organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9-Di-2-furyl-2,4,8,10-tetra­oxa­spiro­[5.5]undecane

aMicroscale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 23 September 2008; accepted 12 October 2008; online 18 October 2008)

The title compound, C15H16O6, was prepared by reaction of 2,2-bis­(hydroxy­meth­yl)propane-1,3-diol with 2-furaldehyde in the presence of hydro­chloric acid at room temperature. The asymmetric unit contains two crystallographically independent mol­ecules. In these two mol­ecules, the dihedral angles between the five-membered rings are 56.4 (3) and 56.3 (3)°. The six-membered rings adopt chair conformations. Inter­molecular C—H⋯π inter­actions link the mol­ecules and may be effective in the stabilization of the crystal structure.

Related literature

For background on di-acetals of penta­erythritol, see: Jermy & Pandurangan (2005[Jermy, B. R. & Pandurangan, A. (2005). Appl. Catal. A, 295, 185-192.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O6

  • Mr = 292.28

  • Orthorhombic, P c a 21

  • a = 11.756 (3) Å

  • b = 5.5832 (13) Å

  • c = 42.728 (9) Å

  • V = 2804.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 273 (2) K

  • 0.20 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 13819 measured reflections

  • 3554 independent reflections

  • 1793 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.125

  • S = 1.02

  • 3554 reflections

  • 380 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the O6C/C12C–C15C ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1⋯Cg1 0.93 2.70 3.478 (6) 142

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The di-acetals of pentaerythritol are a series of useful organic compounds. They have been used as important intermediates in the synthesis of pesticides (Jermy & Pandurangan, 2005). we sythesis the title compound (I) and report its crystal structure here.

In the crystal structure of (I), the asymmetric unit contains two crystallographically independent molecules (Fig. 1). The dihedral angle formed by the ring (O1A/C1A–C4A) and the ring (O6A/C12A–C15A) is 56.4 (3)° and 56.3 (3)° for the ring (O1CA/C1C–C4C) and the ring (O6C/C12C–C15C). The six-membered rings of the two independent molecules of (I), (O2A/O3A/C5A–C8A), (O2C/O3C/C5C–C8C), (O4A/O5A/C8A–C11A) and (O4C/O5C/C8C–C11C) have chair conformations [the puckering parameters: QT = 0.564 (5) Å, ϕ = 170 (15)°, θ = 0.0 (5)°; QT = 0.563 (5) Å, ϕ = 244 (10)°, θ = 176.7 (5)°; QT = 0.574 (5) Å, ϕ = 292 (9)°, θ = 2.3 (5)° and QT = 0.573 (5) Å, ϕ = 309 (22)°, θ = 178.1 (5)°, respectively (Cremer & Pople, 1975)].

Intermolecular C···H···π link the molecules and may be effective in the stabilization of the crystal structure (Table 1).

Related literature top

For background on di-acetals of pentaerythritol, see: Jermy & Pandurangan (2005). For puckering parameters, see: Cremer & Pople (1975). Please check changes

Experimental top

The title compound (I) was prepared by the process as following: ethyl isonicotinate 1.51 g (0.01 mol) and hydrazine hydrate 0.32 g (0.01 mol) with ethanol at 377 K for 3 h, afford ivory-white compound A 1.32 g (yield 96%), then add 0.06 ml carbon disulfide and KOH 0.56 g(0.01 mol) with ethanol, stirred at room temperature for 5 h, afford yellow compound B 2.0 g (yield 85.6%). At last, add 0.32 g hydrazine hydrate to the compound B with water at 377 K for 12 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from DMF-HCl(3:1) at 334 K.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq of the parent atoms. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
3,9-Di-2-furyl-2,4,8,10-tetraoxaspiro[5.5]undecane top
Crystal data top
C15H16O6F(000) = 1232
Mr = 292.28Dx = 1.384 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2523 reflections
a = 11.756 (3) Åθ = 1.9–28.8°
b = 5.5832 (13) ŵ = 0.11 mm1
c = 42.728 (9) ÅT = 273 K
V = 2804.5 (11) Å3Bar, colourless
Z = 80.20 × 0.15 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1793 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 28.8°, θmin = 1.9°
ϕ and ω scansh = 1515
13819 measured reflectionsk = 76
3554 independent reflectionsl = 2857
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3554 reflectionsΔρmax = 0.17 e Å3
380 parametersΔρmin = 0.17 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0043 (7)
Crystal data top
C15H16O6V = 2804.5 (11) Å3
Mr = 292.28Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 11.756 (3) ŵ = 0.11 mm1
b = 5.5832 (13) ÅT = 273 K
c = 42.728 (9) Å0.20 × 0.15 × 0.13 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1793 reflections with I > 2σ(I)
13819 measured reflectionsRint = 0.069
3554 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.125H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
3554 reflectionsΔρmin = 0.17 e Å3
380 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.9377 (3)0.0310 (7)0.19447 (12)0.0640 (12)
O2A0.7186 (2)0.2654 (6)0.14554 (7)0.0511 (8)
O3A0.8254 (3)0.0757 (7)0.13372 (8)0.0497 (8)
O4A0.4986 (2)0.0918 (6)0.06685 (8)0.0501 (8)
O5A0.6606 (2)0.3243 (5)0.06050 (7)0.0485 (8)
O6A0.5577 (3)0.5078 (7)0.00488 (13)0.0686 (14)
C1A1.0251 (4)0.1649 (13)0.20675 (12)0.0699 (17)
H11.07800.10860.22120.084*
C2A1.0235 (5)0.3856 (14)0.19522 (15)0.0729 (17)
H21.07370.50930.19990.087*
C3A0.9290 (4)0.3953 (12)0.17413 (12)0.0610 (14)
H3A0.90600.52690.16240.073*
C4A0.8807 (4)0.1810 (9)0.17450 (11)0.0493 (13)
C5A0.7824 (4)0.0747 (10)0.15763 (12)0.0488 (12)
H30.73580.01910.17220.059*
C6A0.6229 (3)0.1810 (9)0.12730 (11)0.0498 (12)
H40.57080.09460.14080.060*
H50.58250.31700.11860.060*
C7A0.7335 (4)0.1789 (9)0.11575 (12)0.0529 (13)
H60.76440.28070.09940.063*
H70.68640.27700.12930.063*
C8A0.6613 (4)0.0183 (8)0.10104 (15)0.0406 (15)
C9A0.5593 (4)0.0911 (10)0.08414 (13)0.0564 (13)
H80.50860.16440.09930.068*
H90.58520.21480.06990.068*
C10A0.7312 (3)0.1575 (8)0.07684 (11)0.0479 (12)
H10A0.76490.04640.06200.058*
H10B0.79230.24260.08730.058*
C11A0.5709 (4)0.2040 (8)0.04513 (11)0.0466 (11)
H11A0.60170.08530.03050.056*
C12A0.5016 (3)0.3830 (8)0.02793 (10)0.0429 (11)
C13A0.3940 (4)0.4551 (11)0.02931 (16)0.0567 (16)
H13A0.33800.39680.04270.068*
C14A0.3807 (4)0.6389 (9)0.00639 (13)0.0592 (14)
H14A0.31460.72400.00200.071*
C15A0.4803 (5)0.6641 (10)0.00723 (13)0.0683 (16)
H15A0.49580.77400.02300.082*
O1C0.8218 (3)0.0078 (6)0.44998 (13)0.0703 (15)
O2C0.7613 (2)0.4102 (6)0.38836 (8)0.0505 (8)
O3C0.9241 (2)0.1758 (5)0.39479 (7)0.0472 (8)
O4C0.9819 (2)0.2334 (6)0.31003 (7)0.0522 (8)
O5C1.0889 (3)0.5735 (6)0.32170 (8)0.0488 (8)
O6C1.1999 (3)0.4592 (7)0.25972 (11)0.0637 (12)
C1C0.7431 (5)0.1642 (10)0.46269 (13)0.0670 (15)
H100.75800.27190.47880.080*
C2C0.6432 (4)0.1384 (9)0.44859 (13)0.0594 (14)
H110.57710.22380.45290.071*
C3C0.6563 (4)0.0432 (10)0.42592 (15)0.0525 (14)
H120.60040.10100.41250.063*
C4C0.7649 (4)0.1166 (9)0.42743 (11)0.0467 (12)
C5C0.8333 (3)0.2969 (8)0.40988 (12)0.0486 (12)
H130.86410.41570.42450.058*
C6C0.8220 (4)0.5912 (10)0.37114 (13)0.0545 (13)
H140.77160.66370.35590.065*
H150.84730.71560.38540.065*
C7C0.9949 (3)0.3431 (8)0.37802 (11)0.0492 (13)
H161.02940.45390.39270.059*
H171.05530.25700.36740.059*
C8C0.9258 (4)0.4814 (8)0.35426 (16)0.0446 (16)
C9C0.8853 (3)0.3187 (9)0.32749 (11)0.0486 (12)
H180.83490.40750.31380.058*
H190.84340.18390.33600.058*
C10C0.9987 (4)0.6797 (8)0.33978 (13)0.0540 (13)
H10C1.03060.77930.35620.065*
H10D0.95200.78000.32640.065*
C11C1.0466 (4)0.4235 (10)0.29762 (12)0.0445 (11)
H11B1.00040.51730.28300.053*
C12C1.1446 (4)0.3143 (9)0.28089 (11)0.0502 (13)
C13C1.1951 (4)0.0968 (11)0.28203 (12)0.0587 (14)
H13B1.17400.03190.29460.070*
C14C1.2866 (4)0.1037 (14)0.26034 (13)0.0701 (15)
H14C1.33700.02010.25590.084*
C15C1.2864 (4)0.3213 (13)0.24756 (13)0.0708 (17)
H15B1.33770.37310.23240.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.056 (2)0.081 (3)0.055 (3)0.0011 (19)0.010 (2)0.012 (2)
O2A0.0440 (17)0.049 (2)0.0598 (19)0.0066 (15)0.0060 (16)0.0094 (16)
O3A0.0468 (18)0.047 (2)0.055 (2)0.0073 (16)0.0066 (17)0.002 (2)
O4A0.0347 (16)0.053 (2)0.063 (2)0.0062 (14)0.0055 (16)0.007 (2)
O5A0.0325 (16)0.052 (2)0.0610 (18)0.0038 (13)0.0051 (15)0.0122 (16)
O6A0.045 (2)0.091 (4)0.070 (3)0.0075 (18)0.005 (2)0.032 (2)
C1A0.050 (3)0.104 (6)0.056 (4)0.002 (3)0.012 (3)0.006 (3)
C2A0.059 (4)0.077 (5)0.083 (4)0.010 (3)0.010 (3)0.020 (4)
C3A0.058 (3)0.062 (4)0.062 (3)0.007 (3)0.011 (3)0.004 (3)
C4A0.043 (3)0.058 (4)0.047 (3)0.002 (2)0.005 (2)0.002 (2)
C5A0.043 (3)0.051 (3)0.053 (3)0.004 (2)0.003 (2)0.006 (3)
C6A0.038 (3)0.059 (3)0.052 (3)0.003 (2)0.002 (2)0.004 (2)
C7A0.053 (3)0.046 (3)0.060 (3)0.003 (2)0.015 (3)0.002 (3)
C8A0.032 (2)0.040 (4)0.050 (4)0.0023 (18)0.004 (2)0.001 (2)
C9A0.053 (3)0.043 (3)0.073 (4)0.006 (2)0.015 (3)0.000 (3)
C10A0.034 (2)0.053 (3)0.057 (3)0.009 (2)0.007 (2)0.005 (2)
C11A0.042 (3)0.052 (3)0.046 (3)0.000 (2)0.005 (2)0.001 (2)
C12A0.036 (2)0.053 (3)0.040 (3)0.002 (2)0.001 (2)0.000 (2)
C13A0.045 (3)0.062 (4)0.063 (4)0.004 (2)0.010 (3)0.010 (3)
C14A0.052 (3)0.065 (4)0.061 (4)0.008 (2)0.014 (3)0.002 (3)
C15A0.058 (3)0.081 (4)0.066 (4)0.002 (3)0.007 (3)0.025 (3)
O1C0.0427 (19)0.092 (4)0.076 (3)0.0014 (17)0.001 (2)0.032 (2)
O2C0.0375 (16)0.052 (2)0.062 (2)0.0069 (15)0.0041 (17)0.008 (2)
O3C0.0334 (16)0.053 (2)0.0553 (18)0.0017 (14)0.0044 (14)0.0040 (16)
O4C0.0429 (18)0.051 (2)0.062 (2)0.0053 (15)0.0059 (16)0.0054 (17)
O5C0.0437 (18)0.0462 (19)0.057 (2)0.0067 (16)0.0043 (17)0.001 (2)
O6C0.061 (2)0.074 (3)0.056 (3)0.0053 (18)0.009 (2)0.007 (2)
C1C0.058 (3)0.076 (4)0.068 (3)0.001 (3)0.012 (3)0.032 (3)
C2C0.052 (3)0.062 (4)0.064 (4)0.011 (2)0.001 (3)0.004 (3)
C3C0.041 (3)0.065 (4)0.051 (4)0.005 (2)0.000 (3)0.003 (3)
C4C0.040 (3)0.054 (3)0.046 (3)0.001 (2)0.001 (2)0.002 (3)
C5C0.037 (2)0.051 (3)0.058 (3)0.003 (2)0.004 (2)0.004 (2)
C6C0.048 (3)0.050 (3)0.066 (3)0.006 (2)0.012 (3)0.008 (3)
C7C0.035 (2)0.053 (3)0.060 (3)0.003 (2)0.002 (2)0.002 (2)
C8C0.042 (3)0.034 (3)0.058 (4)0.0001 (18)0.001 (3)0.001 (2)
C9C0.031 (2)0.058 (3)0.057 (3)0.002 (2)0.004 (2)0.005 (2)
C10C0.057 (3)0.042 (3)0.063 (3)0.004 (2)0.012 (3)0.000 (3)
C11C0.044 (3)0.048 (3)0.042 (3)0.002 (2)0.002 (2)0.006 (3)
C12C0.047 (3)0.067 (4)0.036 (3)0.005 (2)0.003 (2)0.005 (2)
C13C0.058 (3)0.064 (4)0.055 (3)0.013 (3)0.007 (3)0.005 (3)
C14C0.055 (3)0.095 (5)0.060 (4)0.014 (3)0.005 (3)0.011 (4)
C15C0.048 (3)0.106 (5)0.059 (3)0.006 (3)0.015 (3)0.011 (4)
Geometric parameters (Å, º) top
O1A—C4A1.370 (6)O1C—C4C1.363 (6)
O1A—C1A1.374 (7)O1C—C1C1.383 (6)
O2A—C5A1.401 (6)O2C—C5C1.401 (5)
O2A—C6A1.448 (5)O2C—C6C1.439 (6)
O3A—C5A1.416 (6)O3C—C5C1.418 (5)
O3A—C7A1.445 (5)O3C—C7C1.442 (5)
O4A—C11A1.405 (5)O4C—C11C1.410 (6)
O4A—C9A1.448 (6)O4C—C9C1.439 (5)
O5A—C11A1.412 (5)O5C—C11C1.417 (6)
O5A—C10A1.430 (5)O5C—C10C1.440 (6)
O6A—C15A1.363 (6)O6C—C15C1.377 (7)
O6A—C12A1.375 (6)O6C—C12C1.377 (6)
C1A—C2A1.327 (9)C1C—C2C1.327 (7)
C1A—H10.9300C1C—H100.9300
C2A—C3A1.431 (7)C2C—C3C1.411 (8)
C2A—H20.9300C2C—H110.9300
C3A—C4A1.324 (7)C3C—C4C1.343 (6)
C3A—H3A0.9300C3C—H120.9300
C4A—C5A1.486 (6)C4C—C5C1.491 (6)
C5A—H30.9800C5C—H130.9800
C6A—C8A1.512 (8)C6C—C8C1.545 (7)
C6A—H40.9700C6C—H140.9700
C6A—H50.9700C6C—H150.9700
C7A—C8A1.526 (7)C7C—C8C1.512 (7)
C7A—H60.9700C7C—H160.9700
C7A—H70.9700C7C—H170.9700
C8A—C9A1.528 (7)C8C—C10C1.531 (7)
C8A—C10A1.532 (7)C8C—C9C1.536 (8)
C9A—H80.9700C9C—H180.9700
C9A—H90.9700C9C—H190.9700
C10A—H10A0.9700C10C—H10C0.9700
C10A—H10B0.9700C10C—H10D0.9700
C11A—C12A1.484 (6)C11C—C12C1.487 (7)
C11A—H11A0.9800C11C—H11B0.9800
C12A—C13A1.328 (6)C12C—C13C1.352 (7)
C13A—C14A1.427 (8)C13C—C14C1.420 (7)
C13A—H13A0.9300C13C—H13B0.9300
C14A—C15A1.315 (6)C14C—C15C1.332 (8)
C14A—H14A0.9300C14C—H14C0.9300
C15A—H15A0.9300C15C—H15B0.9300
C4A—O1A—C1A105.7 (5)C4C—O1C—C1C105.7 (4)
C5A—O2A—C6A111.5 (4)C5C—O2C—C6C110.7 (3)
C5A—O3A—C7A110.7 (3)C5C—O3C—C7C110.6 (3)
C11A—O4A—C9A110.7 (3)C11C—O4C—C9C111.8 (4)
C11A—O5A—C10A110.5 (3)C11C—O5C—C10C112.0 (3)
C15A—O6A—C12A106.0 (4)C15C—O6C—C12C105.5 (5)
C2A—C1A—O1A110.7 (5)C2C—C1C—O1C110.2 (5)
C2A—C1A—H1124.7C2C—C1C—H10124.9
O1A—C1A—H1124.7O1C—C1C—H10124.9
C1A—C2A—C3A106.2 (6)C1C—C2C—C3C107.0 (4)
C1A—C2A—H2126.9C1C—C2C—H11126.5
C3A—C2A—H2126.9C3C—C2C—H11126.5
C4A—C3A—C2A106.9 (6)C4C—C3C—C2C106.9 (5)
C4A—C3A—H3A126.5C4C—C3C—H12126.6
C2A—C3A—H3A126.5C2C—C3C—H12126.6
C3A—C4A—O1A110.5 (4)C3C—C4C—O1C110.2 (5)
C3A—C4A—C5A133.5 (5)C3C—C4C—C5C134.0 (5)
O1A—C4A—C5A116.0 (5)O1C—C4C—C5C115.8 (4)
O2A—C5A—O3A112.1 (4)O2C—C5C—O3C111.8 (4)
O2A—C5A—C4A107.0 (4)O2C—C5C—C4C108.0 (4)
O3A—C5A—C4A108.0 (3)O3C—C5C—C4C108.2 (4)
O2A—C5A—H3109.9O2C—C5C—H13109.6
O3A—C5A—H3109.9O3C—C5C—H13109.6
C4A—C5A—H3109.9C4C—C5C—H13109.6
O2A—C6A—C8A111.3 (3)O2C—C6C—C8C110.6 (4)
O2A—C6A—H4109.4O2C—C6C—H14109.5
C8A—C6A—H4109.4C8C—C6C—H14109.5
O2A—C6A—H5109.4O2C—C6C—H15109.5
C8A—C6A—H5109.4C8C—C6C—H15109.5
H4—C6A—H5108.0H14—C6C—H15108.1
O3A—C7A—C8A110.3 (4)O3C—C7C—C8C110.8 (3)
O3A—C7A—H6109.6O3C—C7C—H16109.5
C8A—C7A—H6109.6C8C—C7C—H16109.5
O3A—C7A—H7109.6O3C—C7C—H17109.5
C8A—C7A—H7109.6C8C—C7C—H17109.5
H6—C7A—H7108.1H16—C7C—H17108.1
C6A—C8A—C9A110.8 (4)C7C—C8C—C10C109.9 (4)
C6A—C8A—C7A107.1 (5)C7C—C8C—C9C111.4 (4)
C9A—C8A—C7A110.0 (4)C10C—C8C—C9C107.5 (5)
C6A—C8A—C10A110.9 (4)C7C—C8C—C6C108.3 (5)
C9A—C8A—C10A107.7 (5)C10C—C8C—C6C110.1 (4)
C7A—C8A—C10A110.2 (4)C9C—C8C—C6C109.7 (4)
O4A—C9A—C8A110.2 (4)O4C—C9C—C8C109.7 (3)
O4A—C9A—H8109.6O4C—C9C—H18109.7
C8A—C9A—H8109.6C8C—C9C—H18109.7
O4A—C9A—H9109.6O4C—C9C—H19109.7
C8A—C9A—H9109.6C8C—C9C—H19109.7
H8—C9A—H9108.1H18—C9C—H19108.2
O5A—C10A—C8A110.4 (3)O5C—C10C—C8C109.3 (4)
O5A—C10A—H10A109.6O5C—C10C—H10C109.8
C8A—C10A—H10A109.6C8C—C10C—H10C109.8
O5A—C10A—H10B109.6O5C—C10C—H10D109.8
C8A—C10A—H10B109.6C8C—C10C—H10D109.8
H10A—C10A—H10B108.1H10C—C10C—H10D108.3
O4A—C11A—O5A110.9 (4)O4C—C11C—O5C111.2 (4)
O4A—C11A—C12A107.2 (3)O4C—C11C—C12C106.9 (4)
O5A—C11A—C12A108.7 (4)O5C—C11C—C12C108.7 (4)
O4A—C11A—H11A110.0O4C—C11C—H11B110.0
O5A—C11A—H11A110.0O5C—C11C—H11B110.0
C12A—C11A—H11A110.0C12C—C11C—H11B110.0
C13A—C12A—O6A109.6 (5)C13C—C12C—O6C110.1 (5)
C13A—C12A—C11A134.8 (5)C13C—C12C—C11C133.7 (5)
O6A—C12A—C11A115.6 (4)O6C—C12C—C11C116.2 (5)
C12A—C13A—C14A107.0 (5)C12C—C13C—C14C106.5 (6)
C12A—C13A—H13A126.5C12C—C13C—H13B126.7
C14A—C13A—H13A126.5C14C—C13C—H13B126.7
C15A—C14A—C13A106.4 (5)C15C—C14C—C13C106.9 (6)
C15A—C14A—H14A126.8C15C—C14C—H14C126.6
C13A—C14A—H14A126.8C13C—C14C—H14C126.6
C14A—C15A—O6A111.0 (5)C14C—C15C—O6C110.9 (5)
C14A—C15A—H15A124.5C14C—C15C—H15B124.5
O6A—C15A—H15A124.5O6C—C15C—H15B124.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1···Cg10.932.703.478 (6)142

Experimental details

Crystal data
Chemical formulaC15H16O6
Mr292.28
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)273
a, b, c (Å)11.756 (3), 5.5832 (13), 42.728 (9)
V3)2804.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13819, 3554, 1793
Rint0.069
(sin θ/λ)max1)0.677
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.125, 1.02
No. of reflections3554
No. of parameters380
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.17

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1···Cg10.932.703.478 (6)142
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJermy, B. R. & Pandurangan, A. (2005). Appl. Catal. A, 295, 185–192.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds