metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-4-methyl-1,3-thia­zole-κN3)di­chloridocadmium(II)

aDepartment of Chemistry, Shangrao Normal University, Shangrao 334001, People's Republic of China, and bKey Laboratory of Medicinal Chemical Resources and Molecular Engineering, Department of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China
*Correspondence e-mail: ljzhang@sru.jx.cn

(Received 16 August 2008; accepted 31 August 2008; online 6 September 2008)

In the title compound, [CdCl2(C4H6N2S)2], the CdII atom is coordinated by two chlorido ligands and two N atoms of the 2-amino-5-methyl-1,3-thia­zole (amtz) ligands in a slightly distorted tetra­hedral coordination geometry. Intra- and inter­molecular N—H⋯Cl hydrogen bonding stabilizes the crystal structure. A weak S⋯Cl inter­action [3.533 (2) Å] is observed between neighboring mol­ecules.

Related literature

For general background, see: Bolos et al. (1999[Bolos, C. A., Fanourgakis, P. V., Christidis, P. C. & Nikolov, G. S. (1999). Polyhedron, 18, 1661-1668.]); Miodragović et al. (2006[Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M.-D., Novaković, S. B., Kaluderović, G. N. & Kozłowski, H. (2006). J. Inorg. Biochem. 100, 1568-1574.]); Cini et al. (2007[Cini, R., Tamasi, G., Defazio, S. & Hursthouse, M. B. (2007). J. Inorg. Biochem. 101, 1140-1152.]); Dea et al. (2008[Dea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.]); Shen et al. (2008[Shen, L., Zhang, Y., Wang, A., Sieber-McMaster, E., Chen, X., Pelton, P., Xu, J. Z., Yang, M., Zhu, P., Zhou, L., Reuman, M., Hu, Z., Russell, R., Gibbs, A. C., Ross, H., Demarest, K., Murray, W. V. & Kuo, G.-H. (2008). Bioorg. Med. Chem. 16, 3321-3341.]). For a related structure, see: Cai et al. (2008[Cai, X.-W., Zhao, Y.-Y. & Han, G.-F. (2008). Acta Cryst. E64, m1012.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C4H6N2S)2]

  • Mr = 411.67

  • Monoclinic, P 21 /n

  • a = 8.7100 (17) Å

  • b = 13.190 (3) Å

  • c = 12.740 (3) Å

  • β = 95.19 (3)°

  • V = 1457.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 293 (2) K

  • 0.40 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.442, Tmax = 0.612

  • 7630 measured reflections

  • 2595 independent reflections

  • 2113 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 0.98

  • 2595 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N2 2.246 (3)
Cd1—N1 2.248 (3)
Cd1—Cl1 2.4181 (10)
Cd1—Cl2 2.4387 (11)
N2—Cd1—N1 99.70 (11)
N2—Cd1—Cl1 106.53 (8)
N1—Cd1—Cl1 116.26 (8)
N2—Cd1—Cl2 114.38 (8)
N1—Cd1—Cl2 107.19 (8)
Cl1—Cd1—Cl2 112.34 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl2 0.86 2.49 3.322 (4) 164
N3—H3B⋯Cl1i 0.86 2.70 3.343 (3) 133
N4—H4A⋯Cl1 0.86 2.44 3.276 (4) 165
N4—H4B⋯Cl2ii 0.86 2.52 3.325 (3) 157
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As one of the important S,N-containing-heterocycles, the 1,3-thiazole have often been regarded as a kind of pharmaceutical intermediates and constituents of many biomolecules. Higher pharmacological activities of metal-thiazole complexes than those of thiazole ligands themselves were found, which may depend on their crystal and molecular structures (Bolos et al. 1999; Miodragović et al. 2006; Cini et al. 2007; Dea et al. 2008; Shen et al. 2008). For 2-amino-5-methyl-1,3-thiazole (amtz), however, only one Cu-containing coordination complex with definite crystal structure was reported (Bolos et al. 1999). Herein, our initial goal of this research is to obtain the single crystal using 2-amino-4-thiazole acetic acid (atac) as ligand. When the reaction using the raw materials such as atac and cadmium chloride hydrate [CdCl2.2.5(H2O)] in ethanol-water mixed solvents was carried out under solvothermal condition, however, atac was decarboxylized and then turn into amtz which may bind to CdCl2 to construct the title complex.

Fig. 1 displays the molecular structure of the title compound. The CdII atom is coordinated by two chloride anions and two N atoms of thiazole rings from two amtz ligands in a slightly distorted tetrahedral coordination geometry (Table 1) (Cai et al. 2008). In the crystal structure, the intramolecular N—H···Cl hydrogen bonds (Table 2) stabilize the molecular conformation, and the molecules are interconnected into a two-dimensional network structure via both the intermolecular N—H···Cl hydrogen bonds and weak S···Cl interactions [3.533 (2) Å]. In the crystal packing diagrams, one-dimensional zigzag chains viewed along the a axis and two-dimensional network structures viewed along the c axis can be found in Fig. 2 and in Fig. 3, respectively.

Related literature top

For general background, see: Bolos et al. (1999); Miodragović et al. (2006); Cini et al. (2007); Dea et al. (2008); Shen et al. (2008). For a related structure, see: Cai et al. (2008).

Experimental top

2-Amino-4-thiazole acetic acid (0.316 g, 2 mmol) and CdCl2.2.5H2O (0.457 g, 2 mmol) were added into 15 ml ethanol–water (1:1 volume ratio) mixed solvents and stirred for 30 min. The mixture was transferred into a Teflon-lined stainless steel vessel (25 ml). The autoclave was sealed and heated at 383 K for two days, and then autoclave was allowed to cool to room temperature in air. After isolated by filtration, the filtrate was left to stand at room temperature about one week. The brown–yellow block single crystals suitable for X-ray diffraction were obtained with the reaction yield of 30% (based on cadmium).

Refinement top

All H atoms bonded to C or N atoms were placed in geometrically calculated positions (N—H, 0.86 Å; C—H, 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis in one-dimensional zigzag chain form via both the intermolecular N—H···Cl hydrogen bonds and weak S···Cl interactions which are shown by dashed lines. The intramolecular N—H···Cl hydrogen bonds and all hydrogen atoms not involved in hydrogen bonding were omitted for clarity.
[Figure 3] Fig. 3. The crystal packing of the title compound viewed along the c axis, showing formation of the two-dimensional network structure via both the intermolecular N—H···Cl hydrogen bonds and weak S···Cl interactions which are denoted with dashed lines. All hydrogen atoms not involved in the intermolecular N—H···Cl hydrogen bonds were omitted for clarity.
Bis(2-amino-4-methyl-1,3-thiazole-κN3)dichloridocadmium(II) top
Crystal data top
[CdCl2(C4H6N2S)2]F(000) = 808
Mr = 411.67Dx = 1.885 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2595 reflections
a = 8.7100 (17) Åθ = 2.2–25.1°
b = 13.190 (3) ŵ = 2.14 mm1
c = 12.740 (3) ÅT = 293 K
β = 95.19 (3)°Block, brown-yellow
V = 1457.6 (6) Å30.40 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2595 independent reflections
Radiation source: fine-focus sealed tube2113 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.442, Tmax = 0.612k = 1515
7630 measured reflectionsl = 158
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.4982P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[CdCl2(C4H6N2S)2]V = 1457.6 (6) Å3
Mr = 411.67Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7100 (17) ŵ = 2.14 mm1
b = 13.190 (3) ÅT = 293 K
c = 12.740 (3) Å0.40 × 0.25 × 0.23 mm
β = 95.19 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2595 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2113 reflections with I > 2σ(I)
Tmin = 0.442, Tmax = 0.612Rint = 0.027
7630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.98Δρmax = 0.42 e Å3
2595 reflectionsΔρmin = 0.39 e Å3
156 parameters
Special details top

Experimental. IR (KBr, cm-1): 3431s, 3861s, 3305s, 3205ms, 3133w, 3100w, 2978w, 2947w, 2913w, 2713w, 2346w, 1621vs, 1561m, 1506s, 1438ms, 1380ms, 1357s, 1147m, 1112s, 1033m, 843w, 738m, 703m, 637m, 606m, 478m.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.79522 (3)0.902858 (19)0.78981 (2)0.04161 (10)
C10.6219 (4)0.7247 (3)0.6506 (3)0.0454 (9)
C20.8598 (4)0.7492 (3)0.6053 (3)0.0468 (9)
C30.4937 (4)1.0397 (3)0.7472 (3)0.0510 (9)
C40.6202 (4)0.6597 (3)0.5703 (3)0.0535 (10)
H40.53680.61870.54800.064*
C50.6514 (5)1.0670 (3)0.6215 (3)0.0621 (11)
C60.5336 (7)1.1274 (4)0.5873 (4)0.0879 (16)
H60.53191.16670.52670.105*
C70.7954 (6)1.0484 (4)0.5704 (4)0.0891 (16)
H7A0.79251.08600.50570.134*
H7B0.80430.97740.55570.134*
H7C0.88241.06980.61670.134*
C80.4931 (4)0.7448 (3)0.7171 (3)0.0659 (12)
H8A0.41010.69850.69830.099*
H8B0.45730.81320.70580.099*
H8C0.52880.73590.79000.099*
Cl11.06487 (10)0.94872 (8)0.79854 (9)0.0612 (3)
Cl20.71199 (11)0.86235 (8)0.96262 (7)0.0551 (3)
N10.6277 (3)1.0170 (2)0.7149 (2)0.0443 (7)
N20.7612 (3)0.7769 (2)0.6713 (2)0.0427 (7)
N30.4407 (3)1.0036 (3)0.8341 (3)0.0649 (9)
H3A0.49570.96200.87350.078*
H3B0.35121.02160.85090.078*
N41.0026 (4)0.7866 (3)0.6046 (3)0.0710 (11)
H4A1.03480.83210.64970.085*
H4B1.06210.76510.55910.085*
S10.38830 (17)1.12403 (11)0.66679 (12)0.0917 (4)
S20.79042 (12)0.66122 (8)0.51342 (8)0.0607 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03346 (15)0.04928 (17)0.04276 (17)0.00234 (11)0.00714 (11)0.00173 (12)
C10.041 (2)0.041 (2)0.052 (2)0.0037 (16)0.0011 (17)0.0042 (18)
C20.050 (2)0.043 (2)0.048 (2)0.0025 (17)0.0102 (17)0.0039 (17)
C30.043 (2)0.047 (2)0.062 (3)0.0040 (17)0.0009 (19)0.0053 (19)
C40.048 (2)0.048 (2)0.062 (3)0.0031 (18)0.0063 (19)0.007 (2)
C50.080 (3)0.049 (2)0.056 (3)0.008 (2)0.002 (2)0.012 (2)
C60.118 (4)0.069 (3)0.072 (3)0.009 (3)0.013 (3)0.030 (3)
C70.104 (4)0.099 (4)0.070 (3)0.008 (3)0.034 (3)0.026 (3)
C80.045 (2)0.075 (3)0.079 (3)0.014 (2)0.015 (2)0.011 (2)
Cl10.0355 (5)0.0727 (7)0.0757 (7)0.0109 (5)0.0062 (5)0.0115 (6)
Cl20.0497 (5)0.0708 (6)0.0466 (5)0.0022 (5)0.0140 (4)0.0077 (5)
N10.0445 (17)0.0412 (17)0.0470 (18)0.0030 (14)0.0030 (14)0.0039 (14)
N20.0429 (16)0.0425 (16)0.0436 (16)0.0034 (13)0.0084 (13)0.0036 (14)
N30.0409 (18)0.083 (2)0.073 (2)0.0146 (17)0.0172 (17)0.008 (2)
N40.059 (2)0.078 (2)0.081 (3)0.0172 (19)0.0366 (19)0.028 (2)
S10.0823 (9)0.0895 (9)0.1004 (11)0.0353 (7)0.0071 (8)0.0189 (8)
S20.0642 (7)0.0591 (6)0.0589 (7)0.0000 (5)0.0061 (5)0.0178 (5)
Geometric parameters (Å, º) top
Cd1—N22.246 (3)C5—C61.340 (6)
Cd1—N12.248 (3)C5—N11.392 (5)
Cd1—Cl12.4181 (10)C5—C71.485 (6)
Cd1—Cl22.4387 (11)C6—S11.691 (6)
C1—C41.333 (5)C6—H60.9300
C1—N21.399 (4)C7—H7A0.9600
C1—C81.490 (5)C7—H7B0.9600
C2—N21.308 (4)C7—H7C0.9600
C2—N41.338 (4)C8—H8A0.9600
C2—S21.718 (4)C8—H8B0.9600
C3—N11.308 (4)C8—H8C0.9600
C3—N31.326 (5)N3—H3A0.8600
C3—S11.720 (4)N3—H3B0.8600
C4—S21.708 (4)N4—H4A0.8600
C4—H40.9300N4—H4B0.8600
N2—Cd1—N199.70 (11)C5—C7—H7B109.5
N2—Cd1—Cl1106.53 (8)H7A—C7—H7B109.5
N1—Cd1—Cl1116.26 (8)C5—C7—H7C109.5
N2—Cd1—Cl2114.38 (8)H7A—C7—H7C109.5
N1—Cd1—Cl2107.19 (8)H7B—C7—H7C109.5
Cl1—Cd1—Cl2112.34 (4)C1—C8—H8A109.5
C4—C1—N2114.2 (3)C1—C8—H8B109.5
C4—C1—C8126.5 (3)H8A—C8—H8B109.5
N2—C1—C8119.3 (3)C1—C8—H8C109.5
N2—C2—N4124.4 (3)H8A—C8—H8C109.5
N2—C2—S2114.6 (3)H8B—C8—H8C109.5
N4—C2—S2121.0 (3)C3—N1—C5111.5 (3)
N1—C3—N3124.6 (3)C3—N1—Cd1125.7 (3)
N1—C3—S1113.8 (3)C5—N1—Cd1122.7 (3)
N3—C3—S1121.5 (3)C2—N2—C1110.4 (3)
C1—C4—S2111.6 (3)C2—N2—Cd1125.8 (2)
C1—C4—H4124.2C1—N2—Cd1123.4 (2)
S2—C4—H4124.2C3—N3—H3A120.0
C6—C5—N1113.0 (4)C3—N3—H3B120.0
C6—C5—C7127.4 (4)H3A—N3—H3B120.0
N1—C5—C7119.5 (4)C2—N4—H4A120.0
C5—C6—S1112.5 (4)C2—N4—H4B120.0
C5—C6—H6123.8H4A—N4—H4B120.0
S1—C6—H6123.8C6—S1—C389.2 (2)
C5—C7—H7A109.5C4—S2—C289.09 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl20.862.493.322 (4)164
N3—H3B···Cl1i0.862.703.343 (3)133
N4—H4A···Cl10.862.443.276 (4)165
N4—H4B···Cl2ii0.862.523.325 (3)157
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C4H6N2S)2]
Mr411.67
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.7100 (17), 13.190 (3), 12.740 (3)
β (°) 95.19 (3)
V3)1457.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.40 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.442, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
7630, 2595, 2113
Rint0.027
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 0.98
No. of reflections2595
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.39

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N22.246 (3)Cd1—Cl12.4181 (10)
Cd1—N12.248 (3)Cd1—Cl22.4387 (11)
N2—Cd1—N199.70 (11)N2—Cd1—Cl2114.38 (8)
N2—Cd1—Cl1106.53 (8)N1—Cd1—Cl2107.19 (8)
N1—Cd1—Cl1116.26 (8)Cl1—Cd1—Cl2112.34 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl20.862.493.322 (4)164.4
N3—H3B···Cl1i0.862.703.343 (3)132.6
N4—H4A···Cl10.862.443.276 (4)164.9
N4—H4B···Cl2ii0.862.523.325 (3)156.9
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors thank Dr Shu-Hua Zhang for helpful discussions and acknowledge funding from the National Natural Science Foundation of China (No. 20701010),the Natural Science Foundation of Guangxi Province (No. 0728094) and the Science and Technology Project of the Department of Education of Jiangxi Province [No. (2007)348].

References

First citationBolos, C. A., Fanourgakis, P. V., Christidis, P. C. & Nikolov, G. S. (1999). Polyhedron, 18, 1661–1668.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X.-W., Zhao, Y.-Y. & Han, G.-F. (2008). Acta Cryst. E64, m1012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCini, R., Tamasi, G., Defazio, S. & Hursthouse, M. B. (2007). J. Inorg. Biochem. 101, 1140–1152.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215–223.  Web of Science PubMed Google Scholar
First citationMiodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M.-D., Novaković, S. B., Kaluderović, G. N. & Kozłowski, H. (2006). J. Inorg. Biochem. 100, 1568–1574.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, L., Zhang, Y., Wang, A., Sieber-McMaster, E., Chen, X., Pelton, P., Xu, J. Z., Yang, M., Zhu, P., Zhou, L., Reuman, M., Hu, Z., Russell, R., Gibbs, A. C., Ross, H., Demarest, K., Murray, W. V. & Kuo, G.-H. (2008). Bioorg. Med. Chem. 16, 3321–3341.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds