organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­droxy­ethyl-4-methyl­morpholinium chloride

aSchool of Materials and Chemical Engineering and Key Laboratory of Hollow Fiber Membrane Materials & Membrane Processes, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China
*Correspondence e-mail: chemhong@126.com

(Received 6 September 2008; accepted 19 September 2008; online 27 September 2008)

In the title compound, C7H16NO2+·Cl, the asymmetric unit consists of two cation–anion pairs, in which the ion pairs are inter­connected by weak C—H⋯Cl hydrogen bonds. Each cation forms a network of weak C—H⋯Cl hydrogen bonds to surrounding chloride ions. The morpholine ring is in a chair conformation. The crystal structure is consolidated by O—H⋯Cl, C—H⋯Cl and C—H⋯O inter­molecular hydrogen bonding.

Related literature

For general background, see: Abedin et al. (2004[Abedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510-514.], 2005[Abedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333-2339.]); Kim et al. (2005[Kim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673-5678.], 2006[Kim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315-1317.]).

[Scheme 1]

Experimental

Crystal data
  • C7H16NO2+·Cl

  • Mr = 181.66

  • Orthorhombic, P b c a

  • a = 12.181 (2) Å

  • b = 12.452 (3) Å

  • c = 23.856 (5) Å

  • V = 3618.5 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 113 (2) K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.942, Tmax = 0.963

  • 19758 measured reflections

  • 3198 independent reflections

  • 2938 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.06

  • 3198 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl2i 0.82 2.20 3.0222 (13) 178
O4—H4⋯Cl1 0.82 2.24 3.0505 (13) 168
C1—H1B⋯Cl1ii 0.97 2.64 3.5812 (16) 165
C2—H2B⋯O2iii 0.97 2.59 3.335 (2) 134
C4—H4B⋯Cl2iv 0.97 2.72 3.6390 (17) 158
C5—H5C⋯Cl1v 0.96 2.71 3.6527 (16) 167
C6—H6A⋯Cl1iv 0.97 2.77 3.6888 (18) 158
C8—H8A⋯O2 0.97 2.45 3.385 (2) 163
C9—H9B⋯Cl1iv 0.97 2.80 3.7625 (17) 174
C11—H11A⋯O4 0.97 2.52 3.064 (2) 115
C13—H13A⋯Cl2vi 0.97 2.80 3.7009 (18) 154
C13—H13B⋯O3vii 0.97 2.60 3.3013 (19) 130
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y, z+{\script{1\over 2}}]; (iii) -x+2, -y, -z+2; (iv) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (vii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quaternary morpholine halides are valuable precursors for the preparation of ionic liquids (ILs) by ion metathesis (Kim et al.,2005). The excellent conductivity, broad electrochemical window, thermal stability, and low volatility of ILs have made them promising media for electrochemical processes (Abedin et al.,2004; Abedin et al.,2005). In particular, ILs based on the morpholinium cation are favored becaused of their low cost, easy synthesis, and electrochemical stability (Kim et al.,2006). So far, only a few crystallographic studies have been performed on salts. We report here a new example structure of this class.

The molecular structure of (I) is illustrated in Fig. 1. For the title compound two crystallographically independent molecules are present in the asymmetric unit of the cell. The morpholine unit adopts a chair conformation. The bond distances and angles in the cation are normal within experimental error.

The crystal packing of (I) is illustrated in Fig. 2. The Cl-anion involved in forming weak C—H···Cl hydrogen bonds. Each cation forms a network of weak C—H···Cl hydrogen bonds to surrounding chloride ions. The cation/anion pairs are interconnected by weak H—Cl bonding. The O atom of the hydroxyl group in the molecule involved in forming O—H···Cl and weak C—H···O hydrogen bonds. The crystal structure is consolidated by O—H···Cl, C—H···Cl and C—H···O intermolecular hydrogen bonding.

Related literature top

For general background, see: Abedin et al. (2004, 2005); Kim et al. (2005, 2006).

Experimental top

Under vigorous stirring, 2-chloroethanol(0.12 mol) was added to a solution of 4-methylmorpholine(0.1 mol) in 20 mL of acetonitrile. The mixture was stirred at 85 °C for 35 h. The solvent was removed under reduced pressure. The remaining brownish, viscous liquid crystallized slowly at room temperature in ethanol and acetone [1/20(v/v)]. A single-crystal was obtained by slow evaporation of a solution in ethanol and acetone [1/20(v/v)].

Refinement top

The H atoms bonded to C and O atoms were included in the refinement in the riding and rotation model approximation, with C–H = 0.96–0.97 Å, O–H = 0.82 Å, and Uiso (H) = 1.2 Ueq (C, O atom). For the H atoms attached to C atoms of methyl groups, their Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme. Dispacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A section of the the crystal packing viewed approximately down [010], showing hydrogen-bond interactions as dashed lines. H atoms are shown as small spheres of arbitary radii.
4-Hydroxyethyl-4-methylmorpholinium chloride top
Crystal data top
C7H16NO2+·ClDx = 1.334 Mg m3
Mr = 181.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8950 reflections
a = 12.181 (2) Åθ = 1.9–27.9°
b = 12.452 (3) ŵ = 0.38 mm1
c = 23.856 (5) ÅT = 113 K
V = 3618.5 (13) Å3Prism, colorless
Z = 160.16 × 0.12 × 0.10 mm
F(000) = 1568
Data collection top
Rigaku Saturn
diffractometer
3198 independent reflections
Radiation source: rotating anode2938 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC 2005)
h = 1114
Tmin = 0.942, Tmax = 0.963k = 1414
19758 measured reflectionsl = 2328
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.9139P]
where P = (Fo2 + 2Fc2)/3
3198 reflections(Δ/σ)max = 0.002
203 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C7H16NO2+·ClV = 3618.5 (13) Å3
Mr = 181.66Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 12.181 (2) ŵ = 0.38 mm1
b = 12.452 (3) ÅT = 113 K
c = 23.856 (5) Å0.16 × 0.12 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3198 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC 2005)
2938 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.963Rint = 0.036
19758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3198 reflectionsΔρmin = 0.22 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.68479 (3)0.09749 (3)0.579742 (15)0.01752 (11)
Cl20.30866 (3)0.32732 (3)0.691066 (15)0.01992 (11)
O10.99622 (9)0.31527 (9)1.03992 (5)0.0231 (3)
O20.86105 (10)0.08159 (9)0.88818 (5)0.0231 (3)
H20.81370.10600.86730.035*
O31.09148 (9)0.15192 (9)0.74353 (4)0.0211 (3)
O40.84900 (10)0.08501 (10)0.59544 (5)0.0265 (3)
H40.81080.03320.58700.040*
N10.87164 (10)0.18106 (9)0.96226 (5)0.0139 (3)
N20.91549 (10)0.00400 (9)0.71337 (5)0.0144 (3)
C10.92450 (13)0.13932 (12)1.01538 (6)0.0164 (3)
H1A0.99740.11251.00680.020*
H1B0.88140.08011.03000.020*
C20.93275 (14)0.22648 (12)1.05946 (6)0.0201 (3)
H2A0.85960.25101.06920.024*
H2B0.96640.19721.09300.024*
C30.94589 (14)0.36040 (13)0.99131 (7)0.0211 (3)
H3A0.98890.42120.97850.025*
H3B0.87320.38631.00090.025*
C40.93669 (13)0.27905 (12)0.94444 (6)0.0177 (3)
H4A1.00970.25700.93300.021*
H4B0.90120.31220.91240.021*
C50.75259 (13)0.20764 (13)0.97066 (6)0.0183 (3)
H5A0.71470.14550.98460.027*
H5B0.72090.22920.93560.027*
H5C0.74600.26520.99720.027*
C60.88210 (13)0.09905 (11)0.91578 (6)0.0160 (3)
H6A0.95870.07860.91250.019*
H6B0.86070.13270.88080.019*
C70.81376 (13)0.00259 (12)0.92364 (7)0.0191 (3)
H7A0.81600.02590.96240.023*
H7B0.73790.01040.91330.023*
C80.98190 (13)0.00380 (12)0.76704 (6)0.0178 (3)
H8A0.93640.03410.79640.021*
H8B1.04360.05180.76110.021*
C91.02402 (13)0.10464 (12)0.78564 (6)0.0197 (3)
H9A0.96240.15160.79350.024*
H9B1.06610.09650.81990.024*
C101.02888 (14)0.16834 (12)0.69399 (6)0.0204 (3)
H10A1.07440.20290.66590.024*
H10B0.96770.21570.70220.024*
C110.98544 (13)0.06294 (12)0.67078 (6)0.0180 (3)
H11A0.94200.07720.63750.022*
H11B1.04670.01770.66000.022*
C120.80896 (13)0.06048 (13)0.72421 (7)0.0188 (3)
H12A0.82310.12820.74210.028*
H12B0.76390.01700.74820.028*
H12C0.77160.07240.68930.028*
C130.89419 (14)0.11115 (12)0.69480 (6)0.0186 (3)
H13A0.96370.14240.68350.022*
H13B0.86830.15130.72700.022*
C140.81313 (14)0.12733 (13)0.64760 (7)0.0228 (4)
H14A0.79940.20360.64320.027*
H14B0.74420.09340.65770.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0183 (2)0.0171 (2)0.01717 (19)0.00094 (14)0.00115 (14)0.00020 (13)
Cl20.0178 (2)0.0216 (2)0.0204 (2)0.00114 (15)0.00057 (14)0.00214 (14)
O10.0190 (6)0.0245 (6)0.0257 (6)0.0032 (5)0.0024 (5)0.0059 (5)
O20.0225 (7)0.0207 (6)0.0262 (6)0.0008 (5)0.0019 (5)0.0075 (5)
O30.0177 (6)0.0230 (6)0.0225 (6)0.0025 (5)0.0016 (4)0.0008 (4)
O40.0276 (7)0.0292 (7)0.0226 (6)0.0092 (5)0.0014 (5)0.0059 (5)
N10.0131 (7)0.0147 (6)0.0138 (6)0.0007 (5)0.0002 (5)0.0009 (5)
N20.0141 (7)0.0139 (6)0.0151 (6)0.0009 (5)0.0005 (5)0.0001 (5)
C10.0165 (8)0.0172 (8)0.0155 (7)0.0018 (6)0.0024 (6)0.0021 (6)
C20.0197 (9)0.0225 (8)0.0183 (8)0.0014 (7)0.0019 (6)0.0015 (6)
C30.0218 (9)0.0164 (8)0.0252 (8)0.0022 (7)0.0028 (7)0.0009 (6)
C40.0184 (9)0.0160 (8)0.0188 (8)0.0038 (6)0.0037 (6)0.0026 (6)
C50.0105 (8)0.0225 (8)0.0220 (8)0.0026 (6)0.0005 (6)0.0007 (6)
C60.0176 (8)0.0173 (8)0.0133 (7)0.0005 (6)0.0013 (6)0.0026 (6)
C70.0188 (9)0.0196 (8)0.0188 (8)0.0023 (6)0.0012 (6)0.0029 (6)
C80.0163 (8)0.0217 (8)0.0153 (8)0.0035 (6)0.0011 (6)0.0042 (6)
C90.0177 (9)0.0259 (8)0.0154 (7)0.0024 (7)0.0013 (6)0.0021 (6)
C100.0227 (9)0.0182 (8)0.0202 (8)0.0023 (7)0.0006 (6)0.0026 (6)
C110.0217 (9)0.0189 (8)0.0135 (7)0.0023 (7)0.0033 (6)0.0028 (6)
C120.0135 (8)0.0196 (8)0.0232 (8)0.0037 (6)0.0009 (6)0.0029 (6)
C130.0195 (9)0.0128 (7)0.0236 (8)0.0002 (6)0.0014 (6)0.0002 (6)
C140.0217 (9)0.0174 (8)0.0293 (9)0.0002 (7)0.0013 (7)0.0062 (7)
Geometric parameters (Å, º) top
O1—C31.4271 (19)C5—H5A0.9600
O1—C21.4273 (19)C5—H5B0.9600
O2—C71.4196 (19)C5—H5C0.9600
O2—H20.8200C6—C71.526 (2)
O3—C101.4214 (19)C6—H6A0.9700
O3—C91.4252 (19)C6—H6B0.9700
O4—C141.420 (2)C7—H7A0.9700
O4—H40.8200C7—H7B0.9700
N1—C51.501 (2)C8—C91.511 (2)
N1—C61.5128 (18)C8—H8A0.9700
N1—C11.5133 (18)C8—H8B0.9700
N1—C41.5157 (19)C9—H9A0.9700
N2—C121.4985 (19)C9—H9B0.9700
N2—C111.5155 (19)C10—C111.520 (2)
N2—C81.5176 (19)C10—H10A0.9700
N2—C131.5229 (19)C10—H10B0.9700
C1—C21.515 (2)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C12—H12A0.9600
C2—H2A0.9700C12—H12B0.9600
C2—H2B0.9700C12—H12C0.9600
C3—C41.513 (2)C13—C141.511 (2)
C3—H3A0.9700C13—H13A0.9700
C3—H3B0.9700C13—H13B0.9700
C4—H4A0.9700C14—H14A0.9700
C4—H4B0.9700C14—H14B0.9700
C3—O1—C2109.74 (12)C7—C6—H6B108.5
C7—O2—H2109.5H6A—C6—H6B107.5
C10—O3—C9109.65 (12)O2—C7—C6106.26 (12)
C14—O4—H4109.5O2—C7—H7A110.5
C5—N1—C6109.15 (11)C6—C7—H7A110.5
C5—N1—C1112.03 (11)O2—C7—H7B110.5
C6—N1—C1110.24 (11)C6—C7—H7B110.5
C5—N1—C4111.41 (12)H7A—C7—H7B108.7
C6—N1—C4107.08 (11)C9—C8—N2111.81 (12)
C1—N1—C4106.80 (11)C9—C8—H8A109.3
C12—N2—C11112.05 (11)N2—C8—H8A109.3
C12—N2—C8110.24 (11)C9—C8—H8B109.3
C11—N2—C8107.27 (12)N2—C8—H8B109.3
C12—N2—C13110.16 (12)H8A—C8—H8B107.9
C11—N2—C13110.89 (11)O3—C9—C8110.97 (12)
C8—N2—C13106.02 (11)O3—C9—H9A109.4
N1—C1—C2111.31 (12)C8—C9—H9A109.4
N1—C1—H1A109.4O3—C9—H9B109.4
C2—C1—H1A109.4C8—C9—H9B109.4
N1—C1—H1B109.4H9A—C9—H9B108.0
C2—C1—H1B109.4O3—C10—C11111.44 (12)
H1A—C1—H1B108.0O3—C10—H10A109.3
O1—C2—C1111.36 (13)C11—C10—H10A109.3
O1—C2—H2A109.4O3—C10—H10B109.3
C1—C2—H2A109.4C11—C10—H10B109.3
O1—C2—H2B109.4H10A—C10—H10B108.0
C1—C2—H2B109.4N2—C11—C10111.70 (12)
H2A—C2—H2B108.0N2—C11—H11A109.3
O1—C3—C4111.64 (13)C10—C11—H11A109.3
O1—C3—H3A109.3N2—C11—H11B109.3
C4—C3—H3A109.3C10—C11—H11B109.3
O1—C3—H3B109.3H11A—C11—H11B107.9
C4—C3—H3B109.3N2—C12—H12A109.5
H3A—C3—H3B108.0N2—C12—H12B109.5
C3—C4—N1111.74 (12)H12A—C12—H12B109.5
C3—C4—H4A109.3N2—C12—H12C109.5
N1—C4—H4A109.3H12A—C12—H12C109.5
C3—C4—H4B109.3H12B—C12—H12C109.5
N1—C4—H4B109.3C14—C13—N2116.97 (13)
H4A—C4—H4B107.9C14—C13—H13A108.1
N1—C5—H5A109.5N2—C13—H13A108.1
N1—C5—H5B109.5C14—C13—H13B108.1
H5A—C5—H5B109.5N2—C13—H13B108.1
N1—C5—H5C109.5H13A—C13—H13B107.3
H5A—C5—H5C109.5O4—C14—C13113.72 (14)
H5B—C5—H5C109.5O4—C14—H14A108.8
N1—C6—C7115.07 (12)C13—C14—H14A108.8
N1—C6—H6A108.5O4—C14—H14B108.8
C7—C6—H6A108.5C13—C14—H14B108.8
N1—C6—H6B108.5H14A—C14—H14B107.7
C5—N1—C1—C268.05 (16)C12—N2—C8—C969.53 (16)
C6—N1—C1—C2170.19 (12)C11—N2—C8—C952.72 (16)
C4—N1—C1—C254.19 (16)C13—N2—C8—C9171.26 (13)
C3—O1—C2—C160.35 (16)C10—O3—C9—C861.61 (16)
N1—C1—C2—O159.42 (17)N2—C8—C9—O358.98 (17)
C2—O1—C3—C459.66 (16)C9—O3—C10—C1161.10 (16)
O1—C3—C4—N158.04 (18)C12—N2—C11—C1069.22 (16)
C5—N1—C4—C369.00 (16)C8—N2—C11—C1051.90 (16)
C6—N1—C4—C3171.72 (13)C13—N2—C11—C10167.24 (13)
C1—N1—C4—C353.63 (16)O3—C10—C11—N257.82 (17)
C5—N1—C6—C754.28 (16)C12—N2—C13—C1450.60 (17)
C1—N1—C6—C769.17 (16)C11—N2—C13—C1474.01 (17)
C4—N1—C6—C7175.01 (13)C8—N2—C13—C14169.87 (13)
N1—C6—C7—O2160.59 (12)N2—C13—C14—O466.19 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl2i0.822.203.0222 (13)178
O4—H4···Cl10.822.243.0505 (13)168
C1—H1B···Cl1ii0.972.643.5812 (16)165
C2—H2B···O2iii0.972.593.335 (2)134
C4—H4B···Cl2iv0.972.723.6390 (17)158
C5—H5C···Cl1v0.962.713.6527 (16)167
C6—H6A···Cl1iv0.972.773.6888 (18)158
C8—H8A···O20.972.453.385 (2)163
C9—H9B···Cl1iv0.972.803.7625 (17)174
C11—H11A···O40.972.523.064 (2)115
C13—H13A···Cl2vi0.972.803.7009 (18)154
C13—H13B···O3vii0.972.603.3013 (19)130
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y, z+2; (iv) x+1/2, y, z+3/2; (v) x, y+1/2, z+1/2; (vi) x+3/2, y1/2, z; (vii) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC7H16NO2+·Cl
Mr181.66
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)12.181 (2), 12.452 (3), 23.856 (5)
V3)3618.5 (13)
Z16
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC 2005)
Tmin, Tmax0.942, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
19758, 3198, 2938
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.06
No. of reflections3198
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl2i0.822.203.0222 (13)177.9
O4—H4···Cl10.822.243.0505 (13)167.6
C1—H1B···Cl1ii0.972.643.5812 (16)164.8
C2—H2B···O2iii0.972.593.335 (2)134.1
C4—H4B···Cl2iv0.972.723.6390 (17)158.3
C5—H5C···Cl1v0.962.713.6527 (16)166.6
C6—H6A···Cl1iv0.972.773.6888 (18)158.2
C8—H8A···O20.972.453.385 (2)162.7
C9—H9B···Cl1iv0.972.803.7625 (17)173.6
C11—H11A···O40.972.523.064 (2)115.1
C13—H13A···Cl2vi0.972.803.7009 (18)154.0
C13—H13B···O3vii0.972.603.3013 (19)129.8
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+3/2, y, z+1/2; (iii) x+2, y, z+2; (iv) x+1/2, y, z+3/2; (v) x, y+1/2, z+1/2; (vi) x+3/2, y1/2, z; (vii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Tianjin Natural Science Foundation (07JCYBJC02200) for financial support.

References

First citationAbedin, S. Z. E., Borissenko, N. & Endres, F. (2004). Electrochem. Commun. 6, 510–514.  Web of Science CrossRef Google Scholar
First citationAbedin, S. Z. E., Farag, H. K., Moustafa, E. M., Welz-Biermann, U. & Endres, F. (2005). Phys. Chem. Chem. Phys. 7, 2333–2339.  Web of Science PubMed Google Scholar
First citationKim, K. S., Choi, S., Cha, J. H., Yeon, S. H. & Lee, H. (2006). J. Mater. Chem. 16, 1315–1317.  Web of Science CrossRef CAS Google Scholar
First citationKim, K. S., Park, S. Y., Yeon, S. H. & Lee, H. (2005). Electrochim. Acta, 50, 5673–5678.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds