organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,3R)-3-Ammonio­cyclo­hexa­ne­carboxyl­ate

aExperimental Chemistry Center, Nanchang University, Nanchang 330031, People's Republic of China, and bJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: huyu@ncu.edu.cn

(Received 25 August 2008; accepted 3 September 2008; online 13 September 2008)

The title γ-amino­butyric acid, C7H13NO2, exists as a zwitterion. The crystal structure is stabilized by a network of inter­molecular N—H⋯O hydrogen bonds, forming a two-dimensional bilayer. An inter­molecular C—H⋯O hydrogen bond is also observed.

Related literature

For related literature, see: Allan et al. (1981[Allan, R. D., Johnston, G. A. R. & Twitchin, B. (1981). Aust. J. Chem. 34, 2231-2236.]); Ávila et al. (2004[Ávila, E. E., Mora, A. J., Delgado, G. E., Ramírez, B. M., Bahsas, A. & Koteich, S. (2004). Acta Cryst. C60, o759-o761.]); Fábián et al. (2005[Fábián, L., Kálmán, A., Argay, G., Bernáth, G. & Gyarmati, Z. Cs. (2005). Cryst. Growth Des. 5, 773-782.]); Granja (2004[Granja, J. R. (2004). Intl Patent WO 2 004 052 916.]); Hu et al. (2006[Hu, Y., Yu, S. L., Yang, Y. J., Zhu, J. & Deng, J. G. (2006). Chin. J. Chem. 24, 795-799.]); Schousboe (2000[Schousboe, A. (2000). Neurochem. Res. 25, 1241-1244.]).

[Scheme 1]

Experimental

Crystal data
  • C7H13NO2

  • Mr = 143.18

  • Orthorhombic, P 21 21 21

  • a = 5.5130 (10) Å

  • b = 6.1282 (9) Å

  • c = 22.518 (4) Å

  • V = 760.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.48 × 0.38 × 0.30 mm

Data collection
  • Bruker SMART 1K area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.973

  • 1150 measured reflections

  • 1107 independent reflections

  • 891 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.093

  • S = 0.97

  • 1107 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1i 0.89 1.84 2.725 (2) 172
N1—H1D⋯O2ii 0.89 2.00 2.849 (2) 160
N1—H1E⋯O1iii 0.89 1.89 2.772 (2) 170
C6—H6⋯O2iv 0.98 2.55 3.472 (2) 156
Symmetry codes: (i) x, y+1, z; (ii) x-1, y+1, z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) x-1, y, z.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The importance of the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), in certain neurological and psychiatric disorders has become generally accepted (Schousboe et al., 2000). As an analogue of GABA, 3-aminocyclohexanecarboxylic acid has been investigated in structure–activity studies of conformationally restricted analogues (Allan et al., 1981). From another point of view, self-assembling peptide nanotubes, which contain 3-aminocyclohexanecarboxylic acid, have structural and functional properties that may be suitable for various applications in biology and material science (Granja, 2004). The structure of 1S,3R-3-aminocyclohexanecarboxylic acid was elucidated by spectroscopic analysis. Here we report its crystal structure.

The X-ray crystallographic study confirms the molecular structure previously proposed on the basis of spectroscopic data. The title compound exists as a zwitterion, containing an ammonium group and a carboxylate group (Fig. 1) and amino acid units are linked, in a head-to-tail fashion, by hydrogen bonds (Fig. 2 and Table 1); this is very often observed in the crystal structures of amino acids (Ávila et al., 2004; Fábián et al., 2005). The hydrogen bonds result in a two-dimensional bilayer structure parallel to the bc plane (Fig. 3).

Related literature top

For related literature, see: Allan et al. (1981); Ávila et al. (2004); Fábián et al. (2005); Granja (2004); Hu et al. (2006); Schousboe (2000).

Experimental top

1S,3R-3-amino-cyclohexanecarboxylic acid was synthesized and resolved from 3-cyclohexenecarboxylic acid (Hu et al., 2006). Its identity was confirmed by NMR and HRMS. 1H NMR in D2O (300 MHz): 3.19–3.26 (m, 1H), 2.16–2.28 (m, 2H), 1.89–2.03 (m, 3H), 1.27–1.50 (m, 4H). 13C NMR in D2O (75 MHz): 183.96, 49.91, 45.02, 33.55, 29.89, 28.48, 23.30 HRMS calcd for C7H12NO2 142.0863, found 142.0859. Single crystals suitable for X-ray diffraction analysis were obtained by the slow diffusion of acetone into an aqueous solution of the title compound.

Refinement top

Carbon-bound H atoms were positioned geometrically and were treated as riding on their parent atoms, with C—H distances in the range 0.97–0.98 Å, with Uiso(H) = 1.2 times Ueq of the parent atom. H atoms attached to N1 were located in difference Fourier maps and refined initially with distance restraints of 0.89 Å. They were then repositioned geometrically and refined as riding, with N—H = 0.89 Å and with Uiso(H) = 1.5 times Ueq(N). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with anisotropic displacement parameters drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen-bonded molecular strands (dashed lines). The strands are aligned parallel to the crystallographic b axis. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes: (*) x-1,1 + y,z; (**) x,y-1,z; (#)x,1 + y,z; (##) 2 + x,y-1,z; ($)x-1/2,1/2 - y,-z; ($$) 1/2 + x,1/2 - y,-z
[Figure 3] Fig. 3. A crystal packing diagram, viewed down the a axis, showing the layer architecture.
(1S,3R)-3-Ammoniocyclohexanecarboxylate top
Crystal data top
C7H13NO2F(000) = 312
Mr = 143.18Dx = 1.250 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 31 reflections
a = 5.513 (1) Åθ = 4.9–13.6°
b = 6.1282 (9) ŵ = 0.09 mm1
c = 22.518 (4) ÅT = 293 K
V = 760.8 (2) Å3Block, colourless
Z = 40.48 × 0.38 × 0.30 mm
Data collection top
Bruker SMART 1K area-detector
diffractometer
1107 independent reflections
Radiation source: fine-focus sealed tube891 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 07
Tmin = 0.958, Tmax = 0.973k = 08
1150 measured reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.057P)2]
where P = (Fo2 + 2Fc2)/3
1107 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C7H13NO2V = 760.8 (2) Å3
Mr = 143.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.513 (1) ŵ = 0.09 mm1
b = 6.1282 (9) ÅT = 293 K
c = 22.518 (4) Å0.48 × 0.38 × 0.30 mm
Data collection top
Bruker SMART 1K area-detector
diffractometer
1107 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
891 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.973Rint = 0.013
1150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.97Δρmax = 0.15 e Å3
1107 reflectionsΔρmin = 0.20 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2478 (4)0.3817 (3)0.08035 (7)0.0282 (4)
H1A0.39250.46960.07500.034*
H1B0.20110.32370.04190.034*
C20.0440 (3)0.5232 (3)0.10484 (8)0.0262 (4)
H20.10340.43460.10770.031*
C30.1066 (4)0.6102 (3)0.16649 (8)0.0339 (5)
H3A0.24660.70550.16390.041*
H3B0.02850.69460.18180.041*
C40.1614 (4)0.4219 (3)0.20854 (8)0.0369 (5)
H4A0.20690.47960.24710.044*
H4B0.01660.33400.21370.044*
C50.3656 (4)0.2795 (3)0.18478 (8)0.0347 (5)
H5A0.39260.15800.21160.042*
H5B0.51410.36410.18270.042*
C60.3023 (3)0.1930 (3)0.12313 (7)0.0265 (4)
H60.15260.10800.12710.032*
C70.4929 (3)0.0418 (3)0.09604 (9)0.0303 (4)
N10.0035 (3)0.7099 (2)0.06373 (6)0.0293 (4)
H1C0.12900.79230.06100.044*
H1D0.12560.78970.07780.044*
H1E0.04220.65880.02800.044*
O10.4251 (3)0.0725 (2)0.05224 (6)0.0405 (4)
O20.6983 (3)0.0343 (3)0.11737 (8)0.0611 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (10)0.0277 (9)0.0249 (8)0.0087 (9)0.0012 (7)0.0031 (7)
C20.0268 (9)0.0234 (8)0.0285 (8)0.0039 (8)0.0018 (8)0.0017 (7)
C30.0454 (12)0.0292 (9)0.0271 (9)0.0112 (10)0.0044 (9)0.0050 (8)
C40.0503 (12)0.0357 (10)0.0247 (8)0.0060 (11)0.0034 (9)0.0002 (9)
C50.0402 (11)0.0347 (10)0.0291 (9)0.0074 (10)0.0035 (9)0.0004 (9)
C60.0239 (9)0.0228 (8)0.0329 (9)0.0036 (8)0.0014 (8)0.0014 (8)
C70.0300 (9)0.0212 (8)0.0397 (10)0.0031 (9)0.0059 (9)0.0012 (9)
N10.0322 (8)0.0287 (7)0.0271 (7)0.0101 (8)0.0014 (7)0.0030 (7)
O10.0442 (8)0.0393 (8)0.0379 (8)0.0026 (8)0.0110 (6)0.0114 (7)
O20.0320 (8)0.0617 (11)0.0896 (13)0.0192 (9)0.0095 (8)0.0294 (11)
Geometric parameters (Å, º) top
C1—C21.523 (2)C4—H4B0.9700
C1—C61.535 (2)C5—C61.526 (2)
C1—H1A0.9700C5—H5A0.9700
C1—H1B0.9700C5—H5B0.9700
C2—N11.495 (2)C6—C71.528 (2)
C2—C31.527 (2)C6—H60.9800
C2—H20.9800C7—O21.231 (2)
C3—C41.523 (3)C7—O11.266 (2)
C3—H3A0.9700N1—H1C0.8900
C3—H3B0.9700N1—H1D0.8900
C4—C51.522 (3)N1—H1E0.8900
C4—H4A0.9700
C2—C1—C6110.26 (14)H4A—C4—H4B108.0
C2—C1—H1A109.6C4—C5—C6110.48 (16)
C6—C1—H1A109.6C4—C5—H5A109.6
C2—C1—H1B109.6C6—C5—H5A109.6
C6—C1—H1B109.6C4—C5—H5B109.6
H1A—C1—H1B108.1C6—C5—H5B109.6
N1—C2—C1109.94 (14)H5A—C5—H5B108.1
N1—C2—C3109.61 (14)C5—C6—C7114.62 (15)
C1—C2—C3111.20 (15)C5—C6—C1110.72 (15)
N1—C2—H2108.7C7—C6—C1109.93 (14)
C1—C2—H2108.7C5—C6—H6107.1
C3—C2—H2108.7C7—C6—H6107.1
C4—C3—C2110.22 (15)C1—C6—H6107.1
C4—C3—H3A109.6O2—C7—O1123.73 (19)
C2—C3—H3A109.6O2—C7—C6119.95 (18)
C4—C3—H3B109.6O1—C7—C6116.32 (17)
C2—C3—H3B109.6C2—N1—H1C109.5
H3A—C3—H3B108.1C2—N1—H1D109.5
C5—C4—C3111.27 (15)H1C—N1—H1D109.5
C5—C4—H4A109.4C2—N1—H1E109.5
C3—C4—H4A109.4H1C—N1—H1E109.5
C5—C4—H4B109.4H1D—N1—H1E109.5
C3—C4—H4B109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.891.842.725 (2)172
N1—H1D···O2ii0.892.002.849 (2)160
N1—H1E···O1iii0.891.892.772 (2)170
C6—H6···O2iv0.982.553.472 (2)156
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x1/2, y+1/2, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H13NO2
Mr143.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.513 (1), 6.1282 (9), 22.518 (4)
V3)760.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.38 × 0.30
Data collection
DiffractometerBruker SMART 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.958, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
1150, 1107, 891
Rint0.013
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.093, 0.97
No. of reflections1107
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.891.842.725 (2)172.0
N1—H1D···O2ii0.892.002.849 (2)159.9
N1—H1E···O1iii0.891.892.772 (2)170.3
C6—H6···O2iv0.982.553.472 (2)155.7
Symmetry codes: (i) x, y+1, z; (ii) x1, y+1, z; (iii) x1/2, y+1/2, z; (iv) x1, y, z.
 

Acknowledgements

This work was supported by the Science Fund of the Education Office of Jiangxi, China [(2007)279].

References

First citationAllan, R. D., Johnston, G. A. R. & Twitchin, B. (1981). Aust. J. Chem. 34, 2231–2236.  CrossRef CAS Google Scholar
First citationÁvila, E. E., Mora, A. J., Delgado, G. E., Ramírez, B. M., Bahsas, A. & Koteich, S. (2004). Acta Cryst. C60, o759–o761.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationFábián, L., Kálmán, A., Argay, G., Bernáth, G. & Gyarmati, Z. Cs. (2005). Cryst. Growth Des. 5, 773–782.  Google Scholar
First citationGranja, J. R. (2004). Intl Patent WO 2 004 052 916.  Google Scholar
First citationHu, Y., Yu, S. L., Yang, Y. J., Zhu, J. & Deng, J. G. (2006). Chin. J. Chem. 24, 795–799.  Web of Science CrossRef CAS Google Scholar
First citationSchousboe, A. (2000). Neurochem. Res. 25, 1241–1244.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds