C torsoin angle of 178.8 (2)°.

As seen in Fig.2, the molecules are linked into a one-dimensional chain by intermolecular C—H···N hydrogen bonds (Table 1).

Related literature top

For general background, see: Lindoy et al. (1976).

Experimental top

A mixture of 2-aminobenzothiazole (1 mmol) and 2-hydroxy-1-naphthaldehyde (1 mmol) in absolute ethanol (15 ml) was heated under reflux with stirring for 5 h and then filtered. The resulting clear orange solution was diffused diethyl ether vapor at room temperature for 16 days, after which large orange block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl) and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed approximately along the c axis.
2-[(2-Hydroxy-1-naphthyl)methyleneamino]-1,3-benzothiazole top
Crystal data top
C18H12N2OSF(000) = 632
Mr = 304.36Dx = 1.426 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1399 reflections
a = 9.7439 (13) Åθ = 2.5–24.1°
b = 15.1506 (16) ŵ = 0.23 mm1
c = 9.8082 (14) ÅT = 293 K
β = 101.788 (2)°Block, orange
V = 1417.4 (3) Å30.29 × 0.24 × 0.16 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2493 independent reflections
Radiation source: fine-focus sealed tube1492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 611
Tmin = 0.936, Tmax = 0.964k = 1816
6948 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.1122P]
where P = (Fo2 + 2Fc2)/3
2493 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H12N2OSV = 1417.4 (3) Å3
Mr = 304.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7439 (13) ŵ = 0.23 mm1
b = 15.1506 (16) ÅT = 293 K
c = 9.8082 (14) Å0.29 × 0.24 × 0.16 mm
β = 101.788 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2493 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1492 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.964Rint = 0.048
6948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.06Δρmax = 0.22 e Å3
2493 reflectionsΔρmin = 0.27 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1366 (2)0.12262 (16)1.0288 (2)0.0448 (6)
N20.2042 (2)0.00510 (15)0.9113 (2)0.0411 (6)
O10.2722 (2)0.14394 (13)0.7886 (2)0.0557 (6)
H10.28140.10330.84500.084*
S10.39272 (8)0.06918 (6)1.12063 (8)0.0516 (3)
C10.0880 (3)0.00369 (18)0.8179 (3)0.0392 (7)
H1A0.02450.04160.82180.047*
C20.0532 (3)0.06771 (18)0.7105 (3)0.0345 (7)
C30.1482 (3)0.13637 (19)0.6999 (3)0.0412 (7)
C40.1156 (3)0.20068 (19)0.5945 (3)0.0474 (8)
H40.17900.24570.58870.057*
C50.0075 (3)0.19716 (19)0.5022 (3)0.0468 (8)
H50.02750.24080.43430.056*
C60.1079 (3)0.12922 (18)0.5045 (3)0.0386 (7)
C70.0773 (3)0.06359 (18)0.6093 (3)0.0340 (7)
C80.1789 (3)0.00355 (18)0.6076 (3)0.0435 (8)
H80.16260.04790.67460.052*
C90.3009 (3)0.0043 (2)0.5089 (3)0.0520 (9)
H90.36570.04930.51000.062*
C100.3298 (3)0.0610 (2)0.4072 (3)0.0536 (9)
H100.41310.05980.34090.064*
C110.2348 (3)0.1267 (2)0.4058 (3)0.0499 (8)
H110.25420.17060.33840.060*
C120.2275 (3)0.06286 (19)1.0103 (3)0.0407 (7)
C130.1972 (3)0.18005 (19)1.1355 (3)0.0395 (7)
C140.3359 (3)0.16080 (19)1.1995 (3)0.0417 (7)
C150.4076 (3)0.2139 (2)1.3077 (3)0.0507 (8)
H150.50000.20181.35020.061*
C160.3372 (4)0.2847 (2)1.3493 (3)0.0535 (9)
H160.38280.32051.42140.064*
C170.1997 (3)0.3034 (2)1.2859 (3)0.0526 (8)
H170.15510.35171.31620.063*
C180.1283 (3)0.2523 (2)1.1798 (3)0.0474 (8)
H180.03600.26541.13800.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0401 (15)0.0450 (16)0.0464 (15)0.0018 (12)0.0022 (12)0.0040 (13)
N20.0439 (15)0.0404 (16)0.0376 (14)0.0009 (11)0.0051 (11)0.0026 (12)
O10.0471 (14)0.0532 (14)0.0624 (14)0.0129 (10)0.0010 (11)0.0064 (11)
S10.0419 (5)0.0566 (6)0.0521 (5)0.0031 (4)0.0004 (4)0.0015 (4)
C10.0415 (18)0.0363 (18)0.0411 (17)0.0000 (13)0.0114 (14)0.0002 (14)
C20.0372 (17)0.0296 (16)0.0380 (16)0.0015 (13)0.0111 (13)0.0003 (14)
C30.0397 (19)0.0419 (19)0.0424 (17)0.0002 (14)0.0094 (14)0.0024 (15)
C40.051 (2)0.0388 (19)0.055 (2)0.0061 (14)0.0168 (16)0.0046 (16)
C50.057 (2)0.040 (2)0.0458 (18)0.0065 (15)0.0164 (16)0.0090 (15)
C60.0416 (18)0.0380 (18)0.0370 (17)0.0061 (14)0.0097 (14)0.0037 (14)
C70.0389 (17)0.0304 (16)0.0355 (15)0.0019 (13)0.0141 (13)0.0042 (13)
C80.0469 (19)0.0368 (19)0.0482 (18)0.0008 (14)0.0130 (15)0.0016 (14)
C90.040 (2)0.051 (2)0.063 (2)0.0078 (15)0.0045 (16)0.0094 (18)
C100.045 (2)0.061 (2)0.0485 (19)0.0102 (17)0.0051 (15)0.0084 (18)
C110.057 (2)0.046 (2)0.0450 (19)0.0123 (16)0.0061 (16)0.0008 (16)
C120.0388 (18)0.0401 (18)0.0422 (17)0.0010 (14)0.0057 (14)0.0049 (16)
C130.0413 (18)0.0428 (19)0.0341 (16)0.0054 (14)0.0072 (14)0.0033 (14)
C140.0399 (18)0.0445 (19)0.0403 (16)0.0066 (14)0.0069 (14)0.0080 (15)
C150.046 (2)0.059 (2)0.0432 (18)0.0085 (16)0.0008 (15)0.0042 (17)
C160.066 (2)0.049 (2)0.0438 (19)0.0179 (17)0.0057 (17)0.0044 (16)
C170.064 (2)0.042 (2)0.053 (2)0.0047 (16)0.0144 (17)0.0001 (16)
C180.0431 (19)0.048 (2)0.0494 (19)0.0001 (15)0.0060 (15)0.0004 (16)
Geometric parameters (Å, º) top
N1—C121.305 (3)C7—C81.417 (4)
N1—C131.396 (3)C8—C91.371 (4)
N2—C11.303 (3)C8—H80.9300
N2—C121.402 (3)C9—C101.393 (4)
O1—C31.342 (3)C9—H90.9300
O1—H10.8200C10—C111.360 (4)
S1—C141.734 (3)C10—H100.9300
S1—C121.749 (3)C11—H110.9300
C1—C21.421 (4)C13—C141.399 (4)
C1—H1A0.9300C13—C181.400 (4)
C2—C31.410 (4)C14—C151.399 (4)
C2—C71.446 (3)C15—C161.380 (4)
C3—C41.409 (4)C15—H150.9300
C4—C51.348 (4)C16—C171.386 (4)
C4—H40.9300C16—H160.9300
C5—C61.424 (4)C17—C181.368 (4)
C5—H50.9300C17—H170.9300
C6—C111.407 (4)C18—H180.9300
C6—C71.417 (4)
C12—N1—C13110.0 (2)C8—C9—H9119.4
C1—N2—C12118.0 (2)C10—C9—H9119.4
C3—O1—H1109.5C11—C10—C9119.2 (3)
C14—S1—C1288.99 (14)C11—C10—H10120.4
N2—C1—C2123.5 (3)C9—C10—H10120.4
N2—C1—H1A118.3C10—C11—C6121.2 (3)
C2—C1—H1A118.3C10—C11—H11119.4
C3—C2—C1119.8 (3)C6—C11—H11119.4
C3—C2—C7118.6 (2)N1—C12—N2126.0 (3)
C1—C2—C7121.5 (2)N1—C12—S1116.2 (2)
O1—C3—C2122.2 (3)N2—C12—S1117.9 (2)
O1—C3—C4117.1 (3)N1—C13—C14115.3 (3)
C2—C3—C4120.8 (3)N1—C13—C18124.4 (3)
C5—C4—C3120.1 (3)C14—C13—C18120.3 (3)
C5—C4—H4119.9C15—C14—C13120.5 (3)
C3—C4—H4119.9C15—C14—S1130.0 (2)
C4—C5—C6122.5 (3)C13—C14—S1109.5 (2)
C4—C5—H5118.7C16—C15—C14118.0 (3)
C6—C5—H5118.7C16—C15—H15121.0
C11—C6—C7120.3 (3)C14—C15—H15121.0
C11—C6—C5121.3 (3)C15—C16—C17121.3 (3)
C7—C6—C5118.4 (3)C15—C16—H16119.3
C8—C7—C6116.9 (2)C17—C16—H16119.3
C8—C7—C2123.6 (2)C18—C17—C16121.4 (3)
C6—C7—C2119.5 (2)C18—C17—H17119.3
C9—C8—C7121.1 (3)C16—C17—H17119.3
C9—C8—H8119.4C17—C18—C13118.5 (3)
C7—C8—H8119.4C17—C18—H18120.8
C8—C9—C10121.3 (3)C13—C18—H18120.8
C12—N2—C1—C2178.8 (2)C9—C10—C11—C60.5 (4)
N2—C1—C2—C31.2 (4)C7—C6—C11—C100.9 (4)
N2—C1—C2—C7179.9 (2)C5—C6—C11—C10179.1 (3)
C1—C2—C3—O10.1 (4)C13—N1—C12—N2179.4 (2)
C7—C2—C3—O1179.1 (2)C13—N1—C12—S10.8 (3)
C1—C2—C3—C4179.8 (2)C1—N2—C12—N18.5 (4)
C7—C2—C3—C41.3 (4)C1—N2—C12—S1171.67 (19)
O1—C3—C4—C5179.8 (2)C14—S1—C12—N10.1 (2)
C2—C3—C4—C50.1 (4)C14—S1—C12—N2180.0 (2)
C3—C4—C5—C61.0 (4)C12—N1—C13—C141.3 (3)
C4—C5—C6—C11179.3 (3)C12—N1—C13—C18179.0 (3)
C4—C5—C6—C70.8 (4)N1—C13—C14—C15179.9 (2)
C11—C6—C7—C80.7 (3)C18—C13—C14—C150.4 (4)
C5—C6—C7—C8179.3 (2)N1—C13—C14—S11.2 (3)
C11—C6—C7—C2179.5 (2)C18—C13—C14—S1179.1 (2)
C5—C6—C7—C20.5 (3)C12—S1—C14—C15179.1 (3)
C3—C2—C7—C8178.3 (2)C12—S1—C14—C130.56 (19)
C1—C2—C7—C80.7 (4)C13—C14—C15—C160.5 (4)
C3—C2—C7—C61.4 (3)S1—C14—C15—C16178.9 (2)
C1—C2—C7—C6179.6 (2)C14—C15—C16—C170.3 (4)
C6—C7—C8—C90.1 (4)C15—C16—C17—C180.1 (4)
C2—C7—C8—C9179.9 (2)C16—C17—C18—C130.0 (4)
C7—C8—C9—C100.3 (4)N1—C13—C18—C17179.9 (2)
C8—C9—C10—C110.1 (4)C14—C13—C18—C170.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N1i0.932.633.389 (4)140
O1—H1···N20.821.852.576 (2)148
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12N2OS
Mr304.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.7439 (13), 15.1506 (16), 9.8082 (14)
β (°) 101.788 (2)
V3)1417.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.29 × 0.24 × 0.16
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
6948, 2493, 1492
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 1.06
No. of reflections2493
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—C121.305 (3)O1—C31.342 (3)
N1—C131.396 (3)S1—C141.734 (3)
N2—C11.303 (3)S1—C121.749 (3)
N2—C121.402 (3)
C12—N1—C13110.0 (2)N1—C12—N2126.0 (3)
C1—N2—C12118.0 (2)N1—C12—S1116.2 (2)
C3—O1—H1109.5N2—C12—S1117.9 (2)
C14—S1—C1288.99 (14)
C12—N2—C1—C2178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···N1i0.932.633.389 (4)139.6
O1—H1···N20.821.8452.576 (2)147.9
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We acknowledge the National Natural Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (2005ZX09) for financial support. This work is also partially supported by the Shandong `Tai-Shan Scholar Research Fund'.

References

First citationLindoy, L. F., Lip, H. C., Power, L. F. & Rea, T. H. (1976). Inorg. Chem. 15, 1724–1727.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds