organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Methyl-3-nitro­benzo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China.
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 29 July 2008; accepted 26 August 2008; online 6 September 2008)

In the title compound, C8H6N2O2, the nitro group is rotated by 23.2 (3)° out of the plane of the benzene ring. The crystal structure is stabilized by van der Waals inter­actions.

Related literature

For the chemistry of nitrile derivatives, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Jin et al. (1994[Jin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205-212.]); Brewis et al. (2003[Brewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863-3872.]); Dunica et al. (1991[Dunica, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem. 56, 2395-2400.]). For related literature, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Liang & Wang, (2008[Liang, W.-X. & Wang, G.-X. (2008). Acta Cryst. E64, o972.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6N2O2

  • Mr = 162.15

  • Monoclinic, P 21 /c

  • a = 3.9088 (8) Å

  • b = 13.576 (3) Å

  • c = 14.819 (4) Å

  • β = 99.13 (3)°

  • V = 776.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.35 × 0.30 × 0.1 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation Inc., Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.990

  • 7589 measured reflections

  • 1761 independent reflections

  • 1336 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.208

  • S = 1.10

  • 1753 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation Inc., Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitrile derivatives have found a wide range of applications in industry and coordination chemistry as ligands. For example, phthalonitriles have been used as starting materials for phthalocyanines (Jin et al., 1994), which are important components for dyes, pigments, gas sensors, optical limiters and liquid crystals, and which are also used in medicine, as singlet oxygen photosensitisers for photodynamic therapy (Brewis et al., 2003). Also, nitrile compounds are the precursors of tetrazole complexes (Dunica et al.(1991); Xiong et al.(2002)). Recently, a series of benzonitrile compounds have been reported (Fu & Zhao, 2007; Liang & Wang, 2008). As an extension of these studies on structural characterization, we report here the crystal structure of the title compound, p-methyl-m-nitrobenzonitrile.

The crystal data show that in the title compound (Fig. 1), the benzene ring and the nitro group are not coplanar, they are twisted with respect to each other by torsion angles of O1—N1—C1—C6 (-23.2 (4)°) and O2—N1—C1—C2 (-25.6 (3)°); the nitrile group C8N2 bond length of 1.144 (3) Å is within the normal range. The crystal structure is stabilized only by van der Waals interactions.

Related literature top

For the chemistry of nitrile derivatives, see: Xiong et al. (2002); Jin et al. (1994); Brewis et al. (2003); Dunica et al. (1991). For related literature, see: Fu & Zhao (2007); Liang & Wang, (2008).

Experimental top

The purchased p-methyl-m-nitrobenzonitrile (3 mmol, 486.44 mg) was dissolved in chloroform (20 ml) and evaporated in air, affording colorless block crystals of this compound suitable for X-ray analysis.

Refinement top

All H atoms bonded to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(aromatic C) and Uiso(H) = 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by spheres of arbitrary radius.
(I) top
Crystal data top
C8H6N2O2F(000) = 336
Mr = 162.15Dx = 1.387 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1764 reflections
a = 3.9088 (8) Åθ = 3.1–27.6°
b = 13.576 (3) ŵ = 0.10 mm1
c = 14.819 (4) ÅT = 298 K
β = 99.13 (3)°Block, colourless
V = 776.4 (3) Å30.35 × 0.30 × 0.1 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1761 independent reflections
Radiation source: fine-focus sealed tube1336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1717
Tmin = 0.965, Tmax = 0.990l = 1919
7589 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1036P)2 + 0.2336P]
where P = (Fo2 + 2Fc2)/3
1753 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C8H6N2O2V = 776.4 (3) Å3
Mr = 162.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9088 (8) ŵ = 0.10 mm1
b = 13.576 (3) ÅT = 298 K
c = 14.819 (4) Å0.35 × 0.30 × 0.1 mm
β = 99.13 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1761 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1336 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.990Rint = 0.037
7589 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.10Δρmax = 0.33 e Å3
1753 reflectionsΔρmin = 0.28 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0921 (7)0.79875 (18)0.59741 (14)0.1001 (9)
O21.3658 (7)0.89476 (18)0.52048 (17)0.0932 (8)
N11.1627 (5)0.82762 (16)0.52533 (14)0.0584 (6)
N20.5214 (8)0.45178 (18)0.38967 (18)0.0803 (8)
C11.0021 (5)0.77768 (15)0.44045 (14)0.0444 (5)
C80.6195 (7)0.53049 (18)0.38358 (16)0.0568 (6)
C20.9631 (5)0.82620 (16)0.35611 (15)0.0462 (5)
C60.8914 (6)0.68242 (16)0.45126 (14)0.0470 (5)
H60.91850.65350.50880.056*
C40.6963 (6)0.67560 (17)0.28898 (15)0.0530 (6)
H40.59420.64120.23740.064*
C50.7388 (6)0.63055 (16)0.37444 (15)0.0463 (5)
C30.8057 (7)0.77130 (18)0.28090 (16)0.0559 (6)
H30.77380.80040.22340.067*
C71.0660 (8)0.93151 (18)0.3406 (2)0.0672 (7)
H7A1.17000.96010.39760.101*
H7B0.86410.96870.31570.101*
H7C1.22930.93260.29850.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.145 (2)0.1075 (18)0.0430 (11)0.0405 (15)0.0006 (12)0.0087 (11)
O20.0966 (17)0.0881 (15)0.0906 (16)0.0397 (13)0.0017 (12)0.0237 (12)
N10.0605 (12)0.0593 (12)0.0523 (12)0.0039 (10)0.0011 (9)0.0117 (9)
N20.106 (2)0.0562 (14)0.0755 (16)0.0203 (13)0.0039 (14)0.0061 (11)
C10.0410 (10)0.0476 (12)0.0436 (11)0.0013 (9)0.0041 (8)0.0064 (9)
C80.0662 (15)0.0501 (13)0.0521 (14)0.0036 (11)0.0029 (11)0.0063 (10)
C20.0447 (11)0.0456 (11)0.0496 (12)0.0061 (9)0.0119 (9)0.0026 (9)
C60.0517 (12)0.0478 (12)0.0402 (11)0.0010 (9)0.0034 (9)0.0011 (9)
C40.0619 (14)0.0521 (13)0.0417 (12)0.0062 (10)0.0014 (10)0.0048 (9)
C50.0483 (12)0.0446 (11)0.0452 (12)0.0015 (9)0.0049 (8)0.0036 (9)
C30.0708 (16)0.0543 (13)0.0415 (12)0.0083 (11)0.0058 (10)0.0059 (9)
C70.0707 (17)0.0504 (14)0.0807 (19)0.0005 (12)0.0125 (14)0.0096 (12)
Geometric parameters (Å, º) top
O1—N11.210 (3)C6—C51.390 (3)
O2—N11.218 (3)C6—H60.9300
N1—C11.478 (3)C4—C31.379 (3)
N2—C81.144 (3)C4—C51.392 (3)
C1—C61.381 (3)C4—H40.9300
C1—C21.400 (3)C3—H30.9300
C8—C51.450 (3)C7—H7A0.9600
C2—C31.400 (3)C7—H7B0.9600
C2—C71.513 (3)C7—H7C0.9600
O1—N1—O2122.4 (2)C3—C4—H4120.0
O1—N1—C1118.5 (2)C5—C4—H4120.0
O2—N1—C1119.1 (2)C6—C5—C4119.7 (2)
C6—C1—C2123.55 (19)C6—C5—C8120.1 (2)
C6—C1—N1115.43 (19)C4—C5—C8120.2 (2)
C2—C1—N1121.0 (2)C4—C3—C2122.4 (2)
N2—C8—C5178.9 (3)C4—C3—H3118.8
C3—C2—C1115.6 (2)C2—C3—H3118.8
C3—C2—C7118.4 (2)C2—C7—H7A109.5
C1—C2—C7125.9 (2)C2—C7—H7B109.5
C1—C6—C5118.75 (19)H7A—C7—H7B109.5
C1—C6—H6120.6C2—C7—H7C109.5
C5—C6—H6120.6H7A—C7—H7C109.5
C3—C4—C5119.9 (2)H7B—C7—H7C109.5
O1—N1—C1—C623.2 (3)N1—C1—C6—C5179.76 (19)
O2—N1—C1—C6155.4 (2)C1—C6—C5—C40.9 (3)
O1—N1—C1—C2155.8 (2)C1—C6—C5—C8179.9 (2)
O2—N1—C1—C225.6 (3)C3—C4—C5—C60.0 (3)
C6—C1—C2—C30.8 (3)C3—C4—C5—C8179.1 (2)
N1—C1—C2—C3179.68 (19)C5—C4—C3—C20.5 (4)
C6—C1—C2—C7177.4 (2)C1—C2—C3—C40.1 (3)
N1—C1—C2—C71.4 (3)C7—C2—C3—C4178.5 (2)
C2—C1—C6—C51.3 (3)

Experimental details

Crystal data
Chemical formulaC8H6N2O2
Mr162.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)3.9088 (8), 13.576 (3), 14.819 (4)
β (°) 99.13 (3)
V3)776.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.30 × 0.1
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.965, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
7589, 1761, 1336
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.208, 1.10
No. of reflections1753
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.28

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationBrewis, M., Helliwell, M. & McKeown, N. B. (2003). Tetrahedron, 59, 3863–3872.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunica, J. V., Pierce, M. E. & Santella, J. B. (1991). J. Org. Chem. 56, 2395–2400.  Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z., Nolan, K., McArthur, C. R., Lever, A. B. P. & Leznoff, C. C. (1994). J. Organomet. Chem. 468, 205–212.  CrossRef CAS Web of Science Google Scholar
First citationLiang, W.-X. & Wang, G.-X. (2008). Acta Cryst. E64, o972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation Inc., Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds