organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phen­yl)-4,5,6,7-tetra­hydro-3-methyl-6-oxo-1-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbo­nitrile ethanol solvate

aSchool of Chemistry and Environmental Sciences, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
*Correspondence e-mail: xuesen.fan@yahoo.com

(Received 1 September 2008; accepted 7 September 2008; online 13 September 2008)

In the structure of the title compound, C20H15BrN4O·C2H6O, the hydrogenated pyridinone ring adopts an envelope conformation. The dihedral angle between the bromo-substituted phenyl ring and the pyrazole ring is 79.6 (1)°, and that between the non-substituted phenyl ring and the pyrazole ring is 51.2 (1)°. In the crystal structure, mol­ecules are linked via inter­molecular N—H⋯O and O—H⋯N hydrogen bonds. A short inter­molecular N⋯Br contact [3.213 (4) Å] is present in the crystal structure.

Related literature

For general background, see: Falcó et al. (2005[Falcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). Eur. J. Med. Chem. 40, 1179-1187.]); Kung & Wager (2007[Kung, D. W. & Wager, T. T. (2007). US Patent 7 300 944.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15BrN4O·C2H6O

  • Mr = 453.34

  • Monoclinic, P 21 /c

  • a = 21.871 (9) Å

  • b = 9.209 (4) Å

  • c = 10.552 (5) Å

  • β = 90.370 (5)°

  • V = 2125.4 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.96 mm−1

  • T = 295 (2) K

  • 0.31 × 0.24 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.586, Tmax = 0.770

  • 10428 measured reflections

  • 3947 independent reflections

  • 2414 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 1.01

  • 3947 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 2.06 2.874 (4) 171
N3—H3D⋯O2 0.97 1.84 2.786 (3) 166
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrazolo[3,4-b]pyridine-6-ones as a subunit of pyrazolo[3,4-b]pyridine acted as potential hypnotic drugs in many cases (Falcó et al., 2005). Hydrogenated pyrazolo[3,4-b]pyridin-6-ones have been found with good biological activity such as GSK-3 inhibitors (Kung et al., 2007) and have the potential to be used as novel building blocks to construct new nitrogen-containing molecules. The title compound is one of the hydrogenated pyrazolo[3,4-b]pyridin-6-one derivatives. Its crystal structure is presented here.

In the title compound (Fig. 1) there are four rings, three planar rings and one nonplanar hydrogenated pyridinone ring. The hydrogenated pyridinone ring is fused to the pyrazole ring and adopts an envelope conformation with C4 at flap position. The dihedral angle between the bromo-substituted benzene ring and the pyrazole ring is 79.6 (1)° and that between the non-substituted phenyl ring and the pyrazole ring is 51.2 (1)°.

Intermolecular N—H···O and O—H···N hydrogen bonding (Table 1) and the weak intermolecular Br1···N4i contact present in the crystal structure [symmetry code: (i) 1-x, -1/2+y, 1/2-z].

Related literature top

For general background, see: Falcó et al. (2005); Kung et al. (2007).

Experimental top

4-Bromobenzaldehyde (1 mmol) and ethyl cyanoacetate (1 mmol) were added to 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]). The mixture was stirred at 353 K until the disappearance of bromobenzaldehyde. Upon cooling to room temperature, 5-amino-3-methyl-1-phenylpyrazole (1 mmol) was added and the mixture was stirred at room temperature for a certain period of time to complete the reaction (monitored by TLC). The reaction time was 9 h totally. Upon completion, the product was not separated from the reaction system; instead, 4 ml of ethanol was added. Single crystals of the title compound were obtained by slow evaporation of the solvent.

Refinement top

H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.97 Å, O—H = 0.82 Å and C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(CH3, OH, NH) and 1.2Ueq(CH, CH2).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997)'; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates hydrogen bonding.
4-(4-Bromophenyl)-4,5,6,7-tetrahydro-3-methyl-6-oxo-1-phenyl-1H- pyrazolo[3,4-b]pyridine-5-carbonitrile ethanol solvate top
Crystal data top
C20H15BrN4O·C2H6OF(000) = 928
Mr = 453.34Dx = 1.417 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2154 reflections
a = 21.871 (9) Åθ = 2.4–22.3°
b = 9.209 (4) ŵ = 1.96 mm1
c = 10.552 (5) ÅT = 295 K
β = 90.370 (5)°Block, colourless
V = 2125.4 (15) Å30.31 × 0.24 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3947 independent reflections
Radiation source: fine-focus sealed tube2414 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2626
Tmin = 0.586, Tmax = 0.770k = 119
10428 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0415P)2 + 1.3425P]
where P = (Fo2 + 2Fc2)/3
3947 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
C20H15BrN4O·C2H6OV = 2125.4 (15) Å3
Mr = 453.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.871 (9) ŵ = 1.96 mm1
b = 9.209 (4) ÅT = 295 K
c = 10.552 (5) Å0.31 × 0.24 × 0.14 mm
β = 90.370 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2414 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.770Rint = 0.035
10428 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.01Δρmax = 0.53 e Å3
3947 reflectionsΔρmin = 0.51 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.449857 (19)0.58567 (7)0.18723 (5)0.1023 (3)
O10.77687 (11)0.8095 (2)0.2363 (2)0.0553 (6)
O20.83439 (11)0.5202 (3)0.0508 (2)0.0558 (6)
H20.82200.44300.02180.084*
N10.77906 (13)0.2474 (3)0.4696 (2)0.0478 (7)
N20.80852 (12)0.3344 (3)0.3832 (2)0.0431 (6)
N30.79796 (12)0.5800 (3)0.2978 (2)0.0434 (6)
H3D0.81740.56060.21740.065*
N40.67632 (15)0.9759 (4)0.4375 (3)0.0732 (9)
C10.73512 (15)0.3303 (4)0.5195 (3)0.0442 (8)
C20.73547 (14)0.4703 (3)0.4646 (3)0.0404 (7)
C30.69597 (14)0.6023 (3)0.4808 (3)0.0414 (8)
H30.68700.61280.57120.050*
C40.73741 (14)0.7328 (3)0.4401 (3)0.0407 (8)
H40.76880.74320.50610.049*
C50.77157 (14)0.7129 (4)0.3138 (3)0.0418 (8)
C60.78163 (14)0.4672 (3)0.3795 (3)0.0387 (7)
C70.70350 (16)0.8703 (4)0.4370 (3)0.0487 (8)
C80.69393 (18)0.2752 (4)0.6197 (3)0.0648 (10)
H8A0.65460.25370.58330.097*
H8B0.68950.34770.68430.097*
H8C0.71100.18860.65610.097*
C90.63578 (14)0.5971 (3)0.4089 (3)0.0426 (8)
C100.58214 (16)0.6426 (4)0.4648 (3)0.0628 (10)
H100.58300.67500.54820.075*
C110.52737 (17)0.6412 (5)0.3997 (4)0.0771 (13)
H110.49180.67210.43910.092*
C120.52561 (16)0.5939 (4)0.2764 (4)0.0626 (10)
C130.57776 (16)0.5502 (4)0.2179 (3)0.0661 (11)
H130.57650.51890.13410.079*
C140.63241 (16)0.5528 (4)0.2835 (3)0.0586 (10)
H140.66800.52400.24270.070*
C150.85626 (15)0.2756 (4)0.3081 (3)0.0456 (8)
C160.84675 (18)0.1459 (4)0.2460 (3)0.0559 (9)
H160.80970.09690.25290.067*
C170.8936 (2)0.0902 (5)0.1732 (4)0.0769 (13)
H170.88800.00260.13090.092*
C180.9477 (2)0.1616 (6)0.1624 (4)0.0854 (14)
H180.97860.12310.11250.103*
C190.95680 (19)0.2899 (6)0.2249 (4)0.0816 (13)
H190.99390.33840.21750.098*
C200.91114 (17)0.3477 (4)0.2990 (4)0.0627 (10)
H200.91740.43440.34230.075*
C210.89214 (19)0.5522 (5)0.0008 (4)0.0750 (12)
H21A0.88790.56920.09110.090*
H21B0.91920.46990.01140.090*
C220.9183 (3)0.6785 (6)0.0587 (6)0.128 (2)
H22A0.89720.76370.02980.192*
H22B0.96070.68550.03710.192*
H22C0.91440.67040.14900.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0484 (3)0.1630 (6)0.0952 (4)0.0022 (3)0.0134 (2)0.0219 (3)
O10.0811 (17)0.0401 (14)0.0446 (13)0.0010 (13)0.0004 (11)0.0073 (11)
O20.0628 (16)0.0541 (16)0.0508 (13)0.0062 (13)0.0098 (11)0.0147 (12)
N10.0548 (17)0.0385 (16)0.0503 (16)0.0019 (14)0.0086 (13)0.0083 (13)
N20.0485 (16)0.0365 (16)0.0444 (14)0.0022 (14)0.0089 (12)0.0029 (13)
N30.0540 (16)0.0375 (16)0.0387 (14)0.0027 (13)0.0093 (12)0.0032 (12)
N40.065 (2)0.049 (2)0.105 (3)0.0064 (18)0.0053 (18)0.0055 (19)
C10.0478 (19)0.039 (2)0.0458 (18)0.0049 (17)0.0068 (15)0.0041 (16)
C20.0456 (18)0.039 (2)0.0366 (16)0.0001 (16)0.0007 (14)0.0015 (14)
C30.0476 (18)0.042 (2)0.0344 (15)0.0009 (16)0.0043 (13)0.0030 (14)
C40.0491 (18)0.0367 (19)0.0364 (16)0.0024 (16)0.0051 (14)0.0046 (14)
C50.0486 (19)0.040 (2)0.0371 (16)0.0037 (16)0.0039 (14)0.0000 (16)
C60.0447 (18)0.0332 (19)0.0383 (16)0.0012 (15)0.0017 (14)0.0015 (14)
C70.052 (2)0.040 (2)0.054 (2)0.0029 (18)0.0030 (16)0.0052 (16)
C80.074 (3)0.053 (2)0.068 (2)0.001 (2)0.024 (2)0.0119 (19)
C90.0445 (18)0.0367 (19)0.0466 (18)0.0004 (15)0.0051 (14)0.0050 (15)
C100.055 (2)0.084 (3)0.049 (2)0.001 (2)0.0105 (17)0.0201 (19)
C110.043 (2)0.117 (4)0.072 (3)0.004 (2)0.0126 (19)0.022 (3)
C120.043 (2)0.075 (3)0.069 (2)0.001 (2)0.0050 (18)0.009 (2)
C130.054 (2)0.087 (3)0.057 (2)0.005 (2)0.0018 (18)0.025 (2)
C140.047 (2)0.073 (3)0.056 (2)0.0102 (19)0.0020 (16)0.0236 (19)
C150.050 (2)0.043 (2)0.0433 (17)0.0105 (17)0.0019 (15)0.0024 (16)
C160.071 (2)0.046 (2)0.051 (2)0.0061 (19)0.0051 (18)0.0011 (17)
C170.119 (4)0.052 (3)0.060 (2)0.021 (3)0.017 (2)0.004 (2)
C180.091 (4)0.086 (4)0.080 (3)0.038 (3)0.034 (3)0.012 (3)
C190.054 (3)0.093 (4)0.098 (3)0.008 (3)0.017 (2)0.007 (3)
C200.054 (2)0.062 (3)0.072 (2)0.002 (2)0.0058 (19)0.001 (2)
C210.071 (3)0.079 (3)0.075 (3)0.010 (2)0.016 (2)0.015 (2)
C220.105 (4)0.127 (5)0.152 (5)0.062 (4)0.036 (4)0.049 (4)
Geometric parameters (Å, º) top
Br1—C121.901 (4)C9—C141.386 (4)
O1—C51.215 (3)C10—C111.377 (5)
O2—C211.409 (4)C10—H100.9300
O2—H20.8200C11—C121.373 (5)
N1—C11.338 (4)C11—H110.9300
N1—N21.377 (3)C12—C131.361 (5)
N2—C61.357 (4)C13—C141.378 (5)
N2—C151.422 (4)C13—H130.9300
N3—C51.364 (4)C14—H140.9300
N3—C61.398 (4)C15—C201.376 (5)
N3—H3D0.9687C15—C161.377 (5)
N4—C71.140 (4)C16—C171.383 (5)
C1—C21.414 (4)C16—H160.9300
C1—C81.482 (4)C17—C181.359 (6)
C2—C61.356 (4)C17—H170.9300
C2—C31.502 (4)C18—C191.367 (6)
C3—C91.516 (4)C18—H180.9300
C3—C41.567 (4)C19—C201.379 (5)
C3—H30.9800C19—H190.9300
C4—C71.468 (5)C20—H200.9300
C4—C51.544 (4)C21—C221.438 (6)
C4—H40.9800C21—H21A0.9700
C8—H8A0.9600C21—H21B0.9700
C8—H8B0.9600C22—H22A0.9600
C8—H8C0.9600C22—H22B0.9600
C9—C101.381 (5)C22—H22C0.9600
C21—O2—H2109.5C9—C10—H10119.2
C1—N1—N2105.7 (2)C12—C11—C10119.6 (3)
C6—N2—N1109.8 (2)C12—C11—H11120.2
C6—N2—C15130.3 (3)C10—C11—H11120.2
N1—N2—C15119.7 (3)C13—C12—C11120.4 (3)
C5—N3—C6118.8 (3)C13—C12—Br1119.6 (3)
C5—N3—H3D117.5C11—C12—Br1120.0 (3)
C6—N3—H3D121.2C12—C13—C14119.6 (3)
N1—C1—C2110.6 (3)C12—C13—H13120.2
N1—C1—C8121.8 (3)C14—C13—H13120.2
C2—C1—C8127.5 (3)C13—C14—C9121.7 (3)
C6—C2—C1105.0 (3)C13—C14—H14119.1
C6—C2—C3121.6 (3)C9—C14—H14119.1
C1—C2—C3133.4 (3)C20—C15—C16121.0 (3)
C2—C3—C9114.6 (3)C20—C15—N2120.0 (3)
C2—C3—C4104.8 (2)C16—C15—N2119.1 (3)
C9—C3—C4112.9 (2)C15—C16—C17118.4 (4)
C2—C3—H3108.1C15—C16—H16120.8
C9—C3—H3108.1C17—C16—H16120.8
C4—C3—H3108.1C18—C17—C16121.0 (4)
C7—C4—C5109.3 (3)C18—C17—H17119.5
C7—C4—C3112.0 (3)C16—C17—H17119.5
C5—C4—C3115.4 (2)C17—C18—C19120.1 (4)
C7—C4—H4106.5C17—C18—H18119.9
C5—C4—H4106.5C19—C18—H18119.9
C3—C4—H4106.5C18—C19—C20120.2 (4)
O1—C5—N3122.1 (3)C18—C19—H19119.9
O1—C5—C4122.9 (3)C20—C19—H19119.9
N3—C5—C4114.9 (3)C15—C20—C19119.3 (4)
C2—C6—N2108.9 (3)C15—C20—H20120.4
C2—C6—N3125.9 (3)C19—C20—H20120.4
N2—C6—N3125.1 (3)O2—C21—C22110.8 (3)
N4—C7—C4178.1 (4)O2—C21—H21A109.5
C1—C8—H8A109.5C22—C21—H21A109.5
C1—C8—H8B109.5O2—C21—H21B109.5
H8A—C8—H8B109.5C22—C21—H21B109.5
C1—C8—H8C109.5H21A—C21—H21B108.1
H8A—C8—H8C109.5C21—C22—H22A109.5
H8B—C8—H8C109.5C21—C22—H22B109.5
C10—C9—C14117.1 (3)H22A—C22—H22B109.5
C10—C9—C3121.0 (3)C21—C22—H22C109.5
C14—C9—C3121.8 (3)H22A—C22—H22C109.5
C11—C10—C9121.6 (3)H22B—C22—H22C109.5
C11—C10—H10119.2
C1—N1—N2—C61.3 (3)C5—N3—C6—C29.3 (4)
C1—N1—N2—C15176.8 (3)C5—N3—C6—N2172.9 (3)
N2—N1—C1—C20.7 (3)C5—C4—C7—N4168 (11)
N2—N1—C1—C8178.6 (3)C3—C4—C7—N439 (12)
N1—C1—C2—C60.0 (3)C2—C3—C9—C10137.1 (3)
C8—C1—C2—C6179.4 (3)C4—C3—C9—C10103.1 (4)
N1—C1—C2—C3177.5 (3)C2—C3—C9—C1445.7 (4)
C8—C1—C2—C33.1 (6)C4—C3—C9—C1474.2 (4)
C6—C2—C3—C997.3 (3)C14—C9—C10—C111.3 (6)
C1—C2—C3—C979.9 (4)C3—C9—C10—C11178.7 (4)
C6—C2—C3—C427.0 (4)C9—C10—C11—C120.1 (7)
C1—C2—C3—C4155.8 (3)C10—C11—C12—C130.8 (7)
C2—C3—C4—C7173.7 (2)C10—C11—C12—Br1178.0 (3)
C9—C3—C4—C748.4 (3)C11—C12—C13—C140.5 (6)
C2—C3—C4—C547.8 (3)Br1—C12—C13—C14178.4 (3)
C9—C3—C4—C577.5 (3)C12—C13—C14—C90.8 (6)
C6—N3—C5—O1169.4 (3)C10—C9—C14—C131.7 (6)
C6—N3—C5—C413.4 (4)C3—C9—C14—C13179.0 (3)
C7—C4—C5—O111.5 (4)C6—N2—C15—C2054.7 (5)
C3—C4—C5—O1138.8 (3)N1—N2—C15—C20130.8 (3)
C7—C4—C5—N3171.3 (3)C6—N2—C15—C16125.7 (4)
C3—C4—C5—N344.0 (4)N1—N2—C15—C1648.7 (4)
C1—C2—C6—N20.8 (3)C20—C15—C16—C170.6 (5)
C3—C2—C6—N2178.7 (3)N2—C15—C16—C17179.9 (3)
C1—C2—C6—N3177.2 (3)C15—C16—C17—C180.2 (6)
C3—C2—C6—N30.6 (5)C16—C17—C18—C190.6 (7)
N1—N2—C6—C21.3 (3)C17—C18—C19—C200.1 (7)
C15—N2—C6—C2176.2 (3)C16—C15—C20—C191.0 (5)
N1—N2—C6—N3176.7 (3)N2—C15—C20—C19179.5 (3)
C15—N2—C6—N31.8 (5)C18—C19—C20—C150.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.822.062.874 (4)171
N3—H3D···O20.971.842.786 (3)166
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H15BrN4O·C2H6O
Mr453.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)21.871 (9), 9.209 (4), 10.552 (5)
β (°) 90.370 (5)
V3)2125.4 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.96
Crystal size (mm)0.31 × 0.24 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.586, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
10428, 3947, 2414
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 1.01
No. of reflections3947
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.51

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997)', SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.822.062.874 (4)170.6
N3—H3D···O20.971.842.786 (3)165.6
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20772025) and the Program for Science and Technology Innovation Talents in Universities of Henan Province (No. 2008HASTIT006).

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFalcó, J. L., Lloveras, M., Buira, I., Teixidó, J., Borrell, J. I., Méndez, E., Terencio, J., Palomer, A. & Guglietta, A. (2005). Eur. J. Med. Chem. 40, 1179–1187.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKung, D. W. & Wager, T. T. (2007). US Patent 7 300 944.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds