organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-cyano­pyridinium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 26 August 2008; accepted 2 September 2008; online 6 September 2008)

In the title compound, C6H6N3+·NO3, the packing is consolidatedby N—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For the chemisty of amine derivatives, see: Manzur et al. (2007[Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500-5510.]); Ismayilov et al. (2007[Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898-2907.]); Austria et al. (2007[Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283-6290.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, o1461.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N3+·NO3

  • Mr = 182.15

  • Monoclinic, P 21 /n

  • a = 4.6475 (9) Å

  • b = 12.713 (3) Å

  • c = 13.417 (3) Å

  • β = 97.91 (3)°

  • V = 785.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 (2) K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.975, Tmax = 0.981

  • 8053 measured reflections

  • 1798 independent reflections

  • 1163 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.127

  • S = 1.07

  • 1798 reflections

  • 142 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O2i 0.90 (2) 2.05 (3) 2.941 (3) 169 (2)
N1—H1⋯O1i 0.92 (3) 1.82 (3) 2.733 (2) 170 (2)
N2—H2C⋯O3 0.83 (3) 2.10 (3) 2.926 (3) 174 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past five years, we have focused on the chemistry of amine derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal–organic frameworks (Manzur et al. 2007; Ismayilov et al. 2007; Austria et al. 2007; Wen 2008). We report here the crystal structure of the title compound.

In the title compound (Fig. 1), the N1 atom of the pyridine ring is protonated. The nitrile group and the pyridinium ring are essentially coplanar. The nitrile group C6N3 bond length of 1.133 (3)Å is within the normal range. Crystal cohesion is enforced by N—H···N and N—H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the chemisty of amine derivatives, see: Manzur et al. (2007); Ismayilov et al. (2007); Austria et al. (2007); Wen (2008).

Experimental top

6-aminonicotinonitrile (3 mmol) was dissolved in the solution of ethanol (20 ml) and nitric acid (1 ml), and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis.

Refinement top

All H atoms were located in difference Fourier maps and refined freely.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis and all hydrogen atoms not involved in hydrogen bonding (dashed lines) were omitted for clarity.
2-Amino-5-cyanopyridinium nitrate top
Crystal data top
C6H6N3+·NO3F(000) = 376
Mr = 182.15Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1796 reflections
a = 4.6475 (9) Åθ = 3.1–27.5°
b = 12.713 (3) ŵ = 0.13 mm1
c = 13.417 (3) ÅT = 298 K
β = 97.91 (3)°Block, colourless
V = 785.1 (3) Å30.25 × 0.15 × 0.15 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
1798 independent reflections
Radiation source: fine-focus sealed tube1163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.975, Tmax = 0.981l = 1717
8053 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: difference Fourier map
wR(F2) = 0.127All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
1798 reflections(Δ/σ)max < 0.001
142 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C6H6N3+·NO3V = 785.1 (3) Å3
Mr = 182.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.6475 (9) ŵ = 0.13 mm1
b = 12.713 (3) ÅT = 298 K
c = 13.417 (3) Å0.25 × 0.15 × 0.15 mm
β = 97.91 (3)°
Data collection top
Rigaku Mercury2
diffractometer
1798 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1163 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.981Rint = 0.050
8053 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.127All H-atom parameters refined
S = 1.07Δρmax = 0.17 e Å3
1798 reflectionsΔρmin = 0.17 e Å3
142 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7591 (5)0.86151 (17)0.31844 (17)0.0428 (5)
N40.0550 (4)0.94943 (14)0.12683 (14)0.0456 (5)
N20.4566 (4)0.71680 (19)0.25422 (16)0.0509 (5)
O10.1866 (3)0.98288 (12)0.08728 (13)0.0604 (5)
O20.2162 (4)1.00628 (14)0.18518 (14)0.0651 (5)
O30.1266 (4)0.85819 (13)0.10891 (13)0.0610 (5)
N10.8152 (4)0.69031 (15)0.38842 (14)0.0406 (4)
C30.9809 (5)0.89511 (17)0.38692 (17)0.0435 (5)
C51.0356 (4)0.72284 (18)0.45750 (17)0.0402 (5)
C61.3541 (5)0.86115 (17)0.53382 (18)0.0476 (6)
C10.6718 (4)0.75525 (16)0.31857 (15)0.0379 (5)
C41.1235 (4)0.82498 (16)0.45893 (16)0.0388 (5)
N31.5342 (5)0.89264 (16)0.59161 (18)0.0684 (7)
H51.126 (4)0.6708 (16)0.5011 (15)0.036 (5)*
H2A0.655 (4)0.9049 (16)0.2716 (15)0.033 (5)*
H31.041 (4)0.9695 (19)0.3867 (16)0.051 (6)*
H2B0.401 (5)0.650 (2)0.2641 (17)0.048 (7)*
H10.764 (5)0.620 (2)0.389 (2)0.067 (8)*
H2C0.370 (6)0.761 (3)0.216 (2)0.082 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0473 (13)0.0351 (11)0.0432 (12)0.0020 (9)0.0043 (11)0.0098 (10)
N40.0556 (12)0.0365 (10)0.0425 (10)0.0046 (9)0.0013 (9)0.0013 (9)
N20.0512 (12)0.0424 (12)0.0529 (12)0.0048 (10)0.0146 (10)0.0011 (10)
O10.0532 (10)0.0445 (9)0.0766 (12)0.0102 (8)0.0156 (9)0.0064 (8)
O20.0615 (11)0.0566 (11)0.0698 (11)0.0031 (8)0.0179 (9)0.0180 (9)
O30.0770 (12)0.0405 (9)0.0599 (11)0.0171 (8)0.0098 (9)0.0044 (8)
N10.0405 (10)0.0306 (10)0.0478 (11)0.0032 (8)0.0041 (8)0.0032 (8)
C30.0471 (13)0.0323 (12)0.0492 (13)0.0021 (10)0.0003 (11)0.0029 (10)
C50.0394 (11)0.0383 (12)0.0408 (12)0.0034 (9)0.0025 (10)0.0052 (10)
C60.0495 (14)0.0373 (12)0.0515 (14)0.0002 (10)0.0089 (12)0.0008 (10)
C10.0356 (11)0.0399 (12)0.0370 (11)0.0027 (9)0.0007 (9)0.0003 (9)
C40.0355 (11)0.0377 (12)0.0414 (11)0.0002 (9)0.0014 (9)0.0020 (10)
N30.0697 (14)0.0501 (13)0.0755 (16)0.0045 (11)0.0249 (13)0.0036 (11)
Geometric parameters (Å, º) top
C2—C31.352 (3)N1—C51.348 (3)
C2—C11.411 (3)N1—C11.354 (3)
C2—H2A0.92 (2)N1—H10.92 (3)
N4—O31.239 (2)C3—C41.411 (3)
N4—O21.239 (2)C3—H30.99 (2)
N4—O11.249 (2)C5—C41.361 (3)
N2—C11.322 (3)C5—H50.94 (2)
N2—H2B0.90 (2)C6—N31.133 (3)
N2—H2C0.83 (3)C6—C41.440 (3)
C3—C2—C1119.6 (2)C2—C3—H3119.4 (13)
C3—C2—H2A123.7 (12)C4—C3—H3120.0 (13)
C1—C2—H2A116.7 (12)N1—C5—C4120.1 (2)
O3—N4—O2120.89 (19)N1—C5—H5116.3 (12)
O3—N4—O1119.08 (18)C4—C5—H5123.6 (12)
O2—N4—O1120.00 (18)N3—C6—C4177.9 (2)
C1—N2—H2B117.2 (15)N2—C1—N1118.9 (2)
C1—N2—H2C115 (2)N2—C1—C2123.1 (2)
H2B—N2—H2C127 (3)N1—C1—C2118.07 (19)
C5—N1—C1123.0 (2)C5—C4—C3118.77 (19)
C5—N1—H1117.7 (16)C5—C4—C6120.53 (19)
C1—N1—H1119.4 (17)C3—C4—C6120.69 (19)
C2—C3—C4120.5 (2)
C1—C2—C3—C40.6 (3)C3—C2—C1—N10.2 (3)
C1—N1—C5—C40.2 (3)N1—C5—C4—C30.3 (3)
C5—N1—C1—N2179.4 (2)N1—C5—C4—C6178.5 (2)
C5—N1—C1—C20.2 (3)C2—C3—C4—C50.6 (3)
C3—C2—C1—N2179.8 (2)C2—C3—C4—C6178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.90 (2)2.05 (3)2.941 (3)169 (2)
N1—H1···O1i0.92 (3)1.82 (3)2.733 (2)170 (2)
N1—H1···N4i0.92 (3)2.62 (3)3.505 (3)161 (2)
N2—H2C···O30.83 (3)2.10 (3)2.926 (3)174 (3)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N3+·NO3
Mr182.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.6475 (9), 12.713 (3), 13.417 (3)
β (°) 97.91 (3)
V3)785.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.975, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
8053, 1798, 1163
Rint0.050
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.127, 1.07
No. of reflections1798
No. of parameters142
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O2i0.90 (2)2.05 (3)2.941 (3)169 (2)
N1—H1···O1i0.92 (3)1.82 (3)2.733 (2)170 (2)
N1—H1···N4i0.92 (3)2.62 (3)3.505 (3)161 (2)
N2—H2C···O30.83 (3)2.10 (3)2.926 (3)174 (3)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAustria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem. 46, 6283–6290.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIsmayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans. pp. 2898–2907.  Web of Science CSD CrossRef PubMed Google Scholar
First citationManzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem. 35, 5500–5510.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, o1461.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds