organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-phenyl-5-tri­fluoro­methyl-1,3-thia­zole-4-carboxyl­ate

aDepartment of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, People's Republic of China, bInstrument Analysis & Research Center, Shanghai University, Shanghai 200444, People's Republic of China, and cKey Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
*Correspondence e-mail: jhao@staff.shu.edu.cn

(Received 17 September 2008; accepted 22 September 2008; online 24 September 2008)

In the title compound, C13H10F3NO2S, the dihedral angle between the thia­zole and phenyl rings is 5.15 (1)°. No inter­molecular hydrogen bonding is observed in the crystal structure.

Related literature

For general backgroud, see: Sasse et al. (2002[Sasse, F., Steinmetz, H., Schupp, T., Petersen, F., Memmert, K., Hofmann, H., Heusser, C., Brinkmann, V., Von Matt, P., Hofle, G. & Reichenbach, H. (2002). J. Antibiot. 55, 543-545.]); Campeau et al. (2008[Campeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276-3277.]); Zificsak & Hlasta (2004[Zificsak, C. A. & Hlasta, D. J. (2004). Tetrahedron, 60, 8991-9016.]); Rynbrandt et al. (1981[Rynbrandt, R. H., Nishizawa, E. E., Balogoyen, D. P., Mendoza, A. R. & Annis, K. A. (1981). J. Med. Chem. 24, 1507-1510.]). For a related structure, see: Kennedy et al. (2004[Kennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510-o1512.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10F3NO2S

  • Mr = 301.28

  • Monoclinic, P 21 /c

  • a = 8.930 (3) Å

  • b = 21.232 (6) Å

  • c = 7.574 (2) Å

  • β = 110.861 (4)°

  • V = 1342.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 (2) K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.922, Tmax = 0.973

  • 6891 measured reflections

  • 2367 independent reflections

  • 1417 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.142

  • S = 1.01

  • 2367 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3-Thiazole derivatives have attracted considerable attention because of various biological activities (Sasse et al., 2002) and have broad applications in the materials science (Campeau et al., 2008). Thiazole can be used as a core for developing pharmaceutically important molecules (Zificsak & Hlasta, 2004). Trifluoromethyl substituted thiazole may be the most promising skeleton in medicinal chemistry (Rynbrandt et al., 1981). The title compound, multiple substitute 1,3-thiazol with trifluoromethyl group at 5-position, has been obtained unexpectedly in the laboratory during trying to prepare 3-chloro-2-dibenzylamino-4,4,4-trifluoro-butyric acid ethyl ester by a reaction of 2-dibenzylamino-4,4,4-trifluoro-3-hydroxy-butyric acid ethyl ester with thionyl chloride. We present here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The bond lengths in the thiazole moiety agree with those found in methyl 2-amino-5-isopropyl-1,3-thiazole-4-carboxylate (Kennedy et al., 2004). The thiazole ring makes a dihedral angle of 5.15 (1)° with phenyl ring, showing the approximately coplanar molecular structure except for trifluoromethyl and ethoxy group. No intermolecular hydrogen bonding is observed in the crystal structure.

Related literature top

For general backgroud, see: Sasse et al. (2002); Campeau et al. (2008); Zificsak & Hlasta (2004); Rynbrandt et al. (1981). For a related structure, see: Kennedy et al. (2004).

Experimental top

A solution of 2-dibenzylamino-4, 4, 4-trifluoro-3-hydroxy-butyric acid ethyl ester (0.2 mmol) in 10 ml thionyl chloride was refluxed for a period of half an hour till the complete consumption of raw material. Excess thionyl chloride was evaporated, the residue was diluted with anhydrous ethanol (4 ml), then concentrated by rotary evaporator. The crude product was re-crystallized from ethanol (95%) and colorless needle-type crystals of (I) were obtained.

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride their parent atoms, with C—H = 0.93 - 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for others.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), shown the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by circles of arbitrary radii.
Ethyl 2-phenyl-5-trifluoromethyl-1,3-thiazole-4-carboxylate top
Crystal data top
C13H10F3NO2SF(000) = 616
Mr = 301.28Dx = 1.491 Mg m3
Monoclinic, P21/cMelting point: 320 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.930 (3) ÅCell parameters from 1005 reflections
b = 21.232 (6) Åθ = 2.5–19.0°
c = 7.574 (2) ŵ = 0.28 mm1
β = 110.861 (4)°T = 296 K
V = 1342.0 (7) Å3Needle, colorless
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2367 independent reflections
Radiation source: fine-focus sealed tube1417 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 25.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.922, Tmax = 0.973k = 2519
6891 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0642P)2]
where P = (Fo2 + 2Fc2)/3
2367 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10F3NO2SV = 1342.0 (7) Å3
Mr = 301.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.930 (3) ŵ = 0.28 mm1
b = 21.232 (6) ÅT = 296 K
c = 7.574 (2) Å0.30 × 0.10 × 0.10 mm
β = 110.861 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2367 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1417 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.973Rint = 0.050
6891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
2367 reflectionsΔρmin = 0.19 e Å3
182 parameters
Special details top

Experimental. IR (KBr, cm-1): 3061, 2980, 1737, 1633, 1513, 1461, 1290, 1210, 766, 689. 1H NMR (CDCl3, 500 MHz). δ/p.p.m.: 7.46–8.00 (m, 5H), 4.49 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). 13C NMR (CDCl3, 125 MHz). δ/p.p.m.: 168.87, 160.27, 146.48, 131.77, 131.63, 129.24, 164.15 (q, 2JC—F = 36.5 Hz, CF3C–), 123.33 (q, 1JC—F = 269.3 Hz, –CF3), 62.41, 13.98. 19F NMR (CDCl3, 470 MHz, CFCl3). δ/p.p.m.: -52.44 (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22302 (11)0.67958 (4)0.44789 (13)0.0585 (3)
C10.1690 (4)0.75511 (15)0.3693 (5)0.0504 (8)
C20.2697 (4)0.80979 (15)0.4545 (5)0.0523 (8)
C30.4186 (4)0.80233 (17)0.5954 (5)0.0615 (10)
H30.45590.76220.63760.074*
C40.5115 (4)0.85408 (19)0.6732 (5)0.0681 (10)
H40.61160.84880.76710.082*
C50.4564 (5)0.91329 (18)0.6123 (6)0.0720 (11)
H50.51920.94830.66460.086*
C60.3083 (5)0.92108 (18)0.4743 (6)0.0741 (11)
H60.27080.96140.43430.089*
C70.2154 (4)0.86972 (16)0.3947 (5)0.0642 (10)
H70.11560.87530.30040.077*
C80.0328 (4)0.70143 (16)0.1739 (5)0.0514 (8)
C90.0515 (4)0.65213 (16)0.2791 (5)0.0517 (8)
C100.0138 (5)0.58379 (17)0.2771 (6)0.0674 (10)
C110.1837 (4)0.69976 (18)0.0062 (5)0.0577 (9)
C120.3482 (5)0.63721 (19)0.2455 (6)0.0857 (13)
H12A0.34420.66830.33750.103*
H12B0.44550.64380.21880.103*
C130.3463 (7)0.5732 (2)0.3197 (7)0.133 (2)
H13A0.25650.56890.36030.200*
H13B0.44380.56600.42490.200*
H13C0.33750.54290.22240.200*
F10.1303 (3)0.57367 (10)0.2825 (4)0.0973 (8)
F20.0198 (3)0.55287 (10)0.1294 (4)0.0932 (8)
F30.1174 (3)0.55518 (10)0.4280 (4)0.1071 (9)
N10.0337 (3)0.75955 (12)0.2277 (4)0.0522 (7)
O10.2677 (3)0.74436 (12)0.0528 (4)0.0791 (8)
O20.2081 (3)0.64335 (11)0.0726 (3)0.0693 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0601 (6)0.0546 (6)0.0597 (6)0.0055 (4)0.0201 (5)0.0032 (4)
C10.053 (2)0.054 (2)0.053 (2)0.0023 (16)0.0291 (19)0.0011 (16)
C20.058 (2)0.055 (2)0.049 (2)0.0007 (17)0.0249 (18)0.0021 (17)
C30.060 (2)0.057 (2)0.069 (3)0.0017 (18)0.024 (2)0.0034 (18)
C40.058 (2)0.075 (3)0.066 (3)0.007 (2)0.016 (2)0.003 (2)
C50.074 (3)0.058 (3)0.086 (3)0.010 (2)0.030 (2)0.010 (2)
C60.073 (3)0.057 (2)0.089 (3)0.004 (2)0.024 (2)0.005 (2)
C70.063 (2)0.054 (2)0.070 (3)0.0019 (18)0.015 (2)0.0032 (18)
C80.053 (2)0.049 (2)0.057 (2)0.0039 (16)0.0256 (19)0.0011 (17)
C90.0499 (19)0.054 (2)0.057 (2)0.0036 (16)0.0259 (17)0.0019 (17)
C100.070 (3)0.054 (2)0.076 (3)0.0024 (19)0.022 (2)0.003 (2)
C110.056 (2)0.056 (2)0.063 (2)0.0018 (18)0.023 (2)0.0041 (19)
C120.084 (3)0.079 (3)0.073 (3)0.004 (2)0.003 (2)0.001 (2)
C130.172 (5)0.076 (4)0.103 (4)0.002 (3)0.012 (4)0.012 (3)
F10.0903 (17)0.0681 (15)0.149 (2)0.0148 (12)0.0613 (17)0.0074 (14)
F20.118 (2)0.0605 (14)0.109 (2)0.0018 (12)0.0492 (16)0.0211 (13)
F30.123 (2)0.0591 (15)0.108 (2)0.0033 (13)0.0028 (17)0.0185 (13)
N10.0500 (18)0.0519 (18)0.0575 (18)0.0012 (13)0.0227 (16)0.0024 (13)
O10.0707 (18)0.0663 (18)0.083 (2)0.0126 (14)0.0060 (15)0.0000 (14)
O20.0701 (16)0.0554 (16)0.0701 (18)0.0010 (12)0.0100 (14)0.0024 (13)
Geometric parameters (Å, º) top
S1—C91.710 (3)C8—C91.367 (4)
S1—C11.719 (3)C8—C111.487 (5)
C1—N11.302 (4)C9—C101.489 (5)
C1—C21.470 (5)C10—F21.315 (4)
C2—C71.380 (4)C10—F11.319 (4)
C2—C31.386 (5)C10—F31.334 (4)
C3—C41.376 (5)C11—O11.192 (4)
C3—H30.9300C11—O21.321 (4)
C4—C51.369 (5)C12—O21.459 (4)
C4—H40.9300C12—C131.474 (5)
C5—C61.373 (5)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.373 (5)C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C7—H70.9300C13—H13C0.9600
C8—N11.367 (4)
C9—S1—C189.59 (17)C8—C9—S1109.6 (3)
N1—C1—C2123.2 (3)C10—C9—S1118.6 (3)
N1—C1—S1114.6 (2)F2—C10—F1106.3 (3)
C2—C1—S1122.2 (3)F2—C10—F3106.0 (3)
C7—C2—C3119.1 (3)F1—C10—F3106.6 (3)
C7—C2—C1119.7 (3)F2—C10—C9114.7 (3)
C3—C2—C1121.1 (3)F1—C10—C9112.2 (3)
C4—C3—C2120.3 (3)F3—C10—C9110.5 (3)
C4—C3—H3119.8O1—C11—O2124.8 (4)
C2—C3—H3119.8O1—C11—C8124.0 (3)
C5—C4—C3120.0 (4)O2—C11—C8111.2 (3)
C5—C4—H4120.0O2—C12—C13107.6 (4)
C3—C4—H4120.0O2—C12—H12A110.2
C4—C5—C6120.0 (4)C13—C12—H12A110.2
C4—C5—H5120.0O2—C12—H12B110.2
C6—C5—H5120.0C13—C12—H12B110.2
C5—C6—C7120.4 (4)H12A—C12—H12B108.5
C5—C6—H6119.8C12—C13—H13A109.5
C7—C6—H6119.8C12—C13—H13B109.5
C6—C7—C2120.1 (4)H13A—C13—H13B109.5
C6—C7—H7119.9C12—C13—H13C109.5
C2—C7—H7119.9H13A—C13—H13C109.5
N1—C8—C9115.3 (3)H13B—C13—H13C109.5
N1—C8—C11116.2 (3)C1—N1—C8110.9 (3)
C9—C8—C11128.5 (3)C11—O2—C12115.9 (3)
C8—C9—C10131.6 (3)

Experimental details

Crystal data
Chemical formulaC13H10F3NO2S
Mr301.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.930 (3), 21.232 (6), 7.574 (2)
β (°) 110.861 (4)
V3)1342.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.922, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
6891, 2367, 1417
Rint0.050
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 1.01
No. of reflections2367
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful for financial support from the Natural Science Foundation of China (No. 20772079) and the Science Foundation of Shanghai Municipal Commission of Sciences and Technology (07JC14020, 07ZR14040), and for structural analysis by the Instrumental Analysis & Research Center of Shanghai University.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampeau, L. C., Bertrand-Laperle, M., Leclerc, J. P., Villemure, E., Gorelsky, S. & Fagnou, K. (2008). J. Am. Chem. Soc. 130, 3276–3277.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKennedy, A. R., Khalaf, A. I., Suckling, C. J. & Waigh, R. D. (2004). Acta Cryst. E60, o1510–o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRynbrandt, R. H., Nishizawa, E. E., Balogoyen, D. P., Mendoza, A. R. & Annis, K. A. (1981). J. Med. Chem. 24, 1507–1510.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSasse, F., Steinmetz, H., Schupp, T., Petersen, F., Memmert, K., Hofmann, H., Heusser, C., Brinkmann, V., Von Matt, P., Hofle, G. & Reichenbach, H. (2002). J. Antibiot. 55, 543–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZificsak, C. A. & Hlasta, D. J. (2004). Tetrahedron, 60, 8991–9016.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds