organic compounds
(S)-1,2-Dimethyl-1,1,2-triphenyl-2-(4-piperidiniomethyl)disilane chloride
aAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de
The title compound, C26H34NSi2+·Cl−, shows at silicon. Because of its highly selective synthesis with an e.r. of >99:1 by means of a racemic resolution with mandelic acid, the free disilane is of great importance to the chemistry of highly enantiomerically enriched lithiosilanes and their trapping products. N—H⋯Cl hydrogen bonding is present between the protonated nitrogen atom of the piperidino group and the chloride counter-anion. The silicon–silicon distance as well as silicon–carbon and carbon–nitrogen bond lengths are in the same ranges as in other quaternary, functionalized di- and tetrasilanes.
Related literature
For details of lithiosilanes, see: Lickiss & Smith (1995); Sekiguchi et al. (2000); Strohmann et al. (2001, 2006); Strohmann & Däschlein (2008a,b); Tamao & Kawachi (1995). For enantiomerically enriched lithiosilanes, see: Colomer & Corriu (1976); Oestreich et al. (2005); Omote et al. (2000); Sommer & Mason (1965); Strohmann et al. (2007). For the determination of the of the disilane as the mandelic acid adduct, see: Strohmann et al. (2002). For related literature on hydrochlorides of see: Farrugia et al. (2001).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 2001); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808028808/wm2191sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808028808/wm2191Isup2.hkl
To the
(S)-1,2-Dimethyl-1,2,2-triphenyldisilan-1-(piperidinomethyl)disilane, (I), dissolved in Et2O, one equivalent of etherical HCl solution was added and stored at room temperature for 24 h. After removal of the solvent, a colourless crystalline solid of (II) remained, suitable for single crystal x-ray studies.1H-NMR (500.1 MHz, CDCl3): δ = -4.92 (s, 3H; NCSiSiCH3), -4.80 (s, 3H; NCSiCH3), 0.95–1.05, 1.55–1.60 (m, 1H each; NCCCH2), 1.40–1.50 (m, 2H; NCCH2), 1.95–2.05, 2.05–2.15 (m, 1H each; NCCH2), 2.22–2.28, 2.30–2.37 (m, 1H each; NCH2C), 2.70–2.75, 2.80–2.85 (m, 1H each; SiCH2), 3.03–3.07, 3.12–3.18 (m, 1H each; NCH2C),7.15–7.35 (m, 15H; aromat. H).
{1H}13C-NMR (125.8 MHz, CDCl3): δ = -4.9 (1 C) (NCSiCH3), -4.8 (1 C) (NCSiSiCH3), 21.3 (1 C) (NCCCH2), 22.5, 22.6 (1 C each) (NCCH2), 49.4 (1 C) (SiCH2), 55.2, 57.4 (1 C each) (NCH2C), 128.06, 128.17, 128.37 (2 C each) (all C-m), 129.36, 129.50,129.78 (1 C each) (all C-p), 134.06, 134.64,134.77 (2 C each) (all C-o), 133.74, 133.99,134.46 (1 C each) (all C-i).
{1H}29Si-NMR (99.4 MHz, CDCl3): δ = -25.3 (1Si) (NCSi), -23.5 (1Si) (NCSiSi).
The H atoms were refined in their ideal geometric positions using the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and of Uiso(H) = 1.2Ueq(C) for all other H atoms except atom H100 (bonded to the N atom of the piperidino group) which was refined freely.
Data collection: SMART (Bruker, 2001); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. ORTEP plot of the asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the hydrogen bond. |
C26H34NSi2+·Cl− | F(000) = 968 |
Mr = 452.19 | Dx = 1.201 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 999 reflections |
a = 10.120 (2) Å | θ = 1.9–26.0° |
b = 13.289 (3) Å | µ = 0.26 mm−1 |
c = 18.598 (4) Å | T = 173 K |
V = 2501.3 (9) Å3 | Block, colourless |
Z = 4 | 0.30 × 0.30 × 0.20 mm |
Bruker SMART APEX CCD diffractometer | 4911 independent reflections |
Radiation source: fine-focus sealed tube | 4808 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.077 |
ω–scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −12→12 |
Tmin = 0.926, Tmax = 0.950 | k = −16→16 |
45451 measured reflections | l = −22→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.0402P)2 + 1.4067P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
4911 reflections | Δρmax = 0.41 e Å−3 |
277 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Absolute structure: Flack (1983), 2128 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.08 (10) |
C26H34NSi2+·Cl− | V = 2501.3 (9) Å3 |
Mr = 452.19 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 10.120 (2) Å | µ = 0.26 mm−1 |
b = 13.289 (3) Å | T = 173 K |
c = 18.598 (4) Å | 0.30 × 0.30 × 0.20 mm |
Bruker SMART APEX CCD diffractometer | 4911 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 4808 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.950 | Rint = 0.077 |
45451 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.149 | Δρmax = 0.41 e Å−3 |
S = 1.05 | Δρmin = −0.34 e Å−3 |
4911 reflections | Absolute structure: Flack (1983), 2128 Friedel pairs |
277 parameters | Absolute structure parameter: 0.08 (10) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl | −0.09614 (10) | 0.04149 (6) | 0.25243 (5) | 0.0361 (2) | |
Si1 | 0.28622 (9) | 0.21087 (7) | 0.20801 (5) | 0.0249 (2) | |
Si2 | 0.40619 (9) | 0.23973 (7) | 0.10071 (5) | 0.0276 (2) | |
N1 | 0.0148 (3) | 0.2532 (2) | 0.25691 (15) | 0.0246 (5) | |
C3 | −0.2128 (4) | 0.2953 (3) | 0.2978 (2) | 0.0346 (8) | |
H3B | −0.2411 | 0.2241 | 0.2961 | 0.042* | |
H3A | −0.2909 | 0.3378 | 0.2876 | 0.042* | |
C17 | 0.4393 (5) | 0.0299 (3) | −0.0646 (2) | 0.0433 (10) | |
H17 | 0.5060 | 0.0075 | −0.0968 | 0.052* | |
C8 | 0.3754 (3) | 0.2680 (3) | 0.28642 (17) | 0.0271 (7) | |
C2 | −0.1098 (3) | 0.3132 (3) | 0.24077 (19) | 0.0309 (7) | |
H2A | −0.0881 | 0.3858 | 0.2387 | 0.037* | |
H2B | −0.1452 | 0.2930 | 0.1933 | 0.037* | |
C16 | 0.4683 (4) | 0.1011 (3) | −0.0121 (2) | 0.0374 (9) | |
H16 | 0.5559 | 0.1262 | −0.0082 | 0.045* | |
C6 | 0.0655 (3) | 0.2780 (3) | 0.32978 (17) | 0.0297 (7) | |
H6A | 0.0922 | 0.3496 | 0.3312 | 0.036* | |
H6B | 0.1446 | 0.2366 | 0.3400 | 0.036* | |
C1 | 0.1159 (3) | 0.2715 (2) | 0.19928 (16) | 0.0273 (7) | |
H1A | 0.1290 | 0.3452 | 0.1956 | 0.033* | |
H1B | 0.0773 | 0.2489 | 0.1531 | 0.033* | |
C11 | 0.4933 (4) | 0.3529 (4) | 0.4090 (2) | 0.0456 (10) | |
H11 | 0.5315 | 0.3812 | 0.4510 | 0.055* | |
C18 | 0.3126 (5) | −0.0077 (3) | −0.0696 (2) | 0.0435 (10) | |
H18 | 0.2926 | −0.0565 | −0.1054 | 0.052* | |
C19 | 0.2150 (5) | 0.0243 (3) | −0.0237 (2) | 0.0466 (10) | |
H19 | 0.1282 | −0.0025 | −0.0273 | 0.056* | |
C10 | 0.4387 (4) | 0.4145 (3) | 0.3574 (2) | 0.0386 (9) | |
H10 | 0.4416 | 0.4855 | 0.3630 | 0.046* | |
C21 | 0.3634 (3) | 0.3622 (3) | 0.05534 (19) | 0.0302 (7) | |
C24 | 0.3080 (4) | 0.5453 (3) | −0.0126 (2) | 0.0411 (9) | |
H24 | 0.2899 | 0.6077 | −0.0355 | 0.049* | |
C26 | 0.3724 (4) | 0.3723 (3) | −0.0189 (2) | 0.0366 (8) | |
H26 | 0.3978 | 0.3157 | −0.0469 | 0.044* | |
C23 | 0.2970 (4) | 0.5373 (3) | 0.0615 (2) | 0.0420 (9) | |
H23 | 0.2708 | 0.5938 | 0.0894 | 0.050* | |
C9 | 0.3793 (4) | 0.3723 (3) | 0.29742 (19) | 0.0314 (7) | |
H9 | 0.3400 | 0.4154 | 0.2627 | 0.038* | |
C14 | 0.5853 (4) | 0.2419 (3) | 0.1259 (2) | 0.0397 (8) | |
H14C | 0.6392 | 0.2482 | 0.0823 | 0.060* | |
H14B | 0.6081 | 0.1794 | 0.1509 | 0.060* | |
H14A | 0.6024 | 0.2994 | 0.1576 | 0.060* | |
C7 | 0.2688 (4) | 0.0726 (3) | 0.2230 (2) | 0.0357 (8) | |
H7B | 0.3567 | 0.0420 | 0.2266 | 0.054* | |
H7C | 0.2209 | 0.0426 | 0.1825 | 0.054* | |
H7A | 0.2198 | 0.0607 | 0.2676 | 0.054* | |
C4 | −0.1613 (4) | 0.3193 (3) | 0.3725 (2) | 0.0394 (9) | |
H4A | −0.1416 | 0.3920 | 0.3762 | 0.047* | |
H4B | −0.2293 | 0.3024 | 0.4088 | 0.047* | |
C22 | 0.3244 (4) | 0.4466 (3) | 0.0945 (2) | 0.0363 (8) | |
H22 | 0.3166 | 0.4415 | 0.1452 | 0.044* | |
C12 | 0.4926 (4) | 0.2503 (4) | 0.3995 (2) | 0.0435 (9) | |
H12 | 0.5315 | 0.2080 | 0.4348 | 0.052* | |
C5 | −0.0374 (4) | 0.2590 (3) | 0.38669 (18) | 0.0334 (8) | |
H5A | −0.0012 | 0.2774 | 0.4344 | 0.040* | |
H5B | −0.0595 | 0.1864 | 0.3876 | 0.040* | |
C20 | 0.2446 (4) | 0.0968 (3) | 0.0282 (2) | 0.0368 (9) | |
H20 | 0.1770 | 0.1196 | 0.0596 | 0.044* | |
C15 | 0.3720 (4) | 0.1364 (3) | 0.03482 (18) | 0.0314 (8) | |
C13 | 0.4352 (4) | 0.2081 (3) | 0.33837 (18) | 0.0338 (8) | |
H13 | 0.4369 | 0.1372 | 0.3321 | 0.041* | |
C25 | 0.3450 (4) | 0.4636 (3) | −0.0533 (2) | 0.0434 (9) | |
H25 | 0.3518 | 0.4690 | −0.1041 | 0.052* | |
H100 | −0.007 (5) | 0.180 (4) | 0.254 (3) | 0.050 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl | 0.0441 (5) | 0.0229 (4) | 0.0413 (5) | −0.0063 (4) | −0.0004 (4) | −0.0006 (3) |
Si1 | 0.0270 (5) | 0.0232 (4) | 0.0246 (4) | −0.0006 (4) | 0.0003 (4) | −0.0014 (3) |
Si2 | 0.0272 (5) | 0.0288 (4) | 0.0269 (4) | 0.0008 (4) | 0.0010 (4) | −0.0027 (4) |
N1 | 0.0219 (13) | 0.0218 (13) | 0.0300 (13) | −0.0003 (11) | −0.0012 (11) | −0.0007 (11) |
C3 | 0.0275 (17) | 0.0338 (18) | 0.0425 (19) | 0.0043 (15) | −0.0010 (16) | 0.0033 (16) |
C17 | 0.059 (3) | 0.040 (2) | 0.0312 (18) | 0.018 (2) | 0.0047 (17) | −0.0007 (16) |
C8 | 0.0232 (16) | 0.0319 (18) | 0.0263 (14) | −0.0005 (13) | 0.0004 (13) | −0.0045 (13) |
C2 | 0.0268 (17) | 0.0288 (16) | 0.0370 (17) | 0.0046 (14) | −0.0029 (15) | 0.0047 (14) |
C16 | 0.044 (2) | 0.0319 (19) | 0.036 (2) | 0.0022 (16) | 0.0021 (17) | 0.0010 (15) |
C6 | 0.0299 (18) | 0.0297 (17) | 0.0296 (15) | −0.0014 (14) | −0.0039 (13) | 0.0027 (14) |
C1 | 0.0310 (17) | 0.0254 (16) | 0.0254 (15) | −0.0010 (13) | 0.0006 (13) | 0.0002 (12) |
C11 | 0.035 (2) | 0.067 (3) | 0.034 (2) | 0.003 (2) | −0.0007 (17) | −0.0203 (19) |
C18 | 0.066 (3) | 0.037 (2) | 0.0277 (17) | 0.006 (2) | −0.0085 (19) | −0.0083 (15) |
C19 | 0.046 (2) | 0.048 (2) | 0.046 (2) | 0.000 (2) | −0.0119 (19) | −0.0086 (18) |
C10 | 0.030 (2) | 0.040 (2) | 0.046 (2) | −0.0015 (16) | 0.0077 (16) | −0.0142 (17) |
C21 | 0.0263 (18) | 0.0330 (17) | 0.0314 (17) | −0.0021 (14) | 0.0021 (14) | 0.0005 (14) |
C24 | 0.038 (2) | 0.035 (2) | 0.051 (2) | −0.0022 (17) | −0.0056 (17) | 0.0141 (18) |
C26 | 0.036 (2) | 0.039 (2) | 0.0353 (19) | −0.0011 (16) | −0.0011 (16) | −0.0027 (16) |
C23 | 0.044 (2) | 0.0252 (17) | 0.057 (2) | −0.0022 (17) | 0.0085 (19) | 0.0011 (17) |
C9 | 0.0306 (19) | 0.0304 (17) | 0.0333 (17) | −0.0031 (14) | −0.0030 (15) | 0.0015 (15) |
C14 | 0.0336 (19) | 0.047 (2) | 0.0386 (19) | 0.0019 (18) | −0.0008 (16) | −0.0016 (17) |
C7 | 0.046 (2) | 0.0242 (16) | 0.0369 (18) | −0.0006 (16) | 0.0047 (16) | 0.0003 (14) |
C4 | 0.035 (2) | 0.045 (2) | 0.0382 (19) | 0.0024 (17) | 0.0073 (16) | −0.0065 (17) |
C22 | 0.036 (2) | 0.0367 (19) | 0.0360 (18) | −0.0055 (16) | 0.0053 (15) | 0.0010 (16) |
C12 | 0.038 (2) | 0.061 (3) | 0.0323 (18) | 0.0150 (19) | −0.0073 (16) | 0.0049 (19) |
C5 | 0.0322 (18) | 0.0378 (19) | 0.0302 (17) | −0.0004 (15) | 0.0056 (14) | −0.0009 (15) |
C20 | 0.036 (2) | 0.039 (2) | 0.0353 (19) | 0.0032 (16) | 0.0016 (16) | −0.0080 (15) |
C15 | 0.037 (2) | 0.0297 (17) | 0.0281 (17) | 0.0024 (15) | −0.0028 (14) | 0.0009 (13) |
C13 | 0.034 (2) | 0.0348 (18) | 0.0325 (17) | 0.0053 (16) | −0.0001 (14) | 0.0002 (15) |
C25 | 0.049 (2) | 0.044 (2) | 0.0368 (19) | −0.0060 (19) | −0.0076 (18) | 0.0085 (18) |
Cl—H100 | 2.05 (5) | C18—H18 | 0.9500 |
Si1—C7 | 1.867 (4) | C19—C20 | 1.397 (6) |
Si1—C8 | 1.876 (3) | C19—H19 | 0.9500 |
Si1—C1 | 1.910 (3) | C10—C9 | 1.386 (5) |
Si1—Si2 | 2.3672 (13) | C10—H10 | 0.9500 |
Si2—C14 | 1.873 (4) | C21—C26 | 1.390 (5) |
Si2—C15 | 1.873 (4) | C21—C22 | 1.393 (5) |
Si2—C21 | 1.884 (4) | C24—C25 | 1.375 (6) |
N1—C6 | 1.486 (4) | C24—C23 | 1.388 (6) |
N1—C1 | 1.502 (4) | C24—H24 | 0.9500 |
N1—C2 | 1.521 (4) | C26—C25 | 1.400 (6) |
N1—H100 | 1.00 (5) | C26—H26 | 0.9500 |
C3—C2 | 1.506 (5) | C23—C22 | 1.381 (6) |
C3—C4 | 1.518 (5) | C23—H23 | 0.9500 |
C3—H3B | 0.9900 | C9—H9 | 0.9500 |
C3—H3A | 0.9900 | C14—H14C | 0.9800 |
C17—C18 | 1.379 (7) | C14—H14B | 0.9800 |
C17—C16 | 1.392 (6) | C14—H14A | 0.9800 |
C17—H17 | 0.9500 | C7—H7B | 0.9800 |
C8—C13 | 1.391 (5) | C7—H7C | 0.9800 |
C8—C9 | 1.402 (5) | C7—H7A | 0.9800 |
C2—H2A | 0.9900 | C4—C5 | 1.511 (5) |
C2—H2B | 0.9900 | C4—H4A | 0.9900 |
C16—C15 | 1.389 (5) | C4—H4B | 0.9900 |
C16—H16 | 0.9500 | C22—H22 | 0.9500 |
C6—C5 | 1.506 (5) | C12—C13 | 1.395 (5) |
C6—H6A | 0.9900 | C12—H12 | 0.9500 |
C6—H6B | 0.9900 | C5—H5A | 0.9900 |
C1—H1A | 0.9900 | C5—H5B | 0.9900 |
C1—H1B | 0.9900 | C20—C15 | 1.398 (5) |
C11—C12 | 1.374 (7) | C20—H20 | 0.9500 |
C11—C10 | 1.377 (6) | C13—H13 | 0.9500 |
C11—H11 | 0.9500 | C25—H25 | 0.9500 |
C18—C19 | 1.374 (6) | N1—Cl | 3.031 (3) |
C7—Si1—C8 | 109.16 (17) | C11—C10—H10 | 120.2 |
C7—Si1—C1 | 110.05 (17) | C9—C10—H10 | 120.2 |
C8—Si1—C1 | 109.24 (14) | C26—C21—C22 | 117.4 (3) |
C7—Si1—Si2 | 109.48 (13) | C26—C21—Si2 | 120.9 (3) |
C8—Si1—Si2 | 110.06 (11) | C22—C21—Si2 | 121.7 (3) |
C1—Si1—Si2 | 108.84 (10) | C25—C24—C23 | 120.5 (4) |
C14—Si2—C15 | 110.72 (17) | C25—C24—H24 | 119.7 |
C14—Si2—C21 | 108.73 (17) | C23—C24—H24 | 119.7 |
C15—Si2—C21 | 107.34 (15) | C21—C26—C25 | 121.6 (4) |
C14—Si2—Si1 | 106.77 (13) | C21—C26—H26 | 119.2 |
C15—Si2—Si1 | 109.76 (12) | C25—C26—H26 | 119.2 |
C21—Si2—Si1 | 113.55 (12) | C22—C23—C24 | 119.4 (4) |
C6—N1—C1 | 112.3 (2) | C22—C23—H23 | 120.3 |
C6—N1—C2 | 110.5 (3) | C24—C23—H23 | 120.3 |
C1—N1—C2 | 109.8 (2) | C10—C9—C8 | 122.0 (3) |
C6—N1—H100 | 110 (3) | C10—C9—H9 | 119.0 |
C1—N1—H100 | 105 (3) | C8—C9—H9 | 119.0 |
C2—N1—H100 | 109 (3) | Si2—C14—H14C | 109.5 |
C2—C3—C4 | 112.0 (3) | Si2—C14—H14B | 109.5 |
C2—C3—H3B | 109.2 | H14C—C14—H14B | 109.5 |
C4—C3—H3B | 109.2 | Si2—C14—H14A | 109.5 |
C2—C3—H3A | 109.2 | H14C—C14—H14A | 109.5 |
C4—C3—H3A | 109.2 | H14B—C14—H14A | 109.5 |
H3B—C3—H3A | 107.9 | Si1—C7—H7B | 109.5 |
C18—C17—C16 | 119.4 (4) | Si1—C7—H7C | 109.5 |
C18—C17—H17 | 120.3 | H7B—C7—H7C | 109.5 |
C16—C17—H17 | 120.3 | Si1—C7—H7A | 109.5 |
C13—C8—C9 | 116.9 (3) | H7B—C7—H7A | 109.5 |
C13—C8—Si1 | 121.2 (3) | H7C—C7—H7A | 109.5 |
C9—C8—Si1 | 121.8 (3) | C5—C4—C3 | 109.5 (3) |
C3—C2—N1 | 110.6 (3) | C5—C4—H4A | 109.8 |
C3—C2—H2A | 109.5 | C3—C4—H4A | 109.8 |
N1—C2—H2A | 109.5 | C5—C4—H4B | 109.8 |
C3—C2—H2B | 109.5 | C3—C4—H4B | 109.8 |
N1—C2—H2B | 109.5 | H4A—C4—H4B | 108.2 |
H2A—C2—H2B | 108.1 | C23—C22—C21 | 121.9 (4) |
C15—C16—C17 | 121.5 (4) | C23—C22—H22 | 119.1 |
C15—C16—H16 | 119.3 | C21—C22—H22 | 119.1 |
C17—C16—H16 | 119.3 | C11—C12—C13 | 120.4 (4) |
N1—C6—C5 | 111.4 (3) | C11—C12—H12 | 119.8 |
N1—C6—H6A | 109.3 | C13—C12—H12 | 119.8 |
C5—C6—H6A | 109.3 | C6—C5—C4 | 111.2 (3) |
N1—C6—H6B | 109.3 | C6—C5—H5A | 109.4 |
C5—C6—H6B | 109.3 | C4—C5—H5A | 109.4 |
H6A—C6—H6B | 108.0 | C6—C5—H5B | 109.4 |
N1—C1—Si1 | 119.1 (2) | C4—C5—H5B | 109.4 |
N1—C1—H1A | 107.5 | H5A—C5—H5B | 108.0 |
Si1—C1—H1A | 107.5 | C19—C20—C15 | 121.2 (4) |
N1—C1—H1B | 107.5 | C19—C20—H20 | 119.4 |
Si1—C1—H1B | 107.5 | C15—C20—H20 | 119.4 |
H1A—C1—H1B | 107.0 | C16—C15—C20 | 117.7 (3) |
C12—C11—C10 | 119.9 (4) | C16—C15—Si2 | 121.9 (3) |
C12—C11—H11 | 120.1 | C20—C15—Si2 | 120.3 (3) |
C10—C11—H11 | 120.1 | C8—C13—C12 | 121.1 (4) |
C19—C18—C17 | 121.0 (4) | C8—C13—H13 | 119.4 |
C19—C18—H18 | 119.5 | C12—C13—H13 | 119.4 |
C17—C18—H18 | 119.5 | C24—C25—C26 | 119.1 (4) |
C18—C19—C20 | 119.3 (4) | C24—C25—H25 | 120.4 |
C18—C19—H19 | 120.4 | C26—C25—H25 | 120.4 |
C20—C19—H19 | 120.4 | N1—H100—Cl | 166 (4) |
C11—C10—C9 | 119.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H100···Cl | 1.00 (5) | 2.05 (5) | 3.031 (3) | 166 (4) |
Experimental details
Crystal data | |
Chemical formula | C26H34NSi2+·Cl− |
Mr | 452.19 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 173 |
a, b, c (Å) | 10.120 (2), 13.289 (3), 18.598 (4) |
V (Å3) | 2501.3 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.26 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.926, 0.950 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 45451, 4911, 4808 |
Rint | 0.077 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.149, 1.05 |
No. of reflections | 4911 |
No. of parameters | 277 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.41, −0.34 |
Absolute structure | Flack (1983), 2128 Friedel pairs |
Absolute structure parameter | 0.08 (10) |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Cl—H100 | 2.05 (5) | N1—H100 | 1.00 (5) |
Si1—Si2 | 2.3672 (13) | N1—Cl | 3.031 (3) |
N1—H100—Cl | 166 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H100···Cl | 1.00 (5) | 2.05 (5) | 3.031 (3) | 166 (4) |
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft. CS and VHG also acknowledge the Fonds der Chemischen Industrie and CD thanks the Studienstiftung des Deutschen Volkes for a doctoral scholarship.
References
Bruker (1999). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Colomer, E. & Corriu, R. J. P. (1976). J. Chem. Soc. Chem Commun. 5, 176–177. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993. Web of Science CSD CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lickiss, P. D. & Smith, C. M. (1995). Coord. Chem. Rev. 145, 75–124. CrossRef CAS Google Scholar
Oestreich, M., Auer, G. & Keller, M. (2005). Eur. J. Inorg. Chem. 1, 184–195. Web of Science CSD CrossRef Google Scholar
Omote, M., Tokita, T., Shimizu, Y., Imae, I., Shirakawa, E. & Kawakami, Y. (2000). J. Organomet. Chem. 611, 20–25. Web of Science CrossRef CAS Google Scholar
Sekiguchi, A., Lee, V. Y. & Nanjo, M. (2000). Coord. Chem. Rev. 210, 11–45. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sommer, L. H. & Mason, R. J. (1965). J. Am. Chem. Soc. 87, 1619–1620. CrossRef CAS Web of Science Google Scholar
Strohmann, C. & Däschlein, C. (2008a). Chem. Commun. pp. 2791–2793. Web of Science CSD CrossRef Google Scholar
Strohmann, C. & Däschlein, C. (2008b). Organometallics, 27, 2499–2504. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C., Däschlein, C. & Auer, D. (2006). J. Am. Chem. Soc. 128, 704–705. Web of Science CSD CrossRef PubMed CAS Google Scholar
Strohmann, C., Däschlein, C., Kellert, M. & Auer, D. (2007). Angew. Chem. Int. Ed. 46, 4780–4782. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C., Hörnig, J. & Auer, D. (2002). Chem. Commun. pp. 766–767. Web of Science CSD CrossRef Google Scholar
Strohmann, C., Ulbrich, O. & Auer, D. (2001). Eur. J. Inorg. Chem. pp. 1013–1018. CrossRef Google Scholar
Tamao, K. & Kawachi, A. (1995). Adv. Organomet. Chem. 38, 1–58. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Functionalized lithiosilanes (Strohmann et al., 2001; Strohmann et al., 2006; Strohmann & Däschlein, 2008a,b) are versatile reagents in organic and organometallic chemistry, e.g. for the nucleophilic introduction of protecting groups, the synthesis of silyl-substituted transition metal complexes or for silicon-based polymers (Lickiss & Smith, 1995; Sekiguchi et al., 2000; Tamao & Kawachi, 1995). Especially highly enantiomerically enriched lithiosilanes are of great interest due to the increased stability of configuration at the stereogenic silicon center compared to the labile alkyllithium compounds. Yet, as the synthetic pathways to functionalized lithiosilanes are extremly limited, only six highly enantiomerically enriched systems are known until today (Colomer & Corriu, 1976; Oestreich et al., 2005; Omote et al., 2000; Sommer & Mason, 1965; Strohmann et al., 2002; Strohmann et al., 2007). Thereby the Si-Si bond cleavage of aryl substituted disilanes with lithium proved to be a potential method for the preperation of these useful compounds.
(S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidinomethyl)disilane, (I), is an excellent starting system for the praparation of highly enantiomerically enriched lithiosilanes as it can be synthesised in an e.r. of > 99:1 by means of a racemic resolution with mandelic acid (Strohmann et al., 2002). The reaction with lithium metal results in the selective Si-Si bond cleavage and thus offers a synthetic pathway to highly enantiomerically enriched silicon-chiral di-, tri- and tetrasilanes (Strohmann et al., 2007) and -germanes (Strohmann & Däschlein, 2008b).
Treatment of (I) with HCl yields the title compound, (II), (S)-1,2-Dimethyl-1,1,2-triphenyl-1-(piperidiniummethyl)disilane chloride, as a crystalline solid. The determination of the absolute configuration of the stereogenic silicon center gave the same absolute configuration as the mandelic acid adduct published previously (Strohmann et al., 2002).
The asymmetric unit of (II) contains one molecule of the silicon-chiral disilane. Furthermore, hydrogen bonding between the hydrogen atom of the protonated nitrogen of the piperidino group and the chloride counteranion can be found (Fig. 1). The H···Cl distance (2.05 Å) and the N-H-Cl angle (166.1 °) are in the typical ranges of such hydrogen bonds (Farrugia et al., 2001). With a value of 2.3672 (13) Å, the Si-Si bond length is comparable to other known systems and is slightly larger than the sum of the covalent radii of two silicon atoms (2.33 Å). The silicon-carbon and carbon-nitrogen distances, respectively, are also in the same ranges as in previously published systems. Thereby, the longest silicon-carbon distance can be found between Si1 and C1. Due to the positive charge at the nitrogen in beta-position to Si1, the bond length to C1 is increased to 1.910 (3) Å. The other five Si-C(X) bonds (X = 7, 8, 14, 15, 21) have values between 1.873 (4) and 1.884 (4) Å (average: 1.881 Å) and thus are significantly smaller than the Si1-C1 distance but in very good agreement with the sum of the covalent radii of silicon and carbon (1.88 Å). Considering the Si1-Si2-axis, it is noteworthy to mention that the substituents at the silicon atoms do possess an almost ecliptical arrangement and therefore do not adopt the sterically less hindered staggered conformation.