organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hydr­­oxy-3-meth­oxy­benzyl­­idene)isonicotinohydrazide

aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and bCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
*Correspondence e-mail: sanjunpeng@163.com

(Received 12 September 2008; accepted 16 September 2008; online 24 September 2008)

The title compound, C14H12BrN3O3, was prepared by reaction of 5-bromo-3-methoxy­salicylaldehyde and isonicotinohydrazide in methanol. The mol­ecule is not planar and adopts a trans configuration with respect to the C=N bond. There is an intra­molecular O—H⋯N hydrogen bond in the mol­ecule. The dihedral angle between the benzene and pyridine rings is 12.2 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯N hydrogen bonds, forming chains running along the c-axis direction.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For background on the biological properties of hydrazones, see: El-Tabl et al. (2008[El-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380-2401.]), Chen et al. (2008[Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894-898.]); Alvarez et al. (2008[Alvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952-5961.]); Ventura & Martins (2008[Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612-624.]); Kalinowski et al. (2008[Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331-344.]). For related structures, see: Peng & Hou (2008[Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]); Han et al. (2006[Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572-o5573.]); Lu et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrN3O3

  • Mr = 350.18

  • Monoclinic, P 21 /c

  • a = 7.4937 (9) Å

  • b = 15.8843 (19) Å

  • c = 11.7994 (14) Å

  • β = 99.776 (2)°

  • V = 1384.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.98 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.587, Tmax = 0.616 (expected range = 0.557–0.584)

  • 8003 measured reflections

  • 3013 independent reflections

  • 2299 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.03

  • 3013 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.889 (10) 2.255 (13) 3.126 (3) 166 (3)
O1—H1⋯N1 0.82 1.93 2.643 (2) 145
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the reactions of aldehydes with hydrazides show potential biological properties (El-Tabl et al., 2008; Chen et al., 2008; Alvarez et al., 2008; Ventura & Martins, 2008; Kalinowski et al., 2008). In the last few years, a large number of hydrazones have been reported (Peng & Hou, 2008; Shan et al., 2008; Fun et al., 2008; Yehye et al., 2008; Ejsmont et al., 2008). As a continuation of our work in this area (Peng & Hou, 2008) we report here the crystal structure of the title compound, (I), Fig. 1.

In the molecule of the title compound (I) the C7N1 length of 1.275 (3) Å indicates a typical CN bond. The molecule exists in a trans configuration with respect to the methylidene unit (C7N1), as observed in other similar compounds (Han et al., 2006; Lu et al., 2008). There is an intramolecular O—H···N hydrogen bond in the molecule. The dihedral angle between the benzene and pyridine rings is 12.2 (2)°, indicating the molecule is not planar. The bond lengths are in normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N—H···N hydrogen bonds (Table 1), forming chains running along the c direction (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For background on the biological properties of hydrazones, see: El-Tabl et al. (2008), Chen et al. (2008); Alvarez et al. (2008); Ventura & Martins (2008);Kalinowski et al. (2008). For related structures, see: Peng & Hou (2008); Shan et al. (2008); Fun et al. (2008); Yehye et al. (2008); Ejsmont et al. (2008),; Han et al. (2006); Lu et al. (2008).

Experimental top

5-Bromo-3-methoxysalicylaldehyde (0.231 g, 1 mmol) was dissolved in methanol (50 ml), then isonicotinohydrazide (0.137 g, 1 mmol) was added slowly to the solution, and the mixture was heated at reflux with continuous stirring for 1 h. The solution was cooled to room temperature, yielding colorless crystallites. Recrystallization from an absolute methanol yielded block-like single crystals of the compound.

Refinement top

H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å, and with Uiso set at 0.08 Å2. Other H atoms were placed in calculated positions with C—H distances of 0.93–0.96 Å, O—H distance of 0.82 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms; the intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the b axis. Hydrogen bonds are shown as dashed lines and hydrogen atoms not involved in these interactions have been omitted..
N'-(5-Bromo-2-hydroxy-3-methoxybenzylidene)isonicotinohydrazide top
Crystal data top
C14H12BrN3O3F(000) = 704
Mr = 350.18Dx = 1.680 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3223 reflections
a = 7.4937 (9) Åθ = 2.5–29.2°
b = 15.8843 (19) ŵ = 2.98 mm1
c = 11.7994 (14) ÅT = 298 K
β = 99.776 (2)°Block, colorless
V = 1384.1 (3) Å30.20 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3013 independent reflections
Radiation source: fine-focus sealed tube2299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.587, Tmax = 0.616k = 1720
8003 measured reflectionsl = 1511
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.5984P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.41 e Å3
Crystal data top
C14H12BrN3O3V = 1384.1 (3) Å3
Mr = 350.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4937 (9) ŵ = 2.98 mm1
b = 15.8843 (19) ÅT = 298 K
c = 11.7994 (14) Å0.20 × 0.18 × 0.18 mm
β = 99.776 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3013 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2299 reflections with I > 2σ(I)
Tmin = 0.587, Tmax = 0.616Rint = 0.023
8003 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.39 e Å3
3013 reflectionsΔρmin = 0.41 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28353 (5)0.417081 (18)1.029574 (19)0.06245 (12)
O10.1144 (2)0.35958 (10)0.51873 (12)0.0457 (4)
H10.15100.39850.48320.069*
O20.0357 (2)0.24186 (10)0.65725 (13)0.0473 (4)
O30.2696 (3)0.49630 (11)0.27412 (14)0.0651 (6)
N10.2592 (2)0.50906 (11)0.49603 (15)0.0366 (4)
N20.3058 (3)0.57618 (11)0.43355 (15)0.0368 (4)
N30.3899 (3)0.77447 (12)0.10697 (16)0.0422 (5)
C10.2305 (3)0.45105 (13)0.67791 (17)0.0322 (5)
C20.1524 (3)0.37588 (13)0.63313 (16)0.0314 (4)
C30.1127 (3)0.31267 (13)0.70889 (17)0.0328 (5)
C40.1548 (3)0.32447 (14)0.82630 (17)0.0352 (5)
H40.13140.28230.87650.042*
C50.2323 (3)0.39986 (14)0.86841 (17)0.0370 (5)
C60.2695 (3)0.46250 (14)0.79697 (17)0.0375 (5)
H60.32080.51270.82740.045*
C70.2776 (3)0.51825 (13)0.60474 (18)0.0376 (5)
H70.32200.56890.63780.045*
C80.3013 (3)0.56400 (14)0.31958 (18)0.0379 (5)
C90.3367 (3)0.64012 (13)0.25079 (17)0.0321 (5)
C100.2656 (3)0.63897 (14)0.13450 (18)0.0408 (5)
H100.19910.59290.10220.049*
C110.2945 (3)0.70697 (15)0.0670 (2)0.0449 (6)
H110.24450.70550.01070.054*
C120.4597 (3)0.77448 (14)0.2190 (2)0.0395 (5)
H120.52870.82070.24840.047*
C130.4358 (3)0.71018 (13)0.29379 (18)0.0350 (5)
H130.48530.71380.37140.042*
C140.0108 (3)0.17267 (14)0.7293 (2)0.0473 (6)
H14A0.12550.15660.77320.071*
H14B0.03970.12610.68280.071*
H14C0.07010.18860.78050.071*
H20.331 (4)0.6240 (12)0.472 (2)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1005 (3)0.0644 (2)0.02233 (13)0.01755 (16)0.01035 (12)0.00145 (11)
O10.0749 (12)0.0384 (9)0.0233 (7)0.0087 (8)0.0068 (7)0.0007 (6)
O20.0711 (11)0.0338 (8)0.0357 (8)0.0121 (8)0.0053 (8)0.0022 (7)
O30.1248 (17)0.0381 (9)0.0351 (9)0.0254 (10)0.0207 (10)0.0054 (8)
N10.0502 (12)0.0317 (10)0.0292 (9)0.0001 (8)0.0104 (8)0.0049 (7)
N20.0560 (12)0.0280 (9)0.0282 (9)0.0011 (9)0.0123 (8)0.0047 (7)
N30.0509 (12)0.0379 (10)0.0394 (10)0.0030 (9)0.0122 (9)0.0087 (8)
C10.0411 (12)0.0296 (10)0.0269 (10)0.0031 (9)0.0082 (9)0.0025 (8)
C20.0386 (12)0.0318 (11)0.0234 (9)0.0049 (9)0.0043 (8)0.0006 (8)
C30.0373 (12)0.0300 (11)0.0313 (10)0.0017 (9)0.0062 (9)0.0005 (9)
C40.0412 (13)0.0364 (12)0.0296 (10)0.0030 (10)0.0105 (9)0.0059 (9)
C50.0477 (13)0.0427 (13)0.0215 (10)0.0004 (10)0.0078 (9)0.0016 (9)
C60.0511 (14)0.0339 (11)0.0279 (10)0.0022 (10)0.0079 (9)0.0036 (9)
C70.0523 (14)0.0302 (11)0.0309 (11)0.0003 (10)0.0089 (10)0.0000 (9)
C80.0502 (14)0.0349 (12)0.0296 (10)0.0024 (10)0.0100 (10)0.0013 (9)
C90.0390 (12)0.0307 (11)0.0290 (10)0.0036 (9)0.0123 (9)0.0016 (8)
C100.0545 (15)0.0368 (12)0.0306 (11)0.0033 (11)0.0059 (10)0.0002 (9)
C110.0582 (16)0.0452 (14)0.0301 (11)0.0021 (12)0.0042 (10)0.0042 (10)
C120.0425 (13)0.0334 (12)0.0437 (12)0.0004 (10)0.0108 (10)0.0014 (10)
C130.0401 (12)0.0361 (12)0.0295 (10)0.0031 (9)0.0080 (9)0.0001 (9)
C140.0624 (16)0.0335 (12)0.0482 (14)0.0057 (11)0.0158 (12)0.0047 (11)
Geometric parameters (Å, º) top
Br1—C51.895 (2)C4—C51.386 (3)
O1—C21.356 (2)C4—H40.9300
O1—H10.8200C5—C61.363 (3)
O2—C31.360 (3)C6—H60.9300
O2—C141.421 (3)C7—H70.9300
O3—C81.207 (3)C8—C91.505 (3)
N1—C71.275 (3)C9—C101.385 (3)
N1—N21.375 (2)C9—C131.386 (3)
N2—C81.353 (3)C10—C111.381 (3)
N2—H20.889 (10)C10—H100.9300
N3—C111.330 (3)C11—H110.9300
N3—C121.336 (3)C12—C131.381 (3)
C1—C21.394 (3)C12—H120.9300
C1—C61.397 (3)C13—H130.9300
C1—C71.454 (3)C14—H14A0.9600
C2—C31.409 (3)C14—H14B0.9600
C3—C41.380 (3)C14—H14C0.9600
C2—O1—H1109.5N1—C7—H7119.4
C3—O2—C14117.41 (17)C1—C7—H7119.4
C7—N1—N2117.18 (18)O3—C8—N2122.6 (2)
C8—N2—N1117.15 (18)O3—C8—C9121.04 (19)
C8—N2—H2127 (2)N2—C8—C9116.37 (18)
N1—N2—H2116 (2)C10—C9—C13117.73 (19)
C11—N3—C12116.57 (19)C10—C9—C8116.78 (19)
C2—C1—C6119.70 (19)C13—C9—C8125.48 (19)
C2—C1—C7122.19 (18)C11—C10—C9119.3 (2)
C6—C1—C7118.10 (19)C11—C10—H10120.4
O1—C2—C1122.99 (18)C9—C10—H10120.4
O1—C2—C3117.65 (18)N3—C11—C10123.6 (2)
C1—C2—C3119.35 (18)N3—C11—H11118.2
O2—C3—C4124.68 (19)C10—C11—H11118.2
O2—C3—C2115.10 (18)N3—C12—C13124.1 (2)
C4—C3—C2120.20 (19)N3—C12—H12118.0
C3—C4—C5119.18 (19)C13—C12—H12118.0
C3—C4—H4120.4C12—C13—C9118.7 (2)
C5—C4—H4120.4C12—C13—H13120.7
C6—C5—C4121.76 (19)C9—C13—H13120.7
C6—C5—Br1119.16 (16)O2—C14—H14A109.5
C4—C5—Br1119.06 (16)O2—C14—H14B109.5
C5—C6—C1119.8 (2)H14A—C14—H14B109.5
C5—C6—H6120.1O2—C14—H14C109.5
C1—C6—H6120.1H14A—C14—H14C109.5
N1—C7—C1121.2 (2)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.89 (1)2.26 (1)3.126 (3)166 (3)
O1—H1···N10.821.932.643 (2)145
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H12BrN3O3
Mr350.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.4937 (9), 15.8843 (19), 11.7994 (14)
β (°) 99.776 (2)
V3)1384.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.98
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.587, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
8003, 3013, 2299
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.03
No. of reflections3013
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.41

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.889 (10)2.255 (13)3.126 (3)166 (3)
O1—H1···N10.821.932.643 (2)144.9
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

The corresponding author gratefully acknowledges Changsha University of Science and Technology for research grants.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAlvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952–5961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894–898.  CAS Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380–2401.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572–o5573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVentura, C. & Martins, F. (2008). J. Med. Chem. 51, 612–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds