organic compounds
3-Carboxy-2-methoxyphenylboronic acid
aWarsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: serek@ch.pw.edu.pl
The molecular structure of the title compound, 3-COOH-2-CH3O—C6H3B(OH)2 or C8H9BO5, is stabilized in part due to the presence of an intramolecular O—H⋯O hydrogen bond. In the molecules are linked by intermolecular O—H⋯O hydrogen bonds, generating a two-dimensional sheet structure aligned parallel to the (11) plane.
Related literature
For structures of other carboxyphenylboronic acids, see: SeethaLekshmi & Pedireddi (2007); Soundararajan et al. (1993). For the application of carboxyphenylboronic acids in crystal engineering, see: (Aakeröy et al., 2005; SeethaLekshmi & Pedireddi, 2006). For structural characterization of related ortho-alkoxy arylboronic acids, see: Dabrowski et al. (2006); Dąbrowski et al. (2008); Yang et al. (2005). For the synthesis of the title compound, see: (Kurach et al., 2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction (2005); cell CrysAlis RED (Oxford Diffraction (2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536808029504/tk2303sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808029504/tk2303Isup2.hkl
The compund was prepared according to the published procedure (Kurach et al., 2008). Crystals suitable for single-crystal X-ray
were grown by slow evaporation of a solution of the acid (0.15 g) in ethyl acetate/acetone (10 ml, 1:1).All hydrogen atoms were located in difference syntheses and refined freely so that O-H = 0.802 (19) - 1.03 (2) Å and C-H = 0.942 (17) - 1.029 (17) Å.
Data collection: CrysAlis CCD (Oxford Diffraction (2005); cell
CrysAlis RED (Oxford Diffraction (2005); data reduction: CrysAlis RED (Oxford Diffraction (2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of (I) showing the atom-labelling scheme. The intramolecular hydrogen bond is shown as a dashed lines. Displacement ellipsoids for all non-H atoms are drawn at the 50% probability level. | |
Fig. 2. The hydrogen-bonding pattern for (I). Hydrogen bonds are shown as dashed lines. |
C8H9BO5 | V = 429.75 (7) Å3 |
Mr = 195.96 | Z = 2 |
Triclinic, P1 | F(000) = 204 |
Hall symbol: -P 1 | Dx = 1.514 Mg m−3 |
a = 4.8451 (5) Å | Melting point: 429-432 K K |
b = 7.7564 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
c = 12.1064 (9) Å | µ = 0.12 mm−1 |
α = 79.476 (7)° | T = 100 K |
β = 79.575 (7)° | Prismatic, colourless |
γ = 76.125 (8)° | 0.32 × 0.20 × 0.14 mm |
Kuma KM4 CCD diffractometer | 2106 independent reflections |
Radiation source: fine-focus sealed tube | 1526 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 8.6479 pixels mm-1 | θmax = 28.6°, θmin = 3.0° |
ω scan | h = −6→6 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | k = −10→10 |
Tmin = 0.95, Tmax = 0.98 | l = −16→16 |
12229 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | All H-atom parameters refined |
S = 1.05 | w = 1/[σ^2^(Fo^2^) + (0.0643P)^2^] where P = (Fo^2^ + 2Fc^2^)/3 |
2106 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C8H9BO5 | γ = 76.125 (8)° |
Mr = 195.96 | V = 429.75 (7) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.8451 (5) Å | Mo Kα radiation |
b = 7.7564 (7) Å | µ = 0.12 mm−1 |
c = 12.1064 (9) Å | T = 100 K |
α = 79.476 (7)° | 0.32 × 0.20 × 0.14 mm |
β = 79.575 (7)° |
Kuma KM4 CCD diffractometer | 2106 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction 2005) | 1526 reflections with I > 2σ(I) |
Tmin = 0.95, Tmax = 0.98 | Rint = 0.018 |
12229 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.101 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.35 e Å−3 |
2106 reflections | Δρmin = −0.26 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
B1 | 0.5522 (3) | 0.79514 (18) | 0.40716 (11) | 0.0168 (3) | |
O2 | 0.77114 (19) | 0.78932 (13) | 0.46290 (7) | 0.0247 (2) | |
O3 | 0.3223 (2) | 0.93263 (13) | 0.41255 (8) | 0.0295 (3) | |
O4 | 0.20761 (17) | 0.81061 (11) | 0.23177 (7) | 0.0181 (2) | |
C5 | 0.3211 (3) | 0.92945 (19) | 0.13926 (12) | 0.0300 (3) | |
C6 | 0.2362 (2) | 0.50663 (16) | 0.11119 (9) | 0.0165 (3) | |
O7 | 0.04150 (18) | 0.65037 (11) | 0.08598 (7) | 0.0199 (2) | |
O8 | 0.27658 (18) | 0.36943 (11) | 0.06341 (7) | 0.0216 (2) | |
C9 | 0.5714 (2) | 0.63677 (16) | 0.34035 (9) | 0.0168 (3) | |
C10 | 0.3987 (2) | 0.65025 (15) | 0.25686 (9) | 0.0147 (3) | |
C11 | 0.4152 (2) | 0.50426 (15) | 0.20035 (9) | 0.0162 (3) | |
C12 | 0.6083 (3) | 0.34441 (17) | 0.22948 (10) | 0.0200 (3) | |
C13 | 0.7810 (3) | 0.32923 (17) | 0.31153 (11) | 0.0232 (3) | |
C14 | 0.7620 (3) | 0.47419 (17) | 0.36588 (10) | 0.0204 (3) | |
H2 | 0.729 (4) | 0.869 (2) | 0.5008 (16) | 0.052 (5)* | |
H3 | 0.204 (5) | 0.903 (3) | 0.3808 (19) | 0.083 (7)* | |
H5A | 0.506 (4) | 0.956 (2) | 0.1564 (13) | 0.043 (4)* | |
H5B | 0.187 (3) | 1.040 (2) | 0.1310 (13) | 0.043 (4)* | |
H5C | 0.361 (3) | 0.8735 (19) | 0.0712 (13) | 0.031 (4)* | |
H8 | −0.080 (4) | 0.638 (2) | 0.0276 (16) | 0.067 (6)* | |
H12 | 0.612 (3) | 0.245 (2) | 0.1950 (12) | 0.025 (4)* | |
H13 | 0.906 (3) | 0.217 (2) | 0.3314 (12) | 0.030 (4)* | |
H14 | 0.878 (3) | 0.4602 (18) | 0.4239 (11) | 0.024 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
B1 | 0.0178 (7) | 0.0218 (7) | 0.0127 (6) | −0.0063 (5) | −0.0035 (5) | −0.0036 (5) |
O2 | 0.0229 (5) | 0.0308 (5) | 0.0255 (5) | −0.0031 (4) | −0.0095 (4) | −0.0147 (4) |
O3 | 0.0305 (5) | 0.0277 (5) | 0.0376 (6) | 0.0014 (4) | −0.0205 (4) | −0.0182 (4) |
O4 | 0.0218 (4) | 0.0159 (4) | 0.0178 (4) | −0.0018 (3) | −0.0072 (3) | −0.0040 (3) |
C5 | 0.0408 (8) | 0.0200 (7) | 0.0276 (7) | −0.0065 (6) | −0.0072 (6) | 0.0031 (6) |
C6 | 0.0174 (6) | 0.0191 (6) | 0.0147 (6) | −0.0076 (5) | −0.0012 (4) | −0.0034 (5) |
O7 | 0.0212 (4) | 0.0209 (5) | 0.0201 (4) | −0.0022 (4) | −0.0103 (3) | −0.0048 (3) |
O8 | 0.0280 (5) | 0.0219 (5) | 0.0193 (4) | −0.0088 (4) | −0.0060 (4) | −0.0069 (4) |
C9 | 0.0156 (6) | 0.0220 (6) | 0.0139 (6) | −0.0063 (5) | −0.0025 (4) | −0.0023 (5) |
C10 | 0.0146 (5) | 0.0156 (6) | 0.0142 (5) | −0.0042 (4) | −0.0012 (4) | −0.0024 (4) |
C11 | 0.0167 (6) | 0.0179 (6) | 0.0149 (6) | −0.0062 (5) | −0.0007 (4) | −0.0028 (5) |
C12 | 0.0215 (6) | 0.0169 (6) | 0.0222 (6) | −0.0051 (5) | −0.0012 (5) | −0.0045 (5) |
C13 | 0.0210 (6) | 0.0197 (6) | 0.0257 (7) | −0.0013 (5) | −0.0036 (5) | 0.0007 (5) |
C14 | 0.0178 (6) | 0.0273 (7) | 0.0164 (6) | −0.0054 (5) | −0.0049 (5) | −0.0002 (5) |
B1—O2 | 1.3443 (15) | C6—C11 | 1.4971 (16) |
B1—O3 | 1.3461 (16) | O7—H8 | 1.03 (2) |
B1—C9 | 1.5661 (17) | C9—C14 | 1.3933 (17) |
O2—H2 | 0.802 (19) | C9—C10 | 1.3993 (16) |
O3—H3 | 0.84 (2) | C10—C11 | 1.4059 (16) |
O4—C10 | 1.3813 (14) | C11—C12 | 1.3931 (17) |
O4—C5 | 1.4317 (15) | C12—C13 | 1.3825 (18) |
C5—H5A | 1.029 (17) | C12—H12 | 0.938 (15) |
C5—H5B | 0.942 (17) | C13—C14 | 1.3799 (18) |
C5—H5C | 0.968 (15) | C13—H13 | 0.955 (15) |
C6—O8 | 1.2607 (13) | C14—H14 | 0.951 (14) |
C6—O7 | 1.3044 (14) | ||
O2—B1—O3 | 119.64 (11) | C14—C9—B1 | 119.41 (10) |
O2—B1—C9 | 118.18 (11) | C10—C9—B1 | 122.49 (10) |
O3—B1—C9 | 122.16 (10) | O4—C10—C9 | 118.38 (10) |
B1—O2—H2 | 109.5 (13) | O4—C10—C11 | 120.37 (10) |
B1—O3—H3 | 104.3 (15) | C9—C10—C11 | 121.25 (11) |
C10—O4—C5 | 113.51 (10) | C12—C11—C10 | 118.37 (10) |
O4—C5—H5A | 110.1 (9) | C12—C11—C6 | 116.96 (10) |
O4—C5—H5B | 109.1 (10) | C10—C11—C6 | 124.66 (10) |
H5A—C5—H5B | 107.3 (13) | C13—C12—C11 | 121.05 (11) |
O4—C5—H5C | 108.6 (9) | C13—C12—H12 | 120.4 (9) |
H5A—C5—H5C | 110.3 (13) | C11—C12—H12 | 118.5 (9) |
H5B—C5—H5C | 111.4 (13) | C14—C13—C12 | 119.70 (12) |
O8—C6—O7 | 122.02 (10) | C14—C13—H13 | 121.3 (9) |
O8—C6—C11 | 119.10 (10) | C12—C13—H13 | 118.9 (9) |
O7—C6—C11 | 118.88 (10) | C13—C14—C9 | 121.55 (11) |
C6—O7—H8 | 114.0 (10) | C13—C14—H14 | 118.6 (8) |
C14—C9—C10 | 118.08 (11) | C9—C14—H14 | 119.8 (8) |
O2—B1—C9—C14 | 18.65 (16) | O4—C10—C11—C6 | 0.00 (17) |
O3—B1—C9—C14 | −159.62 (11) | C9—C10—C11—C6 | 179.25 (10) |
O2—B1—C9—C10 | −162.83 (11) | O8—C6—C11—C12 | −3.26 (16) |
O3—B1—C9—C10 | 18.89 (18) | O7—C6—C11—C12 | 176.22 (10) |
C5—O4—C10—C9 | 93.35 (12) | O8—C6—C11—C10 | 177.57 (10) |
C5—O4—C10—C11 | −87.38 (13) | O7—C6—C11—C10 | −2.95 (16) |
C14—C9—C10—O4 | 179.50 (10) | C10—C11—C12—C13 | −0.30 (18) |
B1—C9—C10—O4 | 0.96 (16) | C6—C11—C12—C13 | −179.52 (11) |
C14—C9—C10—C11 | 0.24 (17) | C11—C12—C13—C14 | 0.18 (19) |
B1—C9—C10—C11 | −178.30 (10) | C12—C13—C14—C9 | 0.16 (19) |
O4—C10—C11—C12 | −179.16 (10) | C10—C9—C14—C13 | −0.37 (17) |
C9—C10—C11—C12 | 0.09 (17) | B1—C9—C14—C13 | 178.22 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.802 (19) | 1.96 (2) | 2.7572 (13) | 172.6 (18) |
O3—H3···O4 | 0.84 (2) | 2.06 (2) | 2.7283 (12) | 136.8 (19) |
O3—H3···O2ii | 0.84 (2) | 2.45 (2) | 3.0538 (14) | 130.2 (19) |
O7—H8···O8iii | 1.03 (2) | 1.60 (2) | 2.6255 (11) | 177.0 (16) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C8H9BO5 |
Mr | 195.96 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 4.8451 (5), 7.7564 (7), 12.1064 (9) |
α, β, γ (°) | 79.476 (7), 79.575 (7), 76.125 (8) |
V (Å3) | 429.75 (7) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.32 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Kuma KM4 CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction 2005) |
Tmin, Tmax | 0.95, 0.98 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12229, 2106, 1526 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.674 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.101, 1.05 |
No. of reflections | 2106 |
No. of parameters | 163 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.35, −0.26 |
Computer programs: CrysAlis CCD (Oxford Diffraction (2005), CrysAlis RED (Oxford Diffraction (2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
B1—O2 | 1.3443 (15) | C6—O8 | 1.2607 (13) |
B1—O3 | 1.3461 (16) | C6—O7 | 1.3044 (14) |
B1—C9 | 1.5661 (17) | ||
O2—B1—C9—C14 | 18.65 (16) | O8—C6—C11—C10 | 177.57 (10) |
C5—O4—C10—C9 | 93.35 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O3i | 0.802 (19) | 1.96 (2) | 2.7572 (13) | 172.6 (18) |
O3—H3···O4 | 0.84 (2) | 2.06 (2) | 2.7283 (12) | 136.8 (19) |
O3—H3···O2ii | 0.84 (2) | 2.45 (2) | 3.0538 (14) | 130.2 (19) |
O7—H8···O8iii | 1.03 (2) | 1.60 (2) | 2.6255 (11) | 177.0 (16) |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z. |
Acknowledgements
The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology and by the Polish Ministry of Science and Higher Education (grant No. N N205 055633).
References
Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dąbrowski, M., Luliński, S. & Serwatowski, J. (2008). Acta Cryst. E64, o414–o415. Web of Science CrossRef IUCr Journals Google Scholar
Dabrowski, M., Lulinski, S., Serwatowski, J. & Szczerbinska, M. (2006). Acta Cryst. C62, o702–o704. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kurach, P., Luliński, S. & Serwatowski, J. (2008). Eur. J. Org. Chem. 3171–3178. Google Scholar
Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Abingdon, Oxfordshire, England. Google Scholar
SeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400–2402. Web of Science CSD CrossRef PubMed CAS Google Scholar
SeethaLekshmi, N. & Pedireddi, V. R. (2007). Cryst. Growth Des. 7, 944–949. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soundararajan, S., Duesler, E. N. & Hageman, J. H. (1993). Acta Cryst. C49, 690–693. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Yang, Y., Escobedo, J. O., Wong, A., Schowalter, C. M., Touchy, M. C., Jiao, L., Crowe, W. E., Fronczek, F. R. & Strongin, R. M. (2005). J. Org. Chem. 70, 6907–6912. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The presence of a carboxyl group in a molecule of arylboronic acid provides an increased potential for extended supramolecular organization (SeethaLekshmi & Pedireddi, 2007). The promising properties of carboxyphenylboronic acids in crystal engineering (Aakeröy et al., 2005; SeethaLekshmi & Pedireddi, 2006) prompted us to determine the structure of the title compound, (I).
The molecular structure of (I) shows the boronic groups possesses an exo-endo conformation and is slightly twisted with respect to the benzene ring (Table 1). The methoxy group is twisted almost perpendicularly with respect to the aromatic ring. The endo-oriented OH group is engaged in an intramolecular O—H···O hydrogen bonds with the methoxy O atom, resulting in the formation of a six-membered ring. This motif is generally typical of structures of ortho-alkoxyarylboronic acids (Yang et al., 2005; Dąbrowski et al., 2006). The carboxyl group is almost coplanar with respect to the benzene ring. The molecules are linked via almost linear O—H···O bridges in a "head-to-head, tail-to-tail" fashion, i.e., equivalent groups interact with each other forming two alternate centrosymmetric dimeric motifs, Table 2. As a result, an infinite, zigzag chain is formed (Fig. 2). The chain structure resembles the situation found for the related 2-methoxy-1,3-phenylenediboronic acid (Dąbrowski et al., 2008), where single molecules are linked via homomeric (SeethaLekshmi & Pedireddi, 2007) hydrogen-bonding interactions of non-equivalent boronic groups.
The 1D supramolecular architecture extends through cross-linking weak O—H···O bonds between twisted boronic groups. As a result a 2D array is formed, aligned parallel to the (11–2) plane. In conclusion, the intermolecular hydrogen-bonding interactions of boronic and carboxyl groups result in the formation of the infinite chain structure. Chains are interconnected by means of weaker hydrogen-bonds, thus forming the layer structure.