inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages i69-i70

A second polymorph with composition Co3(PO4)2·H2O

aDepartment of Chemistry, Kyungpook National University, Daegu, 702-701, Republic of Korea, bCentre for Heavy Metals Research, School of Chemistry, F11, University of Sydney, New South Wales 2006, Australia, cARC Centre of Excellence for Functional Nanomaterials, AIBN, University of Queensland, Brisbane, Queensland 4072, Australia, and dDepartment of Chemistry and Advanced Materials, Kosin University, 149-1 Dongsam-dong, Yeongdo-gu, Busan 606-701, Republic of Korea
*Correspondence e-mail: ykim@kosin.ac.kr

(Received 29 August 2008; accepted 4 September 2008; online 13 September 2008)

Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement.

Related literature

Besides crystals of the title compound, crystals of the related phase Co3(PO4)2·4H2O (Lee et al., 2008[Lee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i67-i68.]) were also obtained under hydro­thermal conditions. For a review of metal complexes of organophosphate esters and open-framework metal phosphates, see: Murugavel et al. (2008[Murugavel, R., Choudhury, A., Walawalkar, M. G., Pothiraja, R. & Rao, C. N. R. (2008). Chem. Rev. 10. doi: 10.1021/cr000119q.]). For different cobalt(II) phosphates, see: Mellor (1935[Mellor, J. W. (1935). Comprehensive Treatise on Inorganic Theoretical Chemistry, Vol. XIV, p. 852. London: Longmans, Green Co.]). The first polymorph of composition Co3(PO4)2·H2O was reported by Anderson et al. (1976[Anderson, J., Kostiner, E. & Ruszala, F. A. (1976). Inorg. Chem. 15, 2744-2748.]), and the crystal structure of the isotypic Zn analogue Zn3(PO4)2·H2O was described by Riou et al. (1986[Riou, A., Cudennec, Y. & Gerault, Y. (1986). Rev. Chim. Minéral. 23, 810-818.]).

Experimental

Crystal data
  • Co3(PO4)2·H2O

  • Mr = 384.75

  • Monoclinic, P 21 /c

  • a = 8.7038 (15) Å

  • b = 4.8667 (9) Å

  • c = 16.705 (3) Å

  • β = 95.670 (3)°

  • V = 704.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.47 mm−1

  • T = 150 (2) K

  • 0.46 × 0.14 × 0.08 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.247, Tmax = 0.554

  • 6569 measured reflections

  • 1697 independent reflections

  • 1603 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.095

  • S = 1.07

  • 1697 reflections

  • 133 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −1.39 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 1.897 (3)
Co1—O4 1.941 (3)
Co1—O2 1.992 (3)
Co1—O1 2.002 (3)
Co2—O9 1.887 (3)
Co2—O5 1.949 (3)
Co2—O1 1.986 (3)
Co2—O2i 2.054 (3)
Co3—O6 2.019 (3)
Co3—O7 2.061 (3)
Co3—O8 2.065 (3)
Co3—O8ii 2.075 (3)
Co3—O5iii 2.108 (3)
Co3—O3iv 2.416 (3)
P1—O6 1.513 (3)
P1—O4i 1.534 (3)
P1—O2v 1.560 (3)
P1—O1 1.561 (3)
P2—O9 1.511 (3)
P2—O8vi 1.544 (3)
P2—O3vii 1.549 (3)
P2—O5vi 1.565 (3)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) x+1, y, z; (v) -x+1, -y+1, -z+2; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2⋯O6iii 0.90 (3) 1.86 (4) 2.753 (4) 170 (5)
O7—H1⋯O4viii 0.903 (10) 1.864 (15) 2.758 (4) 171 (5)
Symmetry codes: (iii) x, y+1, z; (viii) x+1, y+1, z.

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), WebLab ViewerPro (Molecular Simulations, 2000[Molecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.]) and POV-RAY (Cason, 2002[Cason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.]).; software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Synthesis and structural investigations of transition-metal phosphates under various conditions, including high temperature and high pressure, have been investigated for many years (Murugavel et al., 2008). This is not only because of the multifarious structural chemistry, but also due to many potential applications. For a listing of reviews on these materials, see Lee et al. (2008). We are currently investigating the synthesis of a variety of similar functional materials through templation effects under hydrothermal conditions. The title compound, Co3(PO4)2.H2O, (I), and the related compound Co3(PO4)2.4H2O (Lee et al., 2008) were synthesized as a part of these studies.

In the past, many different cobalt(II) orthophosphates have been described, ranging from the anhydrous form Co3(PO4)2 to its corresponding octahydrate (Mellor, 1935). In 1976 Anderson et al. reported a first polymorph of Co3(PO4)2.H2O formed under high pressure conditions. The second polymorph of Co3(PO4)2.H2O presented here has a different unit cell and a considerably different cell volume (638.3 (Anderson et al., 1976) versus 704.1 Å3 (this study)) and exhibits also a different assembly of the structural building units. The second polymorph (I) is isotypic with its Zn analogue Zn3(PO4)2.H2O (Riou et al., 1986).

The structure of (I) contains three different Co2+ centres bridged by orthophosphate anions (Fig 1). The coordination spheres of Co1 and Co2 are distorted tetrahedral while that of Co3 is distorted octahedral, with one considerably longer Co—O bond of 2.416 (3) Å (Table 1). Co1 and Co2 are bonded to the O atoms of four phosphate ligands, whereas Co3 is bonded to five O atoms of four phosphate ligands (one bidentate) and the sixth coordination site is occupied by a water molecule. This assembly leads to the formation of a three-dimensional framework (Fig. 2), which is stabilized by additional O—H···O hydrogen bonds (Table 2).

Related literature top

Besides crystals of the title compound, crystals of the related phase Co3(PO4)2.4H2O (Lee et al., 2008) were also obtained under hydrothermal conditions. For a review of metal complexes of organophosphate esters and open-framework metal phosphates, see: Murugavel et al. (2008). For different cobalt(II) phosphates, see: Mellor (1935). The first polymorph of composition Co3(PO4)2.H2O was reported by Anderson et al. (1976), and the crystal structure of the isotypic Zn analogue Zn3(PO4)2.H2O was described by Riou et al. (1986).

Experimental top

Conditions of the hydrothermal single crystal growth of the hydrous cobalt(II) orthophosphates Co3(PO4)2.H2O and Co3(PO4)2.4 H2O were described in detail in a preceding communication (Lee et al., 2008).

Refinement top

Water H atoms were located in difference Fourier maps and were refined with Uiso(H) values fixed at 1.5Ueq of the parent O atoms. O—H bond length restraints of 0.89 (1) Å were also employed. The highest peak and the deepest hole in the final Fourier map are located 1.74 Å from O1 and 0.20 Å from P1, respectively.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), WebLab ViewerPro (Molecular Simulations, 2000) and POV-RAY (Cason, 2002).; software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), drawn with displacement parameters at the 50% probability level. H atoms are given as spheres of arbitrary radius.
[Figure 2] Fig. 2. A schematic representation of a section of the three-dimensional network of (I) in a projection along [010]. Hydrogen atoms are omitted for clarity.
tricobalt(II) bis[orthophosphate(V)] monohydrate top
Crystal data top
Co3(PO4)2·H2OF(000) = 740
Mr = 384.75Dx = 3.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4684 reflections
a = 8.7038 (15) Åθ = 2.5–28.4°
b = 4.8667 (9) ŵ = 7.47 mm1
c = 16.705 (3) ÅT = 150 K
β = 95.670 (3)°Plate, purple
V = 704.1 (2) Å30.46 × 0.14 × 0.08 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD
diffractometer
1697 independent reflections
Radiation source: sealed tube1603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.4°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1111
Tmin = 0.247, Tmax = 0.554k = 66
6569 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0597P)2 + 3.2629P]
where P = (Fo2 + 2Fc2)/3
1697 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.74 e Å3
2 restraintsΔρmin = 1.39 e Å3
Crystal data top
Co3(PO4)2·H2OV = 704.1 (2) Å3
Mr = 384.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7038 (15) ŵ = 7.47 mm1
b = 4.8667 (9) ÅT = 150 K
c = 16.705 (3) Å0.46 × 0.14 × 0.08 mm
β = 95.670 (3)°
Data collection top
Siemens SMART 1000 CCD
diffractometer
1697 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
1603 reflections with I > 2σ(I)
Tmin = 0.247, Tmax = 0.554Rint = 0.026
6569 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.74 e Å3
1697 reflectionsΔρmin = 1.39 e Å3
133 parameters
Special details top

Experimental. The crystal was coated in Exxon Paratone N hydrocarbon oil and mounted on a thin mohair fibre attached to a copper pin. Upon mounting on the diffractometer, the crystal was quenched to 150(K) under a cold nitrogen gas stream supplied by an Oxford Cryosystems Cryostream.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.32855 (5)0.20270 (9)0.94291 (3)0.00253 (14)
Co20.56640 (5)0.20252 (9)0.84576 (3)0.00303 (15)
Co30.92910 (6)0.49852 (10)0.82254 (3)0.00814 (16)
P10.68190 (11)0.29320 (19)0.94510 (6)0.0086 (2)
P20.23599 (11)0.51187 (19)0.78087 (6)0.0087 (2)
O10.5357 (3)0.1481 (6)0.90286 (17)0.0114 (5)
O20.3621 (3)0.3976 (6)1.04804 (16)0.0106 (5)
O30.1907 (3)0.3427 (6)0.85760 (17)0.0119 (5)
O40.2836 (3)0.1747 (6)0.96996 (17)0.0121 (6)
O50.7445 (3)0.2368 (6)0.78428 (17)0.0116 (5)
O60.8153 (3)0.2545 (6)0.89463 (17)0.0120 (5)
O70.9749 (4)0.7679 (6)0.91711 (18)0.0137 (6)
O80.9060 (3)0.1703 (6)0.74391 (17)0.0108 (5)
O90.3852 (3)0.3512 (6)0.79103 (18)0.0148 (6)
H11.0769 (18)0.797 (12)0.929 (3)0.022*
H20.933 (6)0.936 (5)0.909 (3)0.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0013 (2)0.0038 (2)0.0025 (2)0.00007 (15)0.00013 (17)0.00053 (15)
Co20.0006 (2)0.0045 (3)0.0040 (2)0.00041 (15)0.00015 (17)0.00098 (15)
Co30.0077 (3)0.0083 (3)0.0088 (3)0.00123 (17)0.00306 (19)0.00064 (17)
P10.0070 (5)0.0090 (5)0.0098 (5)0.0004 (3)0.0014 (3)0.0002 (3)
P20.0067 (5)0.0103 (4)0.0091 (4)0.0003 (3)0.0008 (3)0.0001 (3)
O10.0101 (13)0.0112 (12)0.0129 (13)0.0009 (10)0.0004 (10)0.0005 (10)
O20.0114 (13)0.0106 (13)0.0099 (13)0.0026 (10)0.0011 (10)0.0003 (10)
O30.0121 (13)0.0133 (13)0.0102 (13)0.0003 (11)0.0007 (11)0.0014 (10)
O40.0135 (14)0.0116 (13)0.0110 (13)0.0005 (10)0.0004 (11)0.0009 (10)
O50.0108 (14)0.0131 (12)0.0114 (13)0.0007 (10)0.0041 (10)0.0008 (10)
O60.0106 (14)0.0132 (12)0.0127 (13)0.0009 (11)0.0035 (11)0.0007 (10)
O70.0110 (14)0.0132 (13)0.0164 (14)0.0012 (11)0.0014 (11)0.0015 (11)
O80.0075 (13)0.0122 (13)0.0131 (13)0.0006 (10)0.0026 (10)0.0022 (10)
O90.0109 (14)0.0163 (13)0.0171 (14)0.0033 (11)0.0012 (11)0.0011 (11)
Geometric parameters (Å, º) top
Co1—O31.897 (3)Co3—O3iv2.416 (3)
Co1—O41.941 (3)Co3—P2v2.8266 (12)
Co1—O21.992 (3)P1—O61.513 (3)
Co1—O12.002 (3)P1—O4i1.534 (3)
Co2—O91.887 (3)P1—O2vi1.560 (3)
Co2—O51.949 (3)P1—O11.561 (3)
Co2—O11.986 (3)P2—O91.511 (3)
Co2—O2i2.054 (3)P2—O8vii1.544 (3)
Co3—O62.019 (3)P2—O3viii1.549 (3)
Co3—O72.061 (3)P2—O5vii1.565 (3)
Co3—O82.065 (3)P2—Co3ix2.8266 (12)
Co3—O8ii2.075 (3)O7—H10.903 (10)
Co3—O5iii2.108 (3)O7—H20.90 (3)
O3—Co1—O4112.81 (13)O4i—P1—O2vi108.77 (15)
O3—Co1—O2121.22 (12)O6—P1—O1109.15 (16)
O4—Co1—O2105.11 (12)O4i—P1—O1108.94 (16)
O3—Co1—O1108.70 (12)O2vi—P1—O1105.94 (16)
O4—Co1—O199.28 (12)O9—P2—O8vii112.91 (17)
O2—Co1—O1107.42 (12)O9—P2—O3viii115.46 (17)
O9—Co2—O5112.44 (13)O8vii—P2—O3viii102.81 (16)
O9—Co2—O1114.62 (13)O9—P2—O5vii106.80 (16)
O5—Co2—O1118.58 (12)O8vii—P2—O5vii110.75 (16)
O9—Co2—O2i114.12 (12)O3viii—P2—O5vii108.04 (16)
O5—Co2—O2i103.10 (12)O9—P2—Co3ix141.79 (13)
O1—Co2—O2i91.48 (11)O8vii—P2—Co3ix45.96 (10)
O6—Co3—O789.20 (12)O3viii—P2—Co3ix58.69 (11)
O6—Co3—O884.37 (11)O5vii—P2—Co3ix110.73 (12)
O7—Co3—O8168.15 (12)P1—O1—Co2117.61 (16)
O6—Co3—O8ii164.15 (12)P1—O1—Co1120.63 (16)
O7—Co3—O8ii93.56 (12)Co2—O1—Co1116.29 (14)
O8—Co3—O8ii90.02 (7)P1vi—O2—Co1120.56 (16)
O6—Co3—O5iii97.82 (11)P1vi—O2—Co2i115.98 (15)
O7—Co3—O5iii85.85 (12)Co1—O2—Co2i123.17 (15)
O8—Co3—O5iii104.85 (11)P2iii—O3—Co1126.29 (18)
O8ii—Co3—O5iii97.95 (11)P1i—O4—Co1123.07 (17)
O6—Co3—O3iv100.18 (11)P2x—O5—Co2116.94 (17)
O7—Co3—O3iv84.70 (11)P2x—O5—Co3viii120.43 (16)
O8—Co3—O3iv86.65 (10)Co2—O5—Co3viii120.96 (14)
O8ii—Co3—O3iv64.61 (10)P1—O6—Co3135.08 (18)
O5iii—Co3—O3iv159.51 (11)Co3—O7—H1113 (4)
O6—Co3—P2v131.88 (9)Co3—O7—H2115 (4)
O7—Co3—P2v94.83 (9)H1—O7—H2105 (5)
O8—Co3—P2v82.21 (8)P2x—O8—Co3129.77 (16)
O8ii—Co3—P2v32.34 (8)P2x—O8—Co3xi101.70 (14)
O5iii—Co3—P2v130.28 (8)Co3—O8—Co3xi128.53 (14)
O6—P1—O4i112.20 (17)P2—O9—Co2157.0 (2)
O6—P1—O2vi111.63 (16)
O6—P1—O1—Co236.4 (2)O1—Co2—O5—P2x54.5 (2)
O4i—P1—O1—Co286.41 (19)O2i—Co2—O5—P2x153.51 (18)
O2vi—P1—O1—Co2156.73 (16)O9—Co2—O5—Co3viii111.58 (17)
O6—P1—O1—Co1170.63 (17)O1—Co2—O5—Co3viii110.83 (17)
O4i—P1—O1—Co166.5 (2)O2i—Co2—O5—Co3viii11.79 (18)
O2vi—P1—O1—Co150.3 (2)O4i—P1—O6—Co3132.6 (2)
O9—Co2—O1—P1176.28 (16)O2vi—P1—O6—Co310.2 (3)
O5—Co2—O1—P139.6 (2)O1—P1—O6—Co3106.6 (3)
O2i—Co2—O1—P166.23 (18)O7—Co3—O6—P155.9 (3)
O9—Co2—O1—Co129.6 (2)O8—Co3—O6—P1134.0 (3)
O5—Co2—O1—Co1166.29 (13)O8ii—Co3—O6—P1156.2 (3)
O2i—Co2—O1—Co187.91 (15)O5iii—Co3—O6—P129.8 (3)
O3—Co1—O1—P1122.72 (19)P2v—Co3—O6—P1151.72 (19)
O4—Co1—O1—P1119.25 (19)O6—Co3—O8—P2x44.9 (2)
O2—Co1—O1—P110.1 (2)O7—Co3—O8—P2x102.3 (6)
O3—Co1—O1—Co283.97 (17)O8ii—Co3—O8—P2x150.0 (2)
O4—Co1—O1—Co234.06 (16)O5iii—Co3—O8—P2x51.7 (2)
O2—Co1—O1—Co2143.21 (14)P2v—Co3—O8—P2x178.6 (2)
O3—Co1—O2—P1vi18.9 (2)O6—Co3—O8—Co3xi134.86 (19)
O4—Co1—O2—P1vi148.23 (18)O7—Co3—O8—Co3xi77.4 (6)
O1—Co1—O2—P1vi106.71 (19)O8ii—Co3—O8—Co3xi30.29 (16)
O3—Co1—O2—Co2i154.62 (15)O5iii—Co3—O8—Co3xi128.52 (17)
O4—Co1—O2—Co2i25.34 (19)P2v—Co3—O8—Co3xi1.19 (16)
O1—Co1—O2—Co2i79.72 (18)O8vii—P2—O9—Co2116.3 (5)
O4—Co1—O3—P2iii129.2 (2)O3viii—P2—O9—Co21.5 (6)
O2—Co1—O3—P2iii105.0 (2)O5vii—P2—O9—Co2121.7 (5)
O1—Co1—O3—P2iii20.1 (2)Co3ix—P2—O9—Co269.4 (6)
O3—Co1—O4—P1i150.21 (19)O5—Co2—O9—P2137.1 (5)
O2—Co1—O4—P1i16.1 (2)O1—Co2—O9—P283.5 (6)
O1—Co1—O4—P1i94.9 (2)O2i—Co2—O9—P220.1 (6)
O9—Co2—O5—P2x83.1 (2)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+2; (vii) x+1, y1/2, z+3/2; (viii) x, y1, z; (ix) x1, y1, z; (x) x+1, y+1/2, z+3/2; (xi) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2···O6iii0.90 (3)1.86 (4)2.753 (4)170 (5)
O7—H1···O4v0.90 (1)1.86 (2)2.758 (4)171 (5)
Symmetry codes: (iii) x, y+1, z; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaCo3(PO4)2·H2O
Mr384.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)8.7038 (15), 4.8667 (9), 16.705 (3)
β (°) 95.670 (3)
V3)704.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.47
Crystal size (mm)0.46 × 0.14 × 0.08
Data collection
DiffractometerSiemens SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.247, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
6569, 1697, 1603
Rint0.026
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.095, 1.07
No. of reflections1697
No. of parameters133
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 1.39

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and XPREP (Siemens, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WebLab ViewerPro (Molecular Simulations, 2000) and POV-RAY (Cason, 2002)., enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Co1—O31.897 (3)Co3—O8ii2.075 (3)
Co1—O41.941 (3)Co3—O5iii2.108 (3)
Co1—O21.992 (3)Co3—O3iv2.416 (3)
Co1—O12.002 (3)P1—O61.513 (3)
Co2—O91.887 (3)P1—O4i1.534 (3)
Co2—O51.949 (3)P1—O2v1.560 (3)
Co2—O11.986 (3)P1—O11.561 (3)
Co2—O2i2.054 (3)P2—O91.511 (3)
Co3—O62.019 (3)P2—O8vi1.544 (3)
Co3—O72.061 (3)P2—O3vii1.549 (3)
Co3—O82.065 (3)P2—O5vi1.565 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z+2; (vi) x+1, y1/2, z+3/2; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H2···O6iii0.90 (3)1.86 (4)2.753 (4)170 (5)
O7—H1···O4viii0.903 (10)1.864 (15)2.758 (4)171 (5)
Symmetry codes: (iii) x, y+1, z; (viii) x+1, y+1, z.
 

Acknowledgements

We gratefully acknowledge the Brain Korea 21 programme and the Australian Research Council for support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, J., Kostiner, E. & Ruszala, F. A. (1976). Inorg. Chem. 15, 2744–2748.  CrossRef CAS Web of Science Google Scholar
First citationCason, C. J. (2002). POV-RAY. Hallam Oaks Pty Ltd, Williamstown, Victoria, Australia.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i67–i68.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMellor, J. W. (1935). Comprehensive Treatise on Inorganic Theoretical Chemistry, Vol. XIV, p. 852. London: Longmans, Green Co.  Google Scholar
First citationMolecular Simulations (2000). WebLab ViewerPro. Accelrys Software Inc., San Diego, California, USA.  Google Scholar
First citationMurugavel, R., Choudhury, A., Walawalkar, M. G., Pothiraja, R. & Rao, C. N. R. (2008). Chem. Rev. 10. doi: 10.1021/cr000119q.  Google Scholar
First citationRiou, A., Cudennec, Y. & Gerault, Y. (1986). Rev. Chim. Minéral. 23, 810–818.  CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 10| October 2008| Pages i69-i70
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds