organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1996-o1997

(E)-N′-(2-Hydr­­oxy-4-meth­oxy­benzyl­­idene)isonicotinohydrazide monohydrate

aCollege of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410076, People's Republic of China, and bCollege of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, People's Republic of China
*Correspondence e-mail: sanjunpeng@163.com

(Received 12 September 2008; accepted 16 September 2008; online 24 September 2008)

The title compound, C14H13N3O3·H2O, was prepared by the reaction of 4-methoxy­salicylaldehyde and isonicotinohydrazide in ethanol. The Schiff base mol­ecule is not planar and has an E configuration with respect to the methyl­idene unit. The dihedral angle between the benzene and pyridine rings is 36.8 (2)°. In the mol­ecule there is an intra­molecular O—H⋯N hydrogen bond involving the hydroxyl substituent and the N atom of the 2-hydr­oxy-4-methoxy­benzyl­idene unit. In the crystal, the mol­ecules are linked through inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For background on the biological properties of hydrazones, see: El-Tabl et al. (2008[El-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380-2401.]); Chen et al. (2008[Chen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894-898.]); Alvarez et al. (2008[Alvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952-5961.]); Ventura & Martins (2008[Ventura, C. & Martins, F. (2008). J. Med. Chem. 51, 612-624.]); Kalinowski et al. (2008[Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331-344.]). For related structures, see: Peng & Hou (2008[Peng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]); Han et al. (2006[Han, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572-o5573.]); Lu et al. (2008[Lu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3·H2O

  • Mr = 289.29

  • Monoclinic, P 21 /c

  • a = 7.299 (4) Å

  • b = 12.537 (6) Å

  • c = 14.808 (7) Å

  • β = 96.281 (8)°

  • V = 1346.9 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 (2) K

  • 0.23 × 0.23 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.977

  • 7804 measured reflections

  • 3041 independent reflections

  • 2129 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.03

  • 3041 reflections

  • 201 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.92 2.644 (2) 146
O4—H4B⋯O2i 0.853 (9) 2.072 (10) 2.924 (2) 176 (2)
O4—H4A⋯N3ii 0.861 (9) 1.971 (10) 2.832 (2) 178 (2)
N2—H2⋯O4iii 0.903 (9) 2.024 (11) 2.915 (2) 169 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones derived from the reactions of aldehydes with hydrazides show potential biological properties (El-Tabl et al., 2008; Chen et al., 2008; Alvarez et al., 2008; Ventura & Martins, 2008; Kalinowski et al., 2008). In the last few years, a large number of hydrazones have been reported (Peng & Hou, 2008; Shan et al., 2008; Fun et al., 2008; Yehye et al., 2008; Ejsmont et al., 2008). As a continuous study, the crystal structure of the title compound, (I), is reported in this paper.

The molecular structure of compound (I) is illustrated in Fig. 1. It consists of a Schiff base molecule and a water molecule of crystallization. The C7N1 bond length of 1.276 (2) Å indicates a typical CN double bond. The Schiff base molecule has an E configuration with respect to the methylidene unit (C7N1), as observed in similar compounds (Han et al., 2006; Lu et al., 2008). In the molecule there is an intramolecular O-H···N hydrogen bond involving the hydroxyl substituent and the N-atom of the 2-hydroxy-4-methoxybenzylidene moiety (Table 1). The dihedral angle between the benzene and pyridine rings is 36.8 (2)°, indicating the molecule is not planar. The bond lengths are in normal ranges (Allen et al., 1987).

In the crystal structure, symmetry related molecules are linked through intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 1), forming layers parallel to the bc plane (Fig. 2).

Related literature top

For bond-length data, see: Allen et al. (1987). For background on the biological properties of hydrazones, see: El-Tabl et al. (2008); Chen et al. (2008); Alvarez et al. (2008); Ventura & Martins (2008); Kalinowski et al. (2008). For related structures, see: Peng & Hou (2008); Shan et al. (2008); Fun et al. (2008); Yehye et al. (2008); Ejsmont et al. (2008); Han et al. (2006); Lu et al. (2008).

Experimental top

4-Methoxysalicylaldehyde (0.152 g, 1 mmol) was dissolved in 95% ethanol (50 ml), then isonicotinohydrazide (0.137 g, 1 mmol) was added slowly to the solution, and the mixture was heated at reflux with continuous stirring for 1 h. The solution was cooled to room temperature, yielding colorless crystallites. Recrystallization from a 95% ethanol yielded block-like single crytals of compound (I).

Refinement top

H-atoms H2, H4A and H4B were located in a difference Fourier map and refined isotropically, with N—H, O—H and H···H distances restrained to 0.90 (1), 0.85 (1) and 1.37 (2) Å, respectively, and with Uiso(H) set at 0.08 Å2. The other H atoms were placed in calculated positions and treated as riding atoms with C—H = 0.93 - 0.96 Å, O—H = 0.82 Å, and i>Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1 and C14).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing diagram of compound (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-(2-Hydroxy-4-methoxybenzylidene)isonicotinohydrazide monohydrate top
Crystal data top
C14H13N3O3·H2OF(000) = 608
Mr = 289.29Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1237 reflections
a = 7.299 (4) Åθ = 2.4–24.5°
b = 12.537 (6) ŵ = 0.11 mm1
c = 14.808 (7) ÅT = 298 K
β = 96.281 (8)°Block, colorless
V = 1346.9 (11) Å30.23 × 0.23 × 0.22 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3041 independent reflections
Radiation source: fine-focus sealed tube2129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.976, Tmax = 0.977k = 1615
7804 measured reflectionsl = 1419
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.2867P]
where P = (Fo2 + 2Fc2)/3
3041 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.18 e Å3
4 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H13N3O3·H2OV = 1346.9 (11) Å3
Mr = 289.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.299 (4) ŵ = 0.11 mm1
b = 12.537 (6) ÅT = 298 K
c = 14.808 (7) Å0.23 × 0.23 × 0.22 mm
β = 96.281 (8)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3041 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2129 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.977Rint = 0.030
7804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
3041 reflectionsΔρmin = 0.25 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1869 (2)0.17985 (9)1.00835 (8)0.0519 (4)
H10.21270.15240.96110.078*
O20.3338 (2)0.13791 (9)0.75220 (8)0.0490 (4)
O30.07206 (17)0.08252 (9)1.30718 (7)0.0407 (3)
O40.3910 (2)0.75061 (10)0.34205 (9)0.0532 (4)
N10.29393 (19)0.02521 (11)0.90464 (9)0.0348 (3)
N20.3324 (2)0.02124 (11)0.82441 (9)0.0339 (3)
N30.3613 (2)0.13153 (13)0.50292 (10)0.0496 (4)
C10.2257 (2)0.00223 (12)1.05635 (10)0.0307 (4)
C20.1816 (2)0.10410 (13)1.07253 (10)0.0324 (4)
C30.1288 (2)0.13524 (13)1.15565 (10)0.0342 (4)
H30.09910.20611.16570.041*
C40.1205 (2)0.06050 (13)1.22317 (10)0.0312 (4)
C50.1644 (2)0.04517 (13)1.20894 (11)0.0370 (4)
H50.15920.09531.25490.044*
C60.2154 (2)0.07474 (13)1.12659 (11)0.0382 (4)
H60.24420.14581.11720.046*
C70.2761 (2)0.03892 (14)0.97002 (11)0.0355 (4)
H70.29620.11140.96180.043*
C80.3435 (2)0.04041 (13)0.75139 (10)0.0335 (4)
C90.3600 (2)0.01964 (12)0.66533 (10)0.0317 (4)
C100.2673 (3)0.01868 (15)0.58540 (11)0.0417 (4)
H100.20370.08300.58470.050*
C110.2709 (3)0.03991 (16)0.50692 (12)0.0501 (5)
H110.20640.01390.45380.060*
C120.4556 (3)0.16551 (15)0.57962 (12)0.0442 (5)
H120.52380.22800.57760.053*
C130.4581 (2)0.11375 (13)0.66161 (11)0.0358 (4)
H130.52440.14140.71360.043*
C140.0200 (3)0.18921 (14)1.32548 (12)0.0460 (5)
H14A0.11990.23661.31680.069*
H14B0.00870.19431.38710.069*
H14C0.08640.20861.28490.069*
H20.342 (3)0.0930 (8)0.8225 (16)0.080*
H4A0.380 (3)0.7860 (16)0.3910 (10)0.080*
H4B0.476 (2)0.7815 (17)0.3165 (13)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0907 (11)0.0363 (7)0.0306 (7)0.0014 (7)0.0150 (7)0.0072 (5)
O20.0739 (10)0.0350 (7)0.0413 (7)0.0045 (6)0.0206 (6)0.0002 (5)
O30.0562 (8)0.0416 (7)0.0263 (6)0.0017 (6)0.0139 (5)0.0029 (5)
O40.0814 (11)0.0405 (8)0.0406 (8)0.0106 (7)0.0193 (7)0.0080 (6)
N10.0376 (8)0.0437 (8)0.0241 (7)0.0035 (6)0.0080 (6)0.0041 (6)
N20.0423 (8)0.0373 (8)0.0234 (7)0.0013 (6)0.0093 (6)0.0038 (6)
N30.0564 (11)0.0604 (11)0.0340 (9)0.0128 (8)0.0148 (7)0.0113 (7)
C10.0321 (9)0.0351 (9)0.0252 (8)0.0028 (7)0.0045 (6)0.0011 (7)
C20.0401 (10)0.0319 (8)0.0248 (8)0.0056 (7)0.0022 (7)0.0034 (6)
C30.0454 (10)0.0276 (8)0.0297 (9)0.0012 (7)0.0050 (7)0.0028 (7)
C40.0326 (9)0.0382 (9)0.0231 (8)0.0031 (7)0.0048 (6)0.0021 (7)
C50.0497 (11)0.0346 (9)0.0279 (9)0.0011 (8)0.0095 (7)0.0067 (7)
C60.0505 (11)0.0308 (9)0.0345 (9)0.0045 (8)0.0105 (8)0.0007 (7)
C70.0401 (10)0.0380 (9)0.0289 (9)0.0008 (7)0.0066 (7)0.0029 (7)
C80.0366 (9)0.0356 (9)0.0293 (9)0.0004 (7)0.0087 (7)0.0002 (7)
C90.0349 (9)0.0354 (9)0.0262 (8)0.0042 (7)0.0094 (6)0.0010 (7)
C100.0488 (11)0.0458 (10)0.0313 (9)0.0046 (8)0.0081 (8)0.0052 (8)
C110.0562 (13)0.0653 (13)0.0286 (10)0.0055 (10)0.0042 (8)0.0029 (9)
C120.0471 (11)0.0433 (10)0.0447 (11)0.0026 (8)0.0166 (9)0.0090 (8)
C130.0364 (10)0.0408 (9)0.0312 (9)0.0027 (7)0.0082 (7)0.0002 (7)
C140.0585 (12)0.0435 (10)0.0387 (10)0.0069 (9)0.0171 (8)0.0122 (8)
Geometric parameters (Å, º) top
O1—C21.3471 (19)C3—H30.9300
O1—H10.8200C4—C51.385 (2)
O2—C81.224 (2)C5—C61.365 (2)
O3—C41.3583 (19)C5—H50.9300
O3—C141.425 (2)C6—H60.9300
O4—H4A0.861 (9)C7—H70.9300
O4—H4B0.853 (9)C8—C91.496 (2)
N1—C71.276 (2)C9—C101.383 (2)
N1—N21.3791 (19)C9—C131.384 (2)
N2—C81.339 (2)C10—C111.377 (2)
N2—H20.903 (9)C10—H100.9300
N3—C111.329 (3)C11—H110.9300
N3—C121.332 (2)C12—C131.375 (2)
C1—C61.390 (2)C12—H120.9300
C1—C21.398 (2)C13—H130.9300
C1—C71.444 (2)C14—H14A0.9600
C2—C31.386 (2)C14—H14B0.9600
C3—C41.376 (2)C14—H14C0.9600
C2—O1—H1109.5N1—C7—H7119.1
C4—O3—C14117.81 (13)C1—C7—H7119.1
H4A—O4—H4B106.4 (17)O2—C8—N2124.03 (15)
C7—N1—N2115.77 (14)O2—C8—C9121.38 (14)
C8—N2—N1119.21 (14)N2—C8—C9114.52 (14)
C8—N2—H2122.6 (15)C10—C9—C13117.94 (15)
N1—N2—H2118.1 (15)C10—C9—C8118.47 (15)
C11—N3—C12116.82 (15)C13—C9—C8123.55 (15)
C6—C1—C2117.59 (14)C11—C10—C9118.96 (17)
C6—C1—C7119.62 (15)C11—C10—H10120.5
C2—C1—C7122.77 (14)C9—C10—H10120.5
O1—C2—C3117.41 (15)N3—C11—C10123.61 (17)
O1—C2—C1121.76 (14)N3—C11—H11118.2
C3—C2—C1120.83 (14)C10—C11—H11118.2
C4—C3—C2119.47 (15)N3—C12—C13123.90 (18)
C4—C3—H3120.3N3—C12—H12118.1
C2—C3—H3120.3C13—C12—H12118.1
O3—C4—C3124.30 (15)C12—C13—C9118.71 (16)
O3—C4—C5114.93 (14)C12—C13—H13120.6
C3—C4—C5120.77 (15)C9—C13—H13120.6
C6—C5—C4119.09 (15)O3—C14—H14A109.5
C6—C5—H5120.5O3—C14—H14B109.5
C4—C5—H5120.5H14A—C14—H14B109.5
C5—C6—C1122.25 (16)O3—C14—H14C109.5
C5—C6—H6118.9H14A—C14—H14C109.5
C1—C6—H6118.9H14B—C14—H14C109.5
N1—C7—C1121.88 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.644 (2)146
O4—H4B···O2i0.85 (1)2.07 (1)2.924 (2)176 (2)
O4—H4A···N3ii0.86 (1)1.97 (1)2.832 (2)178 (2)
N2—H2···O4iii0.90 (1)2.02 (1)2.915 (2)169 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O3·H2O
Mr289.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.299 (4), 12.537 (6), 14.808 (7)
β (°) 96.281 (8)
V3)1346.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.23 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.976, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
7804, 3041, 2129
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.03
No. of reflections3041
No. of parameters201
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.25

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.922.644 (2)146.0
O4—H4B···O2i0.853 (9)2.072 (10)2.924 (2)176 (2)
O4—H4A···N3ii0.861 (9)1.971 (10)2.832 (2)178 (2)
N2—H2···O4iii0.903 (9)2.024 (11)2.915 (2)169 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The corresponding author gratefully acknowledges Changsha University of Science and Technology for research grants.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAlvarez, C., Alvarez, R., Corchete, P., Lopez, J. L., Perez-Melero, C., Pelaez, R. & Medarde, M. (2008). Bioorg. Med. Chem. 16, 5952–5961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J., Liu, F., Song, B.-A., Yang, S., Hu, D.-Y., Jin, H.-H., Chen, Z. & Xue, W. (2008). Chin. J. Org. Chem. 28, 894–898.  CAS Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Tabl, A. S., El-Saied, F. A. & Al-Hakimi, A. N. (2008). J. Coord. Chem. 61, 2380–2401.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, J.-R., Wang, X.-F., Zhen, X.-L., Tian, X. & Liu, S.-X. (2006). Acta Cryst. E62, o5572–o5573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLu, J.-F., Min, S.-T., Ji, X.-H. & Dang, Z.-H. (2008). Acta Cryst. E64, o1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeng, S.-J. & Hou, H.-Y. (2008). Acta Cryst. E64, o1864.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVentura, C. & Martins, F. (2008). J. Med. Chem. 51, 612–624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages o1996-o1997
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds