metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-2-meth­­oxy-6-[(4-methyl­phen­yl)­imino­meth­yl]phenolato}zinc(II)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 19 September 2008; accepted 13 October 2008; online 18 October 2008)

The title compound, [Zn(C15H14NO2)2], contains a four-coordinate Zn atom located on a twofold rotation axis that exhibits a distorted tetra­hedral geometry by two phenolate O atoms and two azomethine N atoms of the Schiff base 2-methoxy-6-[(4-methyl­phen­yl)imino­meth­yl]phenolate ligands.

Related literature

For related literature, see: Bhattacharyya et al. (2002[Bhattacharyya, S., Mukhopadhyay, S., Samanta, S., Weakley, T. J. R. & Chaudhury, M. (2002). Inorg. Chem. 41, 2433-2440.]); Iyere et al. (2004[Iyere, P. A., Boadi, W. Y. & Ross, L. (2004). Acta Cryst. E60, m304-m306.]); Müller et al. (2001[Müller, R. M., Robson, R. & Separovic, S. (2001). Angew. Chem. Int. Ed. 40, 4385-4386.]); Yu et al. (2007[Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395-1402.]); Zhou & Zhao (2007[Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43-m44.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C15H14NO2)2]

  • Mr = 545.93

  • Monoclinic, C 2/c

  • a = 14.0698 (4) Å

  • b = 16.3828 (5) Å

  • c = 12.0532 (3) Å

  • β = 107.5880 (10)°

  • V = 2648.42 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 296 (2) K

  • 0.52 × 0.08 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.930

  • 10967 measured reflections

  • 3013 independent reflections

  • 2523 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.03

  • 3013 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base ligands derived from substituted salicylaldehyde and aniline and their metal complexes have been widely investigated because of their novel structural features (Müller et al., 2001; Bhattacharyya et al., 2002). They include complexes with a methoxy group in the ortho position as the methoxy group can also bind to the metal. Such Schiff bases behave as bidentate ligands to divalent first-row transition metals (Zhou & Zhao, 2007). Similar cobalt (II) complexes have been reported by Iyere et al. (2004). Here, we describe the synthesis and crystal structure of a zinc complex, (I), of a Schiff base derived from o-vanillin and p-toluidine.

The structural features of the (I) dimer shown in Fig.ure 1. The Zn atom sits on a twofold axis. The tridentate ligands coordinate to the Zinc ion through the phenolic hydroxy O atom and the azomethine N atom, forming a distorted tetrahedral geometry around the metal ion. It is different from the complex [ZnL2(NO3)2] (Yu et al., 2007) in which Zn is coordinated by the methoxy O atom and the azomethine N atom.

Related literature top

For related literature, see: Bhattacharyya et al. (2002); Iyere et al. (2004); Müller et al. (2001); Yu et al. (2007); Zhou & Zhao (2007). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···;" it said, for example, "For general background, see··· For related structures, see···; etc. Please revise this section as indicated.

Experimental top

The ligand was prepared by the direct solid-phase reaction of o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g). The reactants were ground in an agate mortar. The colour of the mixture changed from light yellow to orange. A solution of Zn(C2O4) (1 mmol, 0.153 g) in methanol (10 ml) was added to a methanol solution of the Schiff base ligand (2 mmol, 0.48 g). orange crystals were isolated after two weeks.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.96 Å, aliphatic C—H = 0.97 Å, and Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis{(E)-2-methoxy-6-[(4-methylphenyl)iminomethyl]phenolato}zinc(II) top
Crystal data top
[Zn(C15H14NO2)2]F(000) = 1136
Mr = 545.93Dx = 1.369 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4200 reflections
a = 14.0698 (4) Åθ = 2.0–27.5°
b = 16.3828 (5) ŵ = 0.97 mm1
c = 12.0532 (3) ÅT = 296 K
β = 107.588 (1)°Prism, orange
V = 2648.42 (13) Å30.52 × 0.08 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3013 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1818
Tmin = 0.914, Tmax = 0.930k = 1621
10967 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0548P)2 + 1.3911P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(C15H14NO2)2]V = 2648.42 (13) Å3
Mr = 545.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.0698 (4) ŵ = 0.97 mm1
b = 16.3828 (5) ÅT = 296 K
c = 12.0532 (3) Å0.52 × 0.08 × 0.08 mm
β = 107.588 (1)°
Data collection top
Bruker APEXII
diffractometer
3013 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2523 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.930Rint = 0.025
10967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.03Δρmax = 0.35 e Å3
3013 reflectionsΔρmin = 0.27 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.029267 (18)0.25000.03242 (12)
N10.04480 (11)0.08214 (9)0.12438 (13)0.0314 (3)
O10.26186 (12)0.13463 (10)0.42256 (14)0.0539 (4)
O20.11926 (10)0.03384 (8)0.31639 (12)0.0386 (3)
C10.1868 (3)0.3361 (2)0.1614 (3)0.0881 (10)
H1A0.17850.33470.23760.132*
H1B0.16410.38760.12530.132*
H1C0.25610.32910.16800.132*
C20.12681 (17)0.26797 (15)0.0881 (2)0.0526 (6)
C30.07130 (16)0.21486 (15)0.13218 (19)0.0479 (5)
H3A0.07190.22070.20910.058*
C40.01499 (15)0.15341 (13)0.06598 (17)0.0393 (5)
H4A0.02200.11880.09820.047*
C50.01341 (13)0.14317 (11)0.04915 (16)0.0326 (4)
C60.07168 (16)0.19465 (15)0.09294 (19)0.0481 (5)
H6A0.07400.18740.16860.058*
C70.12619 (19)0.25644 (17)0.0254 (2)0.0587 (6)
H7A0.16340.29120.05710.070*
C80.12692 (13)0.05742 (13)0.10587 (17)0.0344 (4)
H8A0.14110.08070.04230.041*
C90.19768 (14)0.00060 (13)0.17051 (17)0.0340 (4)
C100.28175 (17)0.01304 (15)0.1298 (2)0.0492 (6)
H10A0.28470.01370.06290.059*
C110.35710 (17)0.06289 (18)0.1865 (2)0.0611 (7)
H11A0.41180.06950.15930.073*
C120.35297 (16)0.10458 (16)0.2861 (2)0.0541 (6)
H12A0.40500.13900.32480.065*
C130.27268 (15)0.09502 (13)0.32723 (18)0.0411 (5)
C140.19242 (13)0.04184 (11)0.27139 (17)0.0321 (4)
C150.3448 (2)0.1804 (2)0.4906 (3)0.0850 (10)
H15A0.32830.20560.55430.128*
H15B0.40090.14480.52020.128*
H15C0.36120.22190.44310.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02977 (17)0.0356 (2)0.0350 (2)0.0000.01448 (13)0.000
N10.0318 (7)0.0305 (8)0.0330 (8)0.0016 (6)0.0113 (6)0.0010 (6)
O10.0533 (9)0.0591 (10)0.0499 (10)0.0229 (8)0.0166 (8)0.0156 (8)
O20.0340 (7)0.0464 (9)0.0391 (8)0.0076 (6)0.0167 (6)0.0083 (6)
C10.094 (2)0.087 (2)0.086 (2)0.0422 (19)0.0316 (19)0.0423 (19)
C20.0495 (12)0.0524 (14)0.0538 (14)0.0119 (11)0.0124 (11)0.0160 (11)
C30.0497 (12)0.0564 (14)0.0368 (12)0.0018 (10)0.0118 (10)0.0095 (10)
C40.0425 (10)0.0401 (12)0.0357 (11)0.0003 (9)0.0123 (9)0.0037 (9)
C50.0322 (9)0.0305 (10)0.0356 (10)0.0026 (7)0.0110 (8)0.0003 (8)
C60.0486 (12)0.0614 (15)0.0368 (12)0.0157 (11)0.0166 (10)0.0043 (10)
C70.0610 (14)0.0629 (16)0.0547 (14)0.0272 (13)0.0213 (12)0.0037 (12)
C80.0344 (9)0.0373 (10)0.0344 (10)0.0048 (8)0.0148 (8)0.0001 (8)
C90.0308 (9)0.0358 (10)0.0378 (11)0.0009 (8)0.0143 (8)0.0030 (9)
C100.0444 (12)0.0583 (15)0.0539 (14)0.0054 (10)0.0283 (11)0.0048 (11)
C110.0429 (12)0.0791 (18)0.0708 (17)0.0175 (13)0.0312 (12)0.0049 (15)
C120.0404 (11)0.0606 (15)0.0620 (15)0.0184 (11)0.0167 (11)0.0040 (12)
C130.0399 (10)0.0424 (12)0.0400 (11)0.0060 (9)0.0106 (9)0.0013 (9)
C140.0291 (9)0.0324 (10)0.0349 (10)0.0012 (7)0.0096 (8)0.0057 (8)
C150.078 (2)0.098 (2)0.077 (2)0.0455 (18)0.0210 (16)0.0416 (19)
Geometric parameters (Å, º) top
Zn1—O2i1.9270 (13)C5—C61.387 (3)
Zn1—O21.9270 (13)C6—C71.378 (3)
Zn1—N12.0043 (15)C6—H6A0.9300
Zn1—N1i2.0043 (15)C7—H7A0.9300
N1—C81.306 (2)C8—C91.426 (3)
N1—C51.430 (2)C8—H8A0.9300
O1—C131.368 (2)C9—C141.412 (3)
O1—C151.421 (3)C9—C101.426 (2)
O2—C141.307 (2)C10—C111.349 (3)
C1—C21.512 (3)C10—H10A0.9300
C1—H1A0.9600C11—C121.398 (3)
C1—H1B0.9600C11—H11A0.9300
C1—H1C0.9600C12—C131.373 (3)
C2—C31.378 (3)C12—H12A0.9300
C2—C71.379 (3)C13—C141.424 (3)
C3—C41.377 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.391 (3)C15—H15C0.9600
C4—H4A0.9300
O2i—Zn1—O2115.11 (9)C5—C6—H6A119.7
O2i—Zn1—N1110.57 (6)C6—C7—C2121.5 (2)
O2—Zn1—N196.45 (6)C6—C7—H7A119.3
O2i—Zn1—N1i96.45 (6)C2—C7—H7A119.3
O2—Zn1—N1i110.57 (6)N1—C8—C9128.41 (17)
N1—Zn1—N1i128.79 (9)N1—C8—H8A115.8
C8—N1—C5118.39 (15)C9—C8—H8A115.8
C8—N1—Zn1119.45 (13)C14—C9—C10119.53 (19)
C5—N1—Zn1122.05 (11)C14—C9—C8125.43 (16)
C13—O1—C15117.05 (19)C10—C9—C8114.97 (18)
C14—O2—Zn1125.29 (12)C11—C10—C9121.3 (2)
C2—C1—H1A109.5C11—C10—H10A119.4
C2—C1—H1B109.5C9—C10—H10A119.4
H1A—C1—H1B109.5C10—C11—C12120.0 (2)
C2—C1—H1C109.5C10—C11—H11A120.0
H1A—C1—H1C109.5C12—C11—H11A120.0
H1B—C1—H1C109.5C13—C12—C11120.4 (2)
C3—C2—C7117.5 (2)C13—C12—H12A119.8
C3—C2—C1121.5 (2)C11—C12—H12A119.8
C7—C2—C1121.0 (2)O1—C13—C12124.2 (2)
C4—C3—C2122.1 (2)O1—C13—C14114.43 (16)
C4—C3—H3A118.9C12—C13—C14121.4 (2)
C2—C3—H3A118.9O2—C14—C9124.19 (17)
C3—C4—C5119.94 (19)O2—C14—C13118.47 (17)
C3—C4—H4A120.0C9—C14—C13117.33 (16)
C5—C4—H4A120.0O1—C15—H15A109.5
C6—C5—C4118.24 (19)O1—C15—H15B109.5
C6—C5—N1118.37 (17)H15A—C15—H15B109.5
C4—C5—N1123.39 (17)O1—C15—H15C109.5
C7—C6—C5120.6 (2)H15A—C15—H15C109.5
C7—C6—H6A119.7H15B—C15—H15C109.5
O2i—Zn1—N1—C8111.17 (15)C5—N1—C8—C9178.22 (19)
O2—Zn1—N1—C88.73 (15)Zn1—N1—C8—C95.4 (3)
N1i—Zn1—N1—C8131.72 (15)N1—C8—C9—C141.6 (3)
O2i—Zn1—N1—C565.06 (15)N1—C8—C9—C10178.4 (2)
O2—Zn1—N1—C5175.04 (14)C14—C9—C10—C110.7 (4)
N1i—Zn1—N1—C552.05 (13)C8—C9—C10—C11176.4 (2)
O2i—Zn1—O2—C14107.71 (16)C9—C10—C11—C121.0 (4)
N1—Zn1—O2—C148.61 (16)C10—C11—C12—C130.2 (4)
N1i—Zn1—O2—C14144.32 (15)C15—O1—C13—C128.0 (4)
C7—C2—C3—C41.5 (4)C15—O1—C13—C14172.3 (2)
C1—C2—C3—C4178.9 (2)C11—C12—C13—O1178.7 (2)
C2—C3—C4—C50.4 (3)C11—C12—C13—C141.0 (4)
C3—C4—C5—C61.7 (3)Zn1—O2—C14—C94.4 (3)
C3—C4—C5—N1178.54 (18)Zn1—O2—C14—C13175.95 (14)
C8—N1—C5—C6151.95 (19)C10—C9—C14—O2179.16 (19)
Zn1—N1—C5—C631.8 (2)C8—C9—C14—O22.4 (3)
C8—N1—C5—C428.3 (3)C10—C9—C14—C130.5 (3)
Zn1—N1—C5—C4147.93 (15)C8—C9—C14—C13177.21 (19)
C4—C5—C6—C72.8 (3)O1—C13—C14—O21.9 (3)
N1—C5—C6—C7177.5 (2)C12—C13—C14—O2178.3 (2)
C5—C6—C7—C21.7 (4)O1—C13—C14—C9178.41 (18)
C3—C2—C7—C60.5 (4)C12—C13—C14—C91.3 (3)
C1—C2—C7—C6179.9 (3)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C15H14NO2)2]
Mr545.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)14.0698 (4), 16.3828 (5), 12.0532 (3)
β (°) 107.588 (1)
V3)2648.42 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.52 × 0.08 × 0.08
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.914, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
10967, 3013, 2523
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.03
No. of reflections3013
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBhattacharyya, S., Mukhopadhyay, S., Samanta, S., Weakley, T. J. R. & Chaudhury, M. (2002). Inorg. Chem. 41, 2433–2440.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIyere, P. A., Boadi, W. Y. & Ross, L. (2004). Acta Cryst. E60, m304–m306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMüller, R. M., Robson, R. & Separovic, S. (2001). Angew. Chem. Int. Ed. 40, 4385–4386.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395–1402.  CAS Google Scholar
First citationZhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds