organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-3-phenyl­propionic acid

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 September 2008; accepted 11 September 2008; online 17 September 2008)

In the crystal of the title compound, C9H8Br2O2, inversion dimers linked by two O—H⋯O hydrogen bonds occur. All of the carbon and oxygen atoms are disordered over two sets of sites in a 2:1 ratio.

Related literature

For threo-1,2-diphenyl-2,3-difluoro­propionate, see: O'Hagan et al. (2006[O'Hagan, D., Rzepa, H. S., Schüler, M. & Slawin, A. M. Z. (2006). Beilstein J. Org. Chem. 2, No. 19.]). For R-methyl 3-bromo-2-chloro-3-phenyl­propionate, see: Shaw et al. (1995[Shaw, J. P., Tan, E. W. & Blackman, A. G. (1995). Acta Cryst. C51, 134-135.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br2O2

  • Mr = 307.97

  • Orthorhombic, P b c a

  • a = 7.0278 (1) Å

  • b = 9.7105 (1) Å

  • c = 29.2970 (4) Å

  • V = 1999.33 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.07 mm−1

  • T = 100 (2) K

  • 0.28 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.211, Tmax = 0.398 (expected range = 0.171–0.323)

  • 17420 measured reflections

  • 2303 independent reflections

  • 2056 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.06

  • 2303 reflections

  • 127 parameters

  • 83 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.84 1.86 2.68 (1) 165
O1′—H1′o⋯O2i 0.84 1.86 2.69 (1) 166
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The compound (Scheme I, Fig. 1) was obtained as a side-product from the reaction of cyclopentyldiphenyltin cinnamate and 4-dimethylaminopyridine hydrobromide perbromide. Possibly, bromine added across the double bond of the cinnamate group followed by cleavage of the tin–carbon bond. Only few dihalogenproponic acid derivatives have been characterized by X-ray crystallography. These are limited to, for example, threo-methyl 2,3-difluoropropionate (O'Hagan et al., 2006) and R-methyl 3-bromo-2-chloro-3-phenylpropionate (Shaw et al., 1995).

Related literature top

For threo-1,2-diphenyl-2,3-difluoropropionate, see: O'Hagan et al. (2006). For R-methyl 3-bromo-2-chloro-3-phenylpropionate, see: Shaw et al. (1995).

Experimental top

The compound was obtained as a side-product from the reaction of cyclopentyldiphenyltin cinnamate (0.3 g, 0.6 mmol) and 4-dimethylaminopyridine hydrobromide perbromide (0.25 g) in a mixture of chloroform and ethanol.

Refinement top

The structure is disordered over two positions with respect of the non-bromide atoms. The Br1 atom is connected to the carbon atom in the 2-position in the major component but is connected to the carbon atom in the 3-position in the minor component. Conversely, the Br2 atom is connected to the carbon atom in the 3-position in the major component but is connected to the carbon atom in the 2-position in the minor component. All distances in the major component were restrained to within 0.01 Å of their equivalents in the minor component. The phenyl rings were restrained into rigid hexagons of 1.39 Å sides. Additionally, the four-atom carboxyl and seven-atom benzyl units were each restrained to be nearly flat. The anisotropic displacement parameters of the primed atoms were restrained to be equal to those of the unprimed atoms; these were also restrained to be nearly isotropic. In the inital stages of the refinement, the occupancy refined to an approximate 2:1 ratio. However, with the inclusion of hydrogen atoms, the refinement was unstable. Ratios that were either slightly smaller or slightly larger than 2:1 did not yield any significant differences in the final residual index. The ratio was then fixed to 2:1 Oxygen and carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. 70% Probability thermal ellipsoid plot (Barbour, 2001) of C9H8Br2O2. Hydrogen atoms are drawn as spheres of arbitrary radii. For clarity, the minor component is not shown.
2,3-Dibromo-3-phenylpropionic acid top
Crystal data top
C9H8Br2O2F(000) = 1184
Mr = 307.97Dx = 2.046 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8127 reflections
a = 7.0278 (1) Åθ = 2.2–28.2°
b = 9.7105 (1) ŵ = 8.07 mm1
c = 29.2970 (4) ÅT = 100 K
V = 1999.33 (4) Å3Block, colorless
Z = 80.28 × 0.22 × 0.14 mm
Data collection top
Bruker SMART APEX
diffractometer
2303 independent reflections
Radiation source: fine-focus sealed tube2056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.211, Tmax = 0.398k = 1212
17420 measured reflectionsl = 3738
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0337P)2 + 3.2334P]
where P = (Fo2 + 2Fc2)/3
2303 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.61 e Å3
83 restraintsΔρmin = 0.62 e Å3
Crystal data top
C9H8Br2O2V = 1999.33 (4) Å3
Mr = 307.97Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.0278 (1) ŵ = 8.07 mm1
b = 9.7105 (1) ÅT = 100 K
c = 29.2970 (4) Å0.28 × 0.22 × 0.14 mm
Data collection top
Bruker SMART APEX
diffractometer
2303 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2056 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.398Rint = 0.027
17420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02583 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
2303 reflectionsΔρmin = 0.62 e Å3
127 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.48392 (4)0.31033 (3)0.364350 (9)0.02208 (9)
Br20.06355 (4)0.45596 (3)0.436758 (9)0.03094 (10)
O10.4216 (6)0.3279 (4)0.48256 (13)0.0308 (10)0.67
H1O0.47650.35690.50610.046*0.67
O20.4214 (10)0.5338 (5)0.4476 (3)0.0209 (10)0.67
C10.3847 (4)0.4118 (4)0.44922 (12)0.0189 (8)0.67
C20.2859 (5)0.3388 (4)0.40959 (12)0.0176 (7)0.67
H20.23440.24800.42000.021*0.67
C30.1313 (5)0.4223 (4)0.38839 (12)0.0183 (7)0.67
H30.18590.51300.37900.022*0.67
C40.0358 (4)0.3575 (5)0.34721 (14)0.0133 (8)0.67
C50.0307 (8)0.2228 (5)0.3486 (3)0.0186 (11)0.67
H50.01670.16970.37560.022*0.67
C60.1176 (9)0.1657 (9)0.3104 (4)0.0224 (6)0.67
H60.16310.07360.31140.027*0.67
C70.1381 (9)0.2433 (15)0.2709 (3)0.0181 (8)0.67
H70.19760.20430.24480.022*0.67
C80.0716 (13)0.3781 (14)0.26947 (16)0.0206 (7)0.67
H80.08560.43110.24240.025*0.67
C90.0154 (11)0.4352 (8)0.3076 (2)0.0183 (9)0.67
H90.06080.52730.30670.022*0.67
O1'0.3463 (14)0.3474 (10)0.4912 (3)0.0308 (10)0.33
H1'O0.42020.37150.51220.046*0.33
O2'0.380 (2)0.5445 (11)0.4542 (7)0.0209 (10)0.33
C1'0.3118 (9)0.4305 (9)0.4576 (2)0.0189 (8)0.33
C2'0.1737 (9)0.3684 (7)0.4228 (2)0.0176 (7)0.33
H2'0.16330.26660.42740.021*0.33
C3'0.2239 (9)0.3993 (8)0.3748 (2)0.0183 (7)0.33
H3'0.23550.50120.37090.022*0.33
C4'0.0862 (9)0.3432 (12)0.3394 (3)0.0133 (8)0.33
C5'0.0090 (19)0.2117 (12)0.3425 (6)0.0186 (11)0.33
H5'0.04210.15360.36740.022*0.33
C6'0.1164 (19)0.165 (2)0.3092 (8)0.0224 (6)0.33
H6'0.16920.07540.31130.027*0.33
C7'0.1648 (18)0.250 (3)0.2729 (6)0.0181 (8)0.33
H7'0.25050.21850.25010.022*0.33
C8'0.088 (3)0.382 (3)0.2698 (4)0.0206 (7)0.33
H8'0.12070.43980.24490.025*0.33
C9'0.038 (2)0.4282 (17)0.3031 (5)0.0183 (9)0.33
H9'0.09060.51810.30100.022*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02081 (14)0.02271 (15)0.02272 (15)0.00251 (10)0.00187 (10)0.00479 (10)
Br20.03118 (17)0.04015 (19)0.02150 (15)0.00134 (13)0.00331 (11)0.00921 (12)
O10.055 (3)0.0188 (16)0.0182 (18)0.0063 (19)0.0143 (18)0.0006 (13)
O20.034 (3)0.0169 (12)0.012 (3)0.0006 (16)0.0033 (18)0.0032 (12)
C10.023 (2)0.0199 (18)0.0139 (17)0.0030 (19)0.0010 (16)0.0003 (14)
C20.0211 (17)0.0149 (15)0.0166 (16)0.0017 (14)0.0007 (13)0.0010 (12)
C30.021 (2)0.0159 (16)0.0175 (17)0.0033 (15)0.0002 (14)0.0028 (13)
C40.007 (2)0.0153 (17)0.017 (2)0.0062 (19)0.0015 (16)0.0077 (14)
C50.016 (3)0.0174 (16)0.023 (3)0.0023 (17)0.002 (2)0.0009 (15)
C60.0180 (12)0.0183 (13)0.0310 (15)0.0018 (10)0.0052 (11)0.0067 (11)
C70.009 (2)0.0239 (19)0.0215 (14)0.006 (2)0.0035 (16)0.0106 (11)
C80.0169 (19)0.0259 (15)0.0190 (12)0.0082 (15)0.0007 (11)0.0025 (10)
C90.017 (2)0.0167 (14)0.0211 (18)0.0027 (13)0.0015 (14)0.0037 (14)
O1'0.055 (3)0.0188 (16)0.0182 (18)0.0063 (19)0.0143 (18)0.0006 (13)
O2'0.034 (3)0.0169 (12)0.012 (3)0.0006 (16)0.0033 (18)0.0032 (12)
C1'0.023 (2)0.0199 (18)0.0139 (17)0.0030 (19)0.0010 (16)0.0003 (14)
C2'0.0211 (17)0.0149 (15)0.0166 (16)0.0017 (14)0.0007 (13)0.0010 (12)
C3'0.021 (2)0.0159 (16)0.0175 (17)0.0033 (15)0.0002 (14)0.0028 (13)
C4'0.007 (2)0.0153 (17)0.017 (2)0.0062 (19)0.0015 (16)0.0077 (14)
C5'0.016 (3)0.0174 (16)0.023 (3)0.0023 (17)0.002 (2)0.0009 (15)
C6'0.0180 (12)0.0183 (13)0.0310 (15)0.0018 (10)0.0052 (11)0.0067 (11)
C7'0.009 (2)0.0239 (19)0.0215 (14)0.006 (2)0.0035 (16)0.0106 (11)
C8'0.0169 (19)0.0259 (15)0.0190 (12)0.0082 (15)0.0007 (11)0.0025 (10)
C9'0.017 (2)0.0167 (14)0.0211 (18)0.0027 (13)0.0015 (14)0.0037 (14)
Geometric parameters (Å, º) top
Br1—C21.942 (4)C8—H80.9500
Br1—C3'2.044 (6)C9—H90.9500
Br2—C2'1.916 (6)O1'—C1'1.295 (8)
Br2—C31.997 (3)O1'—H1'O0.8400
O1—C11.298 (4)O2'—C1'1.212 (8)
O1—H1O0.8400C1'—C2'1.533 (8)
O2—C11.213 (5)C2'—C3'1.480 (7)
C1—C21.527 (5)C2'—H2'1.0000
C2—C31.491 (5)C3'—C4'1.518 (7)
C2—H21.0000C3'—H3'1.0000
C3—C41.517 (4)C4'—C5'1.3900
C3—H31.0000C4'—C9'1.3900
C4—C51.3900C5'—C6'1.3900
C4—C91.3900C5'—H5'0.9500
C5—C61.3900C6'—C7'1.3900
C5—H50.9500C6'—H6'0.9500
C6—C71.3900C7'—C8'1.3900
C6—H60.9500C7'—H7'0.9500
C7—C81.3900C8'—C9'1.3900
C7—H70.9500C8'—H8'0.9500
C8—C91.3900C9'—H9'0.9500
C1—O1—H1O120.0C1'—O1'—H1'O120.0
O2—C1—O1126.8 (6)O2'—C1'—O1'124.0 (13)
O2—C1—C2121.4 (6)O2'—C1'—C2'123.8 (13)
O1—C1—C2111.8 (4)O1'—C1'—C2'112.3 (8)
C3—C2—C1113.3 (3)C3'—C2'—C1'113.7 (6)
C3—C2—Br1108.4 (2)C3'—C2'—Br2108.7 (4)
C1—C2—Br1105.0 (2)C1'—C2'—Br2103.5 (4)
C3—C2—H2110.0C3'—C2'—H2'110.2
C1—C2—H2110.0C1'—C2'—H2'110.2
Br1—C2—H2110.0Br2—C2'—H2'110.2
C2—C3—C4115.4 (3)C2'—C3'—C4'115.0 (6)
C2—C3—Br2107.0 (2)C2'—C3'—Br1105.6 (4)
C4—C3—Br2109.20 (19)C4'—C3'—Br1108.5 (4)
C2—C3—H3108.3C2'—C3'—H3'109.2
C4—C3—H3108.3C4'—C3'—H3'109.2
Br2—C3—H3108.3Br1—C3'—H3'109.2
C5—C4—C9120.0C5'—C4'—C9'120.0
C5—C4—C3121.0 (5)C5'—C4'—C3'122.3 (11)
C9—C4—C3119.0 (5)C9'—C4'—C3'117.7 (11)
C4—C5—C6120.0C4'—C5'—C6'120.0
C4—C5—H5120.0C4'—C5'—H5'120.0
C6—C5—H5120.0C6'—C5'—H5'120.0
C7—C6—C5120.0C7'—C6'—C5'120.0
C7—C6—H6120.0C7'—C6'—H6'120.0
C5—C6—H6120.0C5'—C6'—H6'120.0
C6—C7—C8120.0C6'—C7'—C8'120.0
C6—C7—H7120.0C6'—C7'—H7'120.0
C8—C7—H7120.0C8'—C7'—H7'120.0
C7—C8—C9120.0C7'—C8'—C9'120.0
C7—C8—H8120.0C7'—C8'—H8'120.0
C9—C8—H8120.0C9'—C8'—H8'120.0
C8—C9—C4120.0C8'—C9'—C4'120.0
C8—C9—H9120.0C8'—C9'—H9'120.0
C4—C9—H9120.0C4'—C9'—H9'120.0
O2—C1—C2—C340.3 (4)O2'—C1'—C2'—Br277.8 (5)
O1—C1—C2—C3140.0 (3)O1'—C1'—C2'—Br2102.1 (5)
O2—C1—C2—Br177.8 (3)C3—Br2—C2'—C3'0.9 (4)
O1—C1—C2—Br1101.9 (2)C3—Br2—C2'—C1'122.1 (7)
C1—C2—C3—C4176.8 (3)C1'—C2'—C3'—C4'178.0 (6)
Br1—C2—C3—C460.7 (4)Br2—C2'—C3'—C4'63.3 (7)
C1—C2—C3—Br261.5 (3)C1'—C2'—C3'—Br162.4 (6)
Br1—C2—C3—Br2177.59 (16)Br2—C2'—C3'—Br1177.1 (3)
C2—C3—C4—C549.8 (4)C2—Br1—C3'—C2'0.1 (3)
Br2—C3—C4—C570.8 (3)C2—Br1—C3'—C4'123.7 (8)
C2—C3—C4—C9130.2 (4)C2'—C3'—C4'—C5'42.3 (8)
Br2—C3—C4—C9109.2 (3)Br1—C3'—C4'—C5'75.6 (6)
C9—C4—C5—C60.0C2'—C3'—C4'—C9'137.7 (8)
C3—C4—C5—C6179.99 (8)Br1—C3'—C4'—C9'104.3 (6)
C4—C5—C6—C70.0C9'—C4'—C5'—C6'0.0
C5—C6—C7—C80.0C3'—C4'—C5'—C6'179.96 (9)
C6—C7—C8—C90.0C4'—C5'—C6'—C7'0.0
C7—C8—C9—C40.0C5'—C6'—C7'—C8'0.0
C5—C4—C9—C80.0C6'—C7'—C8'—C9'0.0
C3—C4—C9—C8179.99 (8)C7'—C8'—C9'—C4'0.0
O2'—C1'—C2'—C3'40.0 (6)C5'—C4'—C9'—C8'0.0
O1'—C1'—C2'—C3'140.1 (6)C3'—C4'—C9'—C8'179.96 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.841.862.68 (1)165
O1—H1o···O2i0.841.862.69 (1)166
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H8Br2O2
Mr307.97
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.0278 (1), 9.7105 (1), 29.2970 (4)
V3)1999.33 (4)
Z8
Radiation typeMo Kα
µ (mm1)8.07
Crystal size (mm)0.28 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.211, 0.398
No. of measured, independent and
observed [I > 2σ(I)] reflections
17420, 2303, 2056
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections2303
No. of parameters127
No. of restraints83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.62

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.841.862.68 (1)165
O1'—H1'o···O2i0.841.862.69 (1)166
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for funding this study (FR155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationO'Hagan, D., Rzepa, H. S., Schüler, M. & Slawin, A. M. Z. (2006). Beilstein J. Org. Chem. 2, No. 19.  Google Scholar
First citationShaw, J. P., Tan, E. W. & Blackman, A. G. (1995). Acta Cryst. C51, 134–135.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds