metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1328-m1329

cis-Di­chloridobis(1,10-phenanthroline)cobalt(II) di­methyl­formamide solvate

aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China
*Correspondence e-mail: cnchenyun@yahoo.com.cn

(Received 12 September 2008; accepted 22 September 2008; online 27 September 2008)

In the title complex, [CoCl2(C12H8N2)2]·C3H7NO, which has twofold rotation symmetry, the CoII cation is coordinated by two 1,10-phenanthroline (phen) mol­ecules and two chloride ligands in a distorted octa­hedral geometry. In the crystal structure, a cavity is created by six complex mol­ecules connected by C—H⋯π inter­actions and non-classical C—H⋯Cl hydrogen bonds. The cavities are occupied by the disordered dimethyl­formamide solvent mol­ecule. The C and N atoms of the C—N bond in the solvent mol­ecule also lie on a crystallographic twofold rotation axis; the remaining atoms of the solvent are statistically disordered (ratio 0.5:0.5) about this axis.

Related literature

For general background, see: Forster et al. (2000[Forster, R. J., Figgemeier, E., Lees, A. C., Hjelm, J. & Vos, J. G. (2000). Langmuir, 16, 7867-7870.]); Holder et al. (2007[Holder, A. A., Zigler, D. F., Tarrago-Trani, M. T., Storrie, B. & Brewer, K. J. (2007). Inorg. Chem. 46, 4760-4762.]); Ma et al. (2002[Ma, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307-1314.]). Matsumoto et al. (2002[Matsumoto, A., Tanaka, T., Tsubouchi, T., Tashiro, K., Saragai, S. & Nakamoto, S. (2002). J. Am. Chem. Soc. 124, 8891-8902.]); Xie et al. (2006[Xie, Y.-B., Ma, Z.-C. & Wang, D. (2006). J. Mol. Struct. 784, 93-97.]). For a related structure, see: Hazell et al. (1997[Hazell, A., McGinley, J. & McKenzie, C. J. (1997). Acta Cryst. C53, 723-725.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C12H8N2)2]·C3H7NO

  • Mr = 563.33

  • Orthorhombic, P b c n

  • a = 16.345 (3) Å

  • b = 12.342 (2) Å

  • c = 12.342 (2) Å

  • V = 2489.8 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury70 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku & Mol­ecular Structure Corporation, 2000[Rigaku & Molecular Structure Corporation (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan, and MSC, The Woodlands, Texas, USA.]) Tmin = 0.829, Tmax = 0.829

  • 14711 measured reflections

  • 2204 independent reflections

  • 2168 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.063

  • S = 1.09

  • 2204 reflections

  • 180 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N2 2.1517 (13)
Co1—N1 2.1636 (13)
Co1—Cl1 2.4099 (5)
N2—Co1—N2i 176.70 (7)
N2—Co1—N1 76.81 (5)
N2—Co1—N1i 100.65 (5)
N1—Co1—N1i 82.44 (7)
N2—Co1—Cl1 91.56 (4)
N2i—Co1—Cl1 90.43 (4)
N1—Co1—Cl1 162.67 (4)
N1i—Co1—Cl1 87.23 (4)
Cl1—Co1—Cl1i 105.91 (2)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯Cl1 0.93 2.74 3.3408 (17) 124
C6—H6A⋯Cl1ii 0.93 2.80 3.6743 (18) 158
C5—H5A⋯Cl1iii 0.93 2.85 3.6375 (17) 144
C2—H2ACg1iv 0.93 2.99 3.768 (2) 142
C8—H8ACg2v 0.93 2.90 3.608 (2) 134
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku & Molecular Structure Corporation, 2000[Rigaku & Molecular Structure Corporation (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan, and MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek; 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

MLmXn coordination compounds (L = α,α'-diimine chelate ligands, such as 2,2'-bipyridine, 1,10-phenanthroline, and their derivatives; X = halide or pseudohalide ligands) have been receiving extensive attention due to their importance in crystal engineering and supramolecular chemistry. They also serve as models to aid the understanding of phenomena such as photosensitization and crystallization (Forster et al., 2000; Holder et al., 2007; Ma et al., 2002). In such molecules a variety of weak intermolecular interactions involving the halide anions, aromatic ligands and solvent molecules can stabilise and regulate the supramolecular architecture in different aggregation states (Matsumoto et al., 2002; Xie et al., 2006). Herein, we report the crystal structure of a new cobalt(II) chloride complex with a phenanthroline ligand, Fig 1.

The crystallographic asymmetric unit of (I) consists of one half occuapncy CoII atom that lies on a two-fold rotation axis, one phenanthroline molecule, one Cl- anion, and half a molecule of dimethylformamide. In the complex, the CoII atom is in a distorted octahedral coordination environment provided by four N atoms from two bidentate phen ligands and two terminal Cl- anions. The Co—N and Co—Cl bond lengths (Table 1) are normal, and are comparable to those found in a related octahedral cobalt(II) complex [CoCl2(C12H8N2)2].1.5CH3CN [Hazell et al., 1997].

Interestingly in the crystal structure, a cavity is created by six complex molecules connected by C—H···π interactions and non-classical C—H···Cl hydrogen bonds (Table 2, Fig. 2) which is occupied by the disordered dmf solvate molecule. The solvate lies with the C14 and N3 on a crystallographic 2-fold rotation axis; the remaining atoms of the solvate are statistically disordered about this axis. The calculated void space of the cavity was estimated to be 557.6 Å3 per unit cell, which corresponds to 23.2% of the total volume (2489.8 Å3) (Fig 2) (Spek, 2003).

Related literature top

For general background, see: Forster et al. (2000); Holder et al. (2007); Ma et al. (2002). Matsumoto et al. (2002); Xie et al. (2006). For a related structure, see: Hazell et al. (1997).

Experimental top

[CoCl2.6(H2O)] (238 mg) was dissolved in a mixture of dimethylformamide (10 ml) and tetrahydrofuran (10 ml) with stirring. A color change from blue to dark blue was observed after the phenanthroline (40 mg) was added to the solution. The mixture was cooled down to room temperature after stirring for 1 h at 90 oC. The resulting mixture was then filtered, and the filtrate was concentrated to ca 13 ml by rotary evaporation and left in a refrigerator at 4 oC. Transparent blue prismatic crystals suitable for X-ray diffraction were produced in a few days (yield 21%). Analysis calculated for C27H23Cl2CoN5O: C 57.57, N 12.43, H 4.12%; found: C 57.72, N 12.56, H 3.97%.

Refinement top

The H atoms bonded to C atoms were placed in calculated positions and treated using a riding-model approximation (C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group; C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the 1,10-phenanthroline and aldehyde groups).

Computing details top

Data collection: CrystalClear (Rigaku & Molecular Structure Corporation, 2000); cell refinement: CrystalClear (Rigaku & Molecular Structure Corporation, 2000); data reduction: CrystalClear (Rigaku & Molecular Structure Corporation, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek; 2003)..

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing the atom numbering. Thermal ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Only one of the disorder components of the dmf molecule is shown. [Symmetry codes: (i) 1 - x + 1, y, 1/2 - z.]
[Figure 2] Fig. 2. Crystal packing of (I) showing the cavity (represented by the pink sphere) created by the C—H···Cl and C—H···π interactions with hydrogen bonds drawn as dashed lines.
cis-Dichloridobis(1,10-phenanthroline)cobalt(II) dimethylformamide solvate top
Crystal data top
[CoCl2(C12H8N2)2]·C3H7NOF(000) = 1156
Mr = 563.33Dx = 1.503 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6370 reflections
a = 16.345 (3) Åθ = 2.1–25.0°
b = 12.342 (2) ŵ = 0.94 mm1
c = 12.342 (2) ÅT = 293 K
V = 2489.8 (8) Å3Block, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury70 CCD
diffractometer
2204 independent reflections
Radiation source: fine-focus sealed tube2168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku & Molecular Structure Corporation, 2000)
h = 1719
Tmin = 0.829, Tmax = 0.829k = 1414
14711 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0288P)2 + 1.9948P]
where P = (Fo2 + 2Fc2)/3
2204 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.21 e Å3
Crystal data top
[CoCl2(C12H8N2)2]·C3H7NOV = 2489.8 (8) Å3
Mr = 563.33Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.345 (3) ŵ = 0.94 mm1
b = 12.342 (2) ÅT = 293 K
c = 12.342 (2) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Mercury70 CCD
diffractometer
2204 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku & Molecular Structure Corporation, 2000)
2168 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.829Rint = 0.017
14711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0262 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
2204 reflectionsΔρmin = 0.21 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.50000.71666 (2)0.25000.01272 (10)
Cl10.41390 (2)0.59903 (3)0.14376 (3)0.01956 (11)
N20.59089 (8)0.72168 (10)0.12398 (11)0.0151 (3)
C110.65206 (9)0.79462 (12)0.14122 (12)0.0141 (3)
N10.57879 (8)0.84851 (11)0.29957 (11)0.0162 (3)
C70.72069 (9)0.80426 (13)0.07300 (13)0.0171 (3)
C120.64445 (9)0.86417 (12)0.23421 (13)0.0148 (3)
C30.69394 (10)1.00860 (14)0.34665 (14)0.0228 (4)
H3A0.73171.06260.36280.027*
C100.59726 (10)0.65659 (13)0.03895 (13)0.0187 (3)
H10A0.55580.60650.02640.022*
C10.57135 (10)0.91093 (14)0.38597 (14)0.0215 (4)
H1A0.52640.90070.43110.026*
C60.78081 (10)0.88565 (14)0.09568 (14)0.0209 (4)
H6A0.82610.89240.05070.025*
C50.77263 (10)0.95285 (14)0.18162 (14)0.0218 (4)
H5A0.81201.00590.19400.026*
C20.62797 (10)0.99184 (15)0.41280 (15)0.0253 (4)
H2A0.62081.03360.47480.030*
C80.72538 (11)0.73320 (13)0.01602 (14)0.0210 (4)
H8A0.76990.73600.06290.025*
C90.66376 (10)0.65987 (14)0.03293 (14)0.0222 (4)
H9A0.66600.61260.09160.027*
C40.70425 (10)0.94361 (13)0.25393 (13)0.0176 (3)
O10.5517 (2)0.0842 (2)0.1510 (3)0.0433 (7)0.50
N30.50000.2344 (2)0.25000.0453 (7)
C130.5478 (6)0.1828 (7)0.1772 (8)0.048 (3)0.50
H13A0.58400.22760.14000.057*0.50
C140.50000.3523 (3)0.25000.0553 (10)
H14A0.55510.37830.24270.083*0.50
H14B0.47720.37830.31680.083*0.50
H14C0.46770.37830.19040.083*0.50
C150.5421 (7)0.1760 (10)0.1657 (9)0.067 (4)0.50
H15A0.53750.21510.09870.100*0.50
H15B0.51800.10550.15750.100*0.50
H15C0.59880.16850.18460.100*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01000 (16)0.01385 (16)0.01430 (17)0.0000.00028 (11)0.000
Cl10.0170 (2)0.0213 (2)0.0203 (2)0.00516 (15)0.00274 (15)0.00162 (16)
N20.0134 (6)0.0161 (6)0.0159 (7)0.0002 (5)0.0015 (5)0.0012 (5)
C110.0124 (7)0.0146 (7)0.0152 (8)0.0011 (6)0.0018 (6)0.0033 (6)
N10.0131 (6)0.0174 (7)0.0181 (7)0.0004 (5)0.0004 (5)0.0016 (6)
C70.0148 (8)0.0187 (8)0.0177 (8)0.0012 (6)0.0003 (6)0.0036 (6)
C120.0130 (7)0.0147 (7)0.0168 (8)0.0012 (6)0.0027 (6)0.0023 (6)
C30.0203 (8)0.0208 (8)0.0272 (9)0.0047 (7)0.0045 (7)0.0045 (7)
C100.0185 (8)0.0180 (8)0.0195 (8)0.0006 (6)0.0012 (7)0.0031 (7)
C10.0176 (8)0.0252 (9)0.0218 (9)0.0001 (7)0.0035 (7)0.0054 (7)
C60.0156 (8)0.0263 (8)0.0208 (8)0.0033 (7)0.0022 (7)0.0047 (7)
C50.0181 (8)0.0236 (8)0.0238 (9)0.0078 (7)0.0018 (7)0.0036 (7)
C20.0227 (9)0.0270 (9)0.0262 (9)0.0020 (7)0.0003 (7)0.0109 (8)
C80.0185 (8)0.0249 (8)0.0197 (8)0.0025 (7)0.0055 (7)0.0018 (7)
C90.0240 (9)0.0224 (8)0.0203 (8)0.0012 (7)0.0022 (7)0.0048 (7)
C40.0155 (8)0.0179 (8)0.0194 (8)0.0003 (7)0.0034 (6)0.0015 (6)
O10.0492 (19)0.0294 (16)0.0512 (19)0.0003 (14)0.0046 (15)0.0048 (14)
N30.0390 (15)0.0223 (12)0.075 (2)0.0000.0214 (14)0.000
C130.065 (7)0.018 (4)0.060 (5)0.007 (4)0.030 (5)0.001 (3)
C140.049 (2)0.0259 (16)0.090 (3)0.0000.0091 (19)0.000
C150.047 (5)0.057 (7)0.095 (7)0.001 (5)0.041 (5)0.028 (5)
Geometric parameters (Å, º) top
Co1—N22.1517 (13)C6—C51.353 (2)
Co1—N2i2.1517 (13)C6—H6A0.9300
Co1—N12.1636 (13)C5—C41.435 (2)
Co1—N1i2.1636 (13)C5—H5A0.9300
Co1—Cl12.4099 (5)C2—H2A0.9300
Co1—Cl1i2.4099 (5)C8—C91.370 (2)
N2—C101.326 (2)C8—H8A0.9300
N2—C111.362 (2)C9—H9A0.9300
C11—C71.408 (2)O1—C131.260 (9)
C11—C121.439 (2)N3—C131.351 (7)
N1—C11.321 (2)N3—C151.441 (8)
N1—C121.356 (2)N3—C141.456 (4)
C7—C81.408 (2)N3—C13i1.351 (7)
C7—C61.433 (2)N3—C15i1.441 (8)
C12—C41.406 (2)C13—H13A0.9300
C3—C21.368 (2)C14—H14A0.9600
C3—C41.408 (2)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C10—C91.404 (2)C15—H15A0.9600
C10—H10A0.9300C15—H15B0.9600
C1—C21.401 (2)C15—H15C0.9600
C1—H1A0.9300
N2—Co1—N2i176.70 (7)C5—C6—C7121.01 (15)
N2—Co1—N176.81 (5)C5—C6—H6A119.5
N2i—Co1—N1100.65 (5)C7—C6—H6A119.5
N2—Co1—N1i100.65 (5)C6—C5—C4121.05 (15)
N2i—Co1—N1i76.81 (5)C6—C5—H5A119.5
N1—Co1—N1i82.44 (7)C4—C5—H5A119.5
N2—Co1—Cl191.56 (4)C3—C2—C1119.15 (16)
N2i—Co1—Cl190.43 (4)C3—C2—H2A120.4
N1—Co1—Cl1162.67 (4)C1—C2—H2A120.4
N1i—Co1—Cl187.23 (4)C9—C8—C7119.36 (15)
N2—Co1—Cl1i90.43 (4)C9—C8—H8A120.3
N2i—Co1—Cl1i91.56 (4)C7—C8—H8A120.3
N1—Co1—Cl1i87.23 (4)C8—C9—C10119.48 (15)
N1i—Co1—Cl1i162.67 (4)C8—C9—H9A120.3
Cl1—Co1—Cl1i105.91 (2)C10—C9—H9A120.3
C10—N2—C11117.80 (14)C12—C4—C3117.06 (15)
C10—N2—Co1127.52 (11)C12—C4—C5119.30 (15)
C11—N2—Co1114.39 (10)C3—C4—C5123.62 (15)
N2—C11—C7123.19 (14)C13i—N3—C13123.8 (8)
N2—C11—C12117.10 (14)C13—N3—C15i121.4 (4)
C7—C11—C12119.71 (14)C13i—N3—C15121.4 (4)
C1—N1—C12118.02 (14)C15i—N3—C15120.0 (11)
C1—N1—Co1127.74 (11)C13—N3—C14118.1 (4)
C12—N1—Co1114.20 (10)C15—N3—C14120.0 (6)
C11—C7—C8117.23 (15)O1—C13—N3130.9 (6)
C11—C7—C6119.27 (15)O1—C13—H13A114.6
C8—C7—C6123.49 (15)N3—C13—H13A114.6
N1—C12—C4123.13 (14)N3—C14—H14A109.5
N1—C12—C11117.25 (14)N3—C14—H14B109.5
C4—C12—C11119.62 (14)H14A—C14—H14B109.5
C2—C3—C4119.56 (16)N3—C14—H14C109.5
C2—C3—H3A120.2H14A—C14—H14C109.5
C4—C3—H3A120.2H14B—C14—H14C109.5
N2—C10—C9122.94 (15)N3—C15—H15A109.5
N2—C10—H10A118.5N3—C15—H15B109.5
C9—C10—H10A118.5H15A—C15—H15B109.5
N1—C1—C2123.06 (16)N3—C15—H15C109.5
N1—C1—H1A118.5H15A—C15—H15C109.5
C2—C1—H1A118.5H15B—C15—H15C109.5
N1—Co1—N2—C10178.15 (14)N2—C11—C12—N12.6 (2)
N1i—Co1—N2—C10102.31 (13)C7—C11—C12—N1177.44 (14)
Cl1—Co1—N2—C1014.83 (13)N2—C11—C12—C4177.75 (14)
Cl1i—Co1—N2—C1091.10 (13)C7—C11—C12—C42.2 (2)
N1—Co1—N2—C114.54 (10)C11—N2—C10—C90.1 (2)
N1i—Co1—N2—C1184.08 (11)Co1—N2—C10—C9173.37 (12)
Cl1—Co1—N2—C11171.56 (10)C12—N1—C1—C20.1 (2)
Cl1i—Co1—N2—C1182.51 (10)Co1—N1—C1—C2177.45 (13)
C10—N2—C11—C70.5 (2)C11—C7—C6—C50.2 (2)
Co1—N2—C11—C7174.73 (12)C8—C7—C6—C5179.06 (16)
C10—N2—C11—C12179.63 (14)C7—C6—C5—C41.1 (3)
Co1—N2—C11—C125.35 (17)C4—C3—C2—C10.8 (3)
N2—Co1—N1—C1179.24 (15)N1—C1—C2—C30.6 (3)
N2i—Co1—N1—C11.40 (15)C11—C7—C8—C90.7 (2)
N1i—Co1—N1—C176.37 (14)C6—C7—C8—C9178.19 (16)
Cl1—Co1—N1—C1130.31 (14)C7—C8—C9—C100.2 (2)
Cl1i—Co1—N1—C189.67 (14)N2—C10—C9—C80.2 (3)
N2—Co1—N1—C123.15 (10)N1—C12—C4—C30.1 (2)
N2i—Co1—N1—C12179.00 (10)C11—C12—C4—C3179.44 (14)
N1i—Co1—N1—C12106.02 (12)N1—C12—C4—C5178.67 (15)
Cl1—Co1—N1—C1252.08 (19)C11—C12—C4—C50.9 (2)
Cl1i—Co1—N1—C1287.94 (10)C2—C3—C4—C120.4 (2)
N2—C11—C7—C80.8 (2)C2—C3—C4—C5178.04 (17)
C12—C11—C7—C8179.25 (14)C6—C5—C4—C120.7 (2)
N2—C11—C7—C6178.10 (14)C6—C5—C4—C3177.71 (16)
C12—C11—C7—C61.8 (2)C13i—N3—C13—O19.9 (10)
C1—N1—C12—C40.3 (2)C15i—N3—C13—O118 (2)
Co1—N1—C12—C4178.17 (12)C15—N3—C13—O162 (7)
C1—N1—C12—C11179.28 (14)C14—N3—C13—O1170.1 (10)
Co1—N1—C12—C111.42 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl10.932.743.3408 (17)124
C6—H6A···Cl1ii0.932.803.6743 (18)158
C5—H5A···Cl1iii0.932.853.6375 (17)144
C2—H2A···Cg1iv0.932.993.768 (2)142
C8—H8A···Cg2v0.932.903.608 (2)134
Symmetry codes: (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[CoCl2(C12H8N2)2]·C3H7NO
Mr563.33
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)16.345 (3), 12.342 (2), 12.342 (2)
V3)2489.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury70 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku & Molecular Structure Corporation, 2000)
Tmin, Tmax0.829, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
14711, 2204, 2168
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.063, 1.09
No. of reflections2204
No. of parameters180
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: CrystalClear (Rigaku & Molecular Structure Corporation, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek; 2003)..

Selected geometric parameters (Å, º) top
Co1—N22.1517 (13)Co1—Cl12.4099 (5)
Co1—N12.1636 (13)
N2—Co1—N2i176.70 (7)N2i—Co1—Cl190.43 (4)
N2—Co1—N176.81 (5)N1—Co1—Cl1162.67 (4)
N2—Co1—N1i100.65 (5)N1i—Co1—Cl187.23 (4)
N1—Co1—N1i82.44 (7)Cl1—Co1—Cl1i105.91 (2)
N2—Co1—Cl191.56 (4)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···Cl10.932.743.3408 (17)123.5
C6—H6A···Cl1ii0.932.803.6743 (18)157.6
C5—H5A···Cl1iii0.932.853.6375 (17)143.5
C2—H2A···Cg1iv0.932.993.768 (2)142
C8—H8A···Cg2v0.932.903.608 (2)134
Symmetry codes: (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z1/2; (v) x+3/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the initial fund for Doctorates from Hunan University.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationForster, R. J., Figgemeier, E., Lees, A. C., Hjelm, J. & Vos, J. G. (2000). Langmuir, 16, 7867–7870.  Web of Science CrossRef CAS Google Scholar
First citationHazell, A., McGinley, J. & McKenzie, C. J. (1997). Acta Cryst. C53, 723–725.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHolder, A. A., Zigler, D. F., Tarrago-Trani, M. T., Storrie, B. & Brewer, K. J. (2007). Inorg. Chem. 46, 4760–4762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, G., Fischer, A. & Glaser, J. (2002). Eur. J. Inorg. Chem. pp. 1307–1314.  CrossRef Google Scholar
First citationMatsumoto, A., Tanaka, T., Tsubouchi, T., Tashiro, K., Saragai, S. & Nakamoto, S. (2002). J. Am. Chem. Soc. 124, 8891–8902.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku & Molecular Structure Corporation (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan, and MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-B., Ma, Z.-C. & Wang, D. (2006). J. Mol. Struct. 784, 93–97.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages m1328-m1329
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds