organic compounds
Ethyl 2-phenyl-5-trifluoromethyl-1,3-thiazole-4-carboxylate
aDepartment of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China, bInstrument Analysis & Research Center, Shanghai University, Shanghai 200444, People's Republic of China, and cKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
*Correspondence e-mail: jhao@staff.shu.edu.cn
In the title compound, C13H10F3NO2S, the dihedral angle between the thiazole and phenyl rings is 5.15 (1)°. No intermolecular hydrogen bonding is observed in the crystal structure.
Related literature
For general backgroud, see: Sasse et al. (2002); Campeau et al. (2008); Zificsak & Hlasta (2004); Rynbrandt et al. (1981). For a related structure, see: Kennedy et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808030389/xu2454sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808030389/xu2454Isup2.hkl
A solution of 2-dibenzylamino-4, 4, 4-trifluoro-3-hydroxy-butyric acid ethyl ester (0.2 mmol) in 10 ml thionyl chloride was refluxed for a period of half an hour till the complete consumption of raw material. Excess thionyl chloride was evaporated, the residue was diluted with anhydrous ethanol (4 ml), then concentrated by rotary evaporator. The crude product was re-crystallized from ethanol (95%) and colorless needle-type crystals of (I) were obtained.
All the H atoms were placed in geometrically idealized positions and constrained to ride their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for others.
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of the title compound (I), shown the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii. |
C13H10F3NO2S | F(000) = 616 |
Mr = 301.28 | Dx = 1.491 Mg m−3 |
Monoclinic, P21/c | Melting point: 320 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 8.930 (3) Å | Cell parameters from 1005 reflections |
b = 21.232 (6) Å | θ = 2.5–19.0° |
c = 7.574 (2) Å | µ = 0.28 mm−1 |
β = 110.861 (4)° | T = 296 K |
V = 1342.0 (7) Å3 | Needle, colorless |
Z = 4 | 0.30 × 0.10 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 2367 independent reflections |
Radiation source: fine-focus sealed tube | 1417 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.922, Tmax = 0.973 | k = −25→19 |
6891 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0642P)2] where P = (Fo2 + 2Fc2)/3 |
2367 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C13H10F3NO2S | V = 1342.0 (7) Å3 |
Mr = 301.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.930 (3) Å | µ = 0.28 mm−1 |
b = 21.232 (6) Å | T = 296 K |
c = 7.574 (2) Å | 0.30 × 0.10 × 0.10 mm |
β = 110.861 (4)° |
Bruker SMART CCD area-detector diffractometer | 2367 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1417 reflections with I > 2σ(I) |
Tmin = 0.922, Tmax = 0.973 | Rint = 0.050 |
6891 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.142 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.22 e Å−3 |
2367 reflections | Δρmin = −0.19 e Å−3 |
182 parameters |
Experimental. IR (KBr, cm-1): 3061, 2980, 1737, 1633, 1513, 1461, 1290, 1210, 766, 689. 1H NMR (CDCl3, 500 MHz). δ/p.p.m.: 7.46–8.00 (m, 5H), 4.49 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). 13C NMR (CDCl3, 125 MHz). δ/p.p.m.: 168.87, 160.27, 146.48, 131.77, 131.63, 129.24, 164.15 (q, 2JC—F = 36.5 Hz, CF3C–), 123.33 (q, 1JC—F = 269.3 Hz, –CF3), 62.41, 13.98. 19F NMR (CDCl3, 470 MHz, CFCl3). δ/p.p.m.: -52.44 (s). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22302 (11) | 0.67958 (4) | 0.44789 (13) | 0.0585 (3) | |
C1 | 0.1690 (4) | 0.75511 (15) | 0.3693 (5) | 0.0504 (8) | |
C2 | 0.2697 (4) | 0.80979 (15) | 0.4545 (5) | 0.0523 (8) | |
C3 | 0.4186 (4) | 0.80233 (17) | 0.5954 (5) | 0.0615 (10) | |
H3 | 0.4559 | 0.7622 | 0.6376 | 0.074* | |
C4 | 0.5115 (4) | 0.85408 (19) | 0.6732 (5) | 0.0681 (10) | |
H4 | 0.6116 | 0.8488 | 0.7671 | 0.082* | |
C5 | 0.4564 (5) | 0.91329 (18) | 0.6123 (6) | 0.0720 (11) | |
H5 | 0.5192 | 0.9483 | 0.6646 | 0.086* | |
C6 | 0.3083 (5) | 0.92108 (18) | 0.4743 (6) | 0.0741 (11) | |
H6 | 0.2708 | 0.9614 | 0.4343 | 0.089* | |
C7 | 0.2154 (4) | 0.86972 (16) | 0.3947 (5) | 0.0642 (10) | |
H7 | 0.1156 | 0.8753 | 0.3004 | 0.077* | |
C8 | −0.0328 (4) | 0.70143 (16) | 0.1739 (5) | 0.0514 (8) | |
C9 | 0.0515 (4) | 0.65213 (16) | 0.2791 (5) | 0.0517 (8) | |
C10 | 0.0138 (5) | 0.58379 (17) | 0.2771 (6) | 0.0674 (10) | |
C11 | −0.1837 (4) | 0.69976 (18) | 0.0062 (5) | 0.0577 (9) | |
C12 | −0.3482 (5) | 0.63721 (19) | −0.2455 (6) | 0.0857 (13) | |
H12A | −0.3442 | 0.6683 | −0.3375 | 0.103* | |
H12B | −0.4455 | 0.6438 | −0.2188 | 0.103* | |
C13 | −0.3463 (7) | 0.5732 (2) | −0.3197 (7) | 0.133 (2) | |
H13A | −0.2565 | 0.5689 | −0.3603 | 0.200* | |
H13B | −0.4438 | 0.5660 | −0.4249 | 0.200* | |
H13C | −0.3375 | 0.5429 | −0.2224 | 0.200* | |
F1 | −0.1303 (3) | 0.57367 (10) | 0.2825 (4) | 0.0973 (8) | |
F2 | 0.0198 (3) | 0.55287 (10) | 0.1294 (4) | 0.0932 (8) | |
F3 | 0.1174 (3) | 0.55518 (10) | 0.4280 (4) | 0.1071 (9) | |
N1 | 0.0337 (3) | 0.75955 (12) | 0.2277 (4) | 0.0522 (7) | |
O1 | −0.2677 (3) | 0.74436 (12) | −0.0528 (4) | 0.0791 (8) | |
O2 | −0.2081 (3) | 0.64335 (11) | −0.0726 (3) | 0.0693 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0601 (6) | 0.0546 (6) | 0.0597 (6) | 0.0055 (4) | 0.0201 (5) | 0.0032 (4) |
C1 | 0.053 (2) | 0.054 (2) | 0.053 (2) | 0.0023 (16) | 0.0291 (19) | 0.0011 (16) |
C2 | 0.058 (2) | 0.055 (2) | 0.049 (2) | 0.0007 (17) | 0.0249 (18) | −0.0021 (17) |
C3 | 0.060 (2) | 0.057 (2) | 0.069 (3) | 0.0017 (18) | 0.024 (2) | 0.0034 (18) |
C4 | 0.058 (2) | 0.075 (3) | 0.066 (3) | −0.007 (2) | 0.016 (2) | −0.003 (2) |
C5 | 0.074 (3) | 0.058 (3) | 0.086 (3) | −0.010 (2) | 0.030 (2) | −0.010 (2) |
C6 | 0.073 (3) | 0.057 (2) | 0.089 (3) | 0.004 (2) | 0.024 (2) | −0.005 (2) |
C7 | 0.063 (2) | 0.054 (2) | 0.070 (3) | 0.0019 (18) | 0.015 (2) | −0.0032 (18) |
C8 | 0.053 (2) | 0.049 (2) | 0.057 (2) | 0.0039 (16) | 0.0256 (19) | −0.0011 (17) |
C9 | 0.0499 (19) | 0.054 (2) | 0.057 (2) | 0.0036 (16) | 0.0259 (17) | −0.0019 (17) |
C10 | 0.070 (3) | 0.054 (2) | 0.076 (3) | 0.0024 (19) | 0.022 (2) | 0.003 (2) |
C11 | 0.056 (2) | 0.056 (2) | 0.063 (2) | 0.0018 (18) | 0.023 (2) | 0.0041 (19) |
C12 | 0.084 (3) | 0.079 (3) | 0.073 (3) | −0.004 (2) | 0.003 (2) | −0.001 (2) |
C13 | 0.172 (5) | 0.076 (4) | 0.103 (4) | 0.002 (3) | −0.012 (4) | −0.012 (3) |
F1 | 0.0903 (17) | 0.0681 (15) | 0.149 (2) | −0.0148 (12) | 0.0613 (17) | 0.0074 (14) |
F2 | 0.118 (2) | 0.0605 (14) | 0.109 (2) | 0.0018 (12) | 0.0492 (16) | −0.0211 (13) |
F3 | 0.123 (2) | 0.0591 (15) | 0.108 (2) | 0.0033 (13) | 0.0028 (17) | 0.0185 (13) |
N1 | 0.0500 (18) | 0.0519 (18) | 0.0575 (18) | 0.0012 (13) | 0.0227 (16) | 0.0024 (13) |
O1 | 0.0707 (18) | 0.0663 (18) | 0.083 (2) | 0.0126 (14) | 0.0060 (15) | 0.0000 (14) |
O2 | 0.0701 (16) | 0.0554 (16) | 0.0701 (18) | −0.0010 (12) | 0.0100 (14) | −0.0024 (13) |
S1—C9 | 1.710 (3) | C8—C9 | 1.367 (4) |
S1—C1 | 1.719 (3) | C8—C11 | 1.487 (5) |
C1—N1 | 1.302 (4) | C9—C10 | 1.489 (5) |
C1—C2 | 1.470 (5) | C10—F2 | 1.315 (4) |
C2—C7 | 1.380 (4) | C10—F1 | 1.319 (4) |
C2—C3 | 1.386 (5) | C10—F3 | 1.334 (4) |
C3—C4 | 1.376 (5) | C11—O1 | 1.192 (4) |
C3—H3 | 0.9300 | C11—O2 | 1.321 (4) |
C4—C5 | 1.369 (5) | C12—O2 | 1.459 (4) |
C4—H4 | 0.9300 | C12—C13 | 1.474 (5) |
C5—C6 | 1.373 (5) | C12—H12A | 0.9700 |
C5—H5 | 0.9300 | C12—H12B | 0.9700 |
C6—C7 | 1.373 (5) | C13—H13A | 0.9600 |
C6—H6 | 0.9300 | C13—H13B | 0.9600 |
C7—H7 | 0.9300 | C13—H13C | 0.9600 |
C8—N1 | 1.367 (4) | ||
C9—S1—C1 | 89.59 (17) | C8—C9—S1 | 109.6 (3) |
N1—C1—C2 | 123.2 (3) | C10—C9—S1 | 118.6 (3) |
N1—C1—S1 | 114.6 (2) | F2—C10—F1 | 106.3 (3) |
C2—C1—S1 | 122.2 (3) | F2—C10—F3 | 106.0 (3) |
C7—C2—C3 | 119.1 (3) | F1—C10—F3 | 106.6 (3) |
C7—C2—C1 | 119.7 (3) | F2—C10—C9 | 114.7 (3) |
C3—C2—C1 | 121.1 (3) | F1—C10—C9 | 112.2 (3) |
C4—C3—C2 | 120.3 (3) | F3—C10—C9 | 110.5 (3) |
C4—C3—H3 | 119.8 | O1—C11—O2 | 124.8 (4) |
C2—C3—H3 | 119.8 | O1—C11—C8 | 124.0 (3) |
C5—C4—C3 | 120.0 (4) | O2—C11—C8 | 111.2 (3) |
C5—C4—H4 | 120.0 | O2—C12—C13 | 107.6 (4) |
C3—C4—H4 | 120.0 | O2—C12—H12A | 110.2 |
C4—C5—C6 | 120.0 (4) | C13—C12—H12A | 110.2 |
C4—C5—H5 | 120.0 | O2—C12—H12B | 110.2 |
C6—C5—H5 | 120.0 | C13—C12—H12B | 110.2 |
C5—C6—C7 | 120.4 (4) | H12A—C12—H12B | 108.5 |
C5—C6—H6 | 119.8 | C12—C13—H13A | 109.5 |
C7—C6—H6 | 119.8 | C12—C13—H13B | 109.5 |
C6—C7—C2 | 120.1 (4) | H13A—C13—H13B | 109.5 |
C6—C7—H7 | 119.9 | C12—C13—H13C | 109.5 |
C2—C7—H7 | 119.9 | H13A—C13—H13C | 109.5 |
N1—C8—C9 | 115.3 (3) | H13B—C13—H13C | 109.5 |
N1—C8—C11 | 116.2 (3) | C1—N1—C8 | 110.9 (3) |
C9—C8—C11 | 128.5 (3) | C11—O2—C12 | 115.9 (3) |
C8—C9—C10 | 131.6 (3) |
Experimental details
Crystal data | |
Chemical formula | C13H10F3NO2S |
Mr | 301.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.930 (3), 21.232 (6), 7.574 (2) |
β (°) | 110.861 (4) |
V (Å3) | 1342.0 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.30 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.922, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6891, 2367, 1417 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.142, 1.01 |
No. of reflections | 2367 |
No. of parameters | 182 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.19 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors are grateful for financial support from the Natural Science Foundation of China (No. 20772079) and the Science Foundation of Shanghai Municipal Commission of Sciences and Technology (07JC14020, 07ZR14040), and for structural analysis by the Instrumental Analysis & Research Center of Shanghai University.
References
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276–3277. Web of Science CrossRef PubMed CAS Google Scholar
Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rynbrandt, R. H., Nishizawa, E. E., Balogoyen, D. P., Mendoza, A. R. & Annis, K. A. (1981). J. Med. Chem. 24, 1507–1510. CrossRef CAS PubMed Web of Science Google Scholar
Sasse, F., Steinmetz, H., Schupp, T., Petersen, F., Memmert, K., Hofmann, H., Heusser, C., Brinkmann, V., Von Matt, P., Hofle, G. & Reichenbach, H. (2002). J. Antibiot. 55, 543–545. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zificsak, C. A. & Hlasta, D. J. (2004). Tetrahedron, 60, 8991–9016. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1,3-Thiazole derivatives have attracted considerable attention because of various biological activities (Sasse et al., 2002) and have broad applications in the materials science (Campeau et al., 2008). Thiazole can be used as a core for developing pharmaceutically important molecules (Zificsak & Hlasta, 2004). Trifluoromethyl substituted thiazole may be the most promising skeleton in medicinal chemistry (Rynbrandt et al., 1981). The title compound, multiple substitute 1,3-thiazol with trifluoromethyl group at 5-position, has been obtained unexpectedly in the laboratory during trying to prepare 3-chloro-2-dibenzylamino-4,4,4-trifluoro-butyric acid ethyl ester by a reaction of 2-dibenzylamino-4,4,4-trifluoro-3-hydroxy-butyric acid ethyl ester with thionyl chloride. We present here the crystal structure of the title compound.
The molecular structure is shown in Fig. 1. The bond lengths in the thiazole moiety agree with those found in methyl 2-amino-5-isopropyl-1,3-thiazole-4-carboxylate (Kennedy et al., 2004). The thiazole ring makes a dihedral angle of 5.15 (1)° with phenyl ring, showing the approximately coplanar molecular structure except for trifluoromethyl and ethoxy group. No intermolecular hydrogen bonding is observed in the crystal structure.