organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[3-(4-Nitro­phen­­oxy)prop­­oxy]aniline

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China, and bKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China
*Correspondence e-mail: sci.yqzhang@gzu.edu.cn

(Received 27 September 2008; accepted 7 October 2008; online 15 October 2008)

The mol­ecules of the title compound, C15H16N2O4, are linked via N—H⋯O hydrogen bonds, forming undulating one-dimensional chains. Adjacent chains are linked by weak C—H⋯π inter­actions, forming a three-dimensional network.

Related literature

For general background, see: Day & Arnold (2000[Day, A. I. & Arnold, A. P. (2000). World Patent No. WO/2000/068 232.]); Day et al. (2002[Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275-277.]); Freeman et al. (1981[Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.]); Kim et al. (2000[Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O4

  • Mr = 288.30

  • Orthorhombic, P c c n

  • a = 10.808 (8) Å

  • b = 34.79 (3) Å

  • c = 7.596 (6) Å

  • V = 2857 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 (2) K

  • 0.23 × 0.19 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.984

  • 17736 measured reflections

  • 2509 independent reflections

  • 1554 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.05

  • 2509 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯O1i 0.86 2.29 3.123 (3) 164
C3—H3⋯Cg1ii 0.93 3.07 3.513 (4) 111
C7—H7BCg2iii 0.97 2.71 3.567 (4) 148
C13—H13⋯Cg2iv 0.93 3.01 3.757 (4) 139
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y, z-{\script{3\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (iv) [-x-{\script{1\over 2}}, y, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 phenyl rings, respectively

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on bibenzene compound, we present the crystal structure of the title compound (I) containing multiple functional groups that can develop strong interactions with cucurbit[n]urils (CB[n]) (Freeman et al., 1981; Day & Arnold, 2000; Day et al., 2002; Kim et al., 2000)

The crystal structure of (I) is shown in Fig.1. Two phenyl rings were linked by ethereal chain forming a non-coplanar structure and the dihedral angle between two phenyl ring is 26.13 (9) Å. Molecules are linked via N2—H2B···O1 hydrogen bonds forming a undulant one-dimensional chains (Fig. 2) and adjacent chains are linked by C—H···π interaction forming a three-dimensional framework (Table 1, Cg1 and Cg2 are centroids of the phenyl ring (C1—C6) and (C10—C15), respectively).

Related literature top

For general background, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000). Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 phenyl rings, respectively

Experimental top

P-toluenesulfonyl chloride (7.62 g, 40 mmol) was added slowly, whilst stirring, to a pyridine solution (50 ml) containing 1,3-propanediol (1.52 g, 20 mmol). The mixture was stirred for about 4 h in the range of 268 K - 278 K. Water (40 ml) was added to the resulting solution, the precipitate was collected by filtration, the solid product was crystallized using ethanol. The solid product (6.85 g, 20 mmol) dissolved in DMF (100 ml) containing K2CO3 (2 g), p-nitrophenol (0.54 g, 4 mmol) was added slowly, to the DMF(100 ml) solution, and the mixture was heated at 353 K for 24 h, and then the solvent was removed into water and filtered, the residue was washed with water, and 1,3-bis(-nitrylphenoxy)-propane was obtained. Hydrazine (30 g,80%) was added slowly to a stirred solution of ethanol (50 ml) containing 1,4-bis(-nitrylphenoxy)-propane (3.12 g, 10 mmol), FeCl3.6H2O (0.8 g) and active carbon (1.8 g) at 348 K for 5 h, and then the solvent was filtered, the solid product was crystallized using ethanol, Single crystals of (I) were obtained after a week.

Refinement top

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.97 Å (methylene) and 0.93 Å (aromatic), N—H = 0.861 Å, and Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Hydrogen bonds are shown as dashed lines.
4-[3-(4-Nitrophenoxy)propoxy]aniline top
Crystal data top
C15H16N2O4F(000) = 1216
Mr = 288.30Dx = 1.341 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 2509 reflections
a = 10.808 (8) Åθ = 2.0–25.0°
b = 34.79 (3) ŵ = 0.10 mm1
c = 7.596 (6) ÅT = 298 K
V = 2857 (4) Å3Prism, brown
Z = 80.23 × 0.19 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2509 independent reflections
Radiation source: fine-focus sealed tube1554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.978, Tmax = 0.984k = 3741
17736 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C15H16N2O4V = 2857 (4) Å3
Mr = 288.30Z = 8
Orthorhombic, PccnMo Kα radiation
a = 10.808 (8) ŵ = 0.10 mm1
b = 34.79 (3) ÅT = 298 K
c = 7.596 (6) Å0.23 × 0.19 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2509 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1554 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.065
17736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
2509 reflectionsΔρmin = 0.16 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3694 (2)0.52612 (6)0.2758 (3)0.0531 (6)
C20.4692 (2)0.54418 (6)0.1976 (3)0.0587 (6)
H20.54270.53080.17930.070*
C30.2592 (2)0.54512 (6)0.3021 (3)0.0575 (6)
H30.19260.53260.35410.069*
C40.4590 (2)0.58237 (6)0.1467 (3)0.0528 (6)
H40.52590.59490.09500.063*
C50.2486 (2)0.58278 (6)0.2507 (3)0.0556 (6)
H50.17430.59570.26760.067*
C60.3483 (2)0.60180 (6)0.1735 (3)0.0468 (5)
C70.4269 (2)0.66196 (6)0.0598 (3)0.0540 (6)
H7A0.44870.65310.05710.065*
H7B0.49940.66000.13460.065*
C80.3816 (2)0.70308 (6)0.0527 (3)0.0577 (6)
H8A0.31020.70460.02440.069*
H8B0.35580.71100.16950.069*
C90.4804 (2)0.73000 (5)0.0131 (3)0.0539 (6)
H9A0.55800.72490.04680.065*
H9B0.49290.72640.13840.065*
C100.5238 (2)0.79809 (6)0.0124 (3)0.0459 (5)
C110.6378 (2)0.79332 (6)0.0955 (3)0.0507 (6)
H110.66300.76900.13110.061*
C120.4878 (2)0.83474 (6)0.0389 (3)0.0493 (6)
H120.41170.83830.09350.059*
C130.7136 (2)0.82491 (6)0.1252 (3)0.0534 (6)
H130.78940.82140.18080.064*
C140.5645 (2)0.86604 (6)0.0094 (3)0.0512 (6)
H140.53930.89030.04550.061*
C150.6788 (2)0.86171 (6)0.0736 (3)0.0487 (5)
N10.3792 (2)0.48636 (6)0.3322 (3)0.0763 (7)
N20.75855 (17)0.89324 (5)0.0993 (3)0.0694 (6)
H2A0.82980.88980.14740.083*
H2B0.73610.91590.06690.083*
O10.29183 (19)0.47143 (5)0.4107 (3)0.1127 (8)
O20.4737 (2)0.46834 (5)0.3007 (4)0.1200 (9)
O30.32733 (13)0.63919 (4)0.1305 (2)0.0590 (4)
O40.44110 (13)0.76862 (4)0.0214 (2)0.0570 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0549 (15)0.0357 (14)0.0687 (15)0.0006 (11)0.0019 (12)0.0067 (11)
C20.0491 (15)0.0477 (15)0.0793 (17)0.0004 (12)0.0011 (12)0.0025 (12)
C30.0561 (16)0.0499 (15)0.0664 (15)0.0045 (12)0.0055 (12)0.0072 (12)
C40.0490 (14)0.0455 (14)0.0640 (15)0.0046 (11)0.0003 (11)0.0053 (11)
C50.0505 (15)0.0487 (15)0.0677 (15)0.0011 (12)0.0070 (12)0.0050 (12)
C60.0545 (14)0.0361 (13)0.0496 (13)0.0013 (11)0.0073 (11)0.0021 (10)
C70.0594 (15)0.0428 (14)0.0598 (14)0.0065 (11)0.0049 (12)0.0052 (10)
C80.0602 (15)0.0445 (14)0.0684 (15)0.0038 (11)0.0088 (12)0.0069 (11)
C90.0666 (16)0.0383 (13)0.0566 (14)0.0025 (11)0.0009 (11)0.0040 (10)
C100.0493 (14)0.0380 (13)0.0504 (12)0.0008 (11)0.0028 (10)0.0031 (10)
C110.0524 (14)0.0404 (13)0.0594 (14)0.0082 (11)0.0000 (12)0.0023 (10)
C120.0513 (14)0.0453 (14)0.0514 (13)0.0054 (11)0.0031 (10)0.0005 (10)
C130.0493 (14)0.0524 (15)0.0584 (14)0.0026 (11)0.0019 (11)0.0001 (11)
C140.0615 (15)0.0391 (13)0.0530 (14)0.0025 (11)0.0022 (12)0.0065 (10)
C150.0500 (14)0.0465 (14)0.0495 (12)0.0027 (11)0.0038 (11)0.0005 (10)
N10.0723 (17)0.0485 (15)0.1081 (18)0.0008 (12)0.0043 (14)0.0138 (12)
N20.0672 (13)0.0544 (13)0.0867 (15)0.0160 (11)0.0080 (11)0.0116 (11)
O10.0956 (16)0.0661 (13)0.176 (2)0.0062 (11)0.0244 (15)0.0501 (13)
O20.0921 (15)0.0634 (14)0.205 (3)0.0244 (12)0.0344 (16)0.0389 (14)
O30.0557 (9)0.0410 (9)0.0805 (11)0.0021 (7)0.0004 (8)0.0110 (8)
O40.0583 (10)0.0381 (9)0.0745 (11)0.0006 (8)0.0061 (8)0.0040 (7)
Geometric parameters (Å, º) top
C1—C31.377 (3)C9—O41.433 (2)
C1—C21.383 (3)C9—H9A0.9700
C1—N11.453 (3)C9—H9B0.9700
C2—C41.388 (3)C10—O41.385 (2)
C2—H20.9300C10—C121.389 (3)
C3—C51.372 (3)C10—C111.393 (3)
C3—H30.9300C11—C131.390 (3)
C4—C61.390 (3)C11—H110.9300
C4—H40.9300C12—C141.387 (3)
C5—C61.394 (3)C12—H120.9300
C5—H50.9300C13—C151.391 (3)
C6—O31.361 (3)C13—H130.9300
C7—O31.440 (2)C14—C151.394 (3)
C7—C81.513 (3)C14—H140.9300
C7—H7A0.9700C15—N21.409 (3)
C7—H7B0.9700N1—O21.221 (2)
C8—C91.506 (3)N1—O11.232 (3)
C8—H8A0.9700N2—H2A0.8600
C8—H8B0.9700N2—H2B0.8600
C3—C1—C2121.3 (2)O4—C9—H9A110.1
C3—C1—N1118.6 (2)C8—C9—H9A110.1
C2—C1—N1120.1 (2)O4—C9—H9B110.1
C1—C2—C4119.5 (2)C8—C9—H9B110.1
C1—C2—H2120.2H9A—C9—H9B108.4
C4—C2—H2120.2O4—C10—C12116.53 (19)
C5—C3—C1119.3 (2)O4—C10—C11124.51 (19)
C5—C3—H3120.4C12—C10—C11119.0 (2)
C1—C3—H3120.4C13—C11—C10120.0 (2)
C2—C4—C6119.6 (2)C13—C11—H11120.0
C2—C4—H4120.2C10—C11—H11120.0
C6—C4—H4120.2C14—C12—C10120.5 (2)
C3—C5—C6120.6 (2)C14—C12—H12119.7
C3—C5—H5119.7C10—C12—H12119.7
C6—C5—H5119.7C11—C13—C15121.5 (2)
O3—C6—C4124.99 (19)C11—C13—H13119.3
O3—C6—C5115.26 (19)C15—C13—H13119.3
C4—C6—C5119.8 (2)C12—C14—C15121.17 (19)
O3—C7—C8106.95 (18)C12—C14—H14119.4
O3—C7—H7A110.3C15—C14—H14119.4
C8—C7—H7A110.3C13—C15—C14117.81 (19)
O3—C7—H7B110.3C13—C15—N2120.8 (2)
C8—C7—H7B110.3C14—C15—N2121.4 (2)
H7A—C7—H7B108.6O2—N1—O1121.3 (2)
C9—C8—C7111.73 (19)O2—N1—C1119.5 (2)
C9—C8—H8A109.3O1—N1—C1119.2 (2)
C7—C8—H8A109.3C15—N2—H2A120.0
C9—C8—H8B109.3C15—N2—H2B120.0
C7—C8—H8B109.3H2A—N2—H2B120.0
H8A—C8—H8B107.9C6—O3—C7119.42 (17)
O4—C9—C8108.19 (18)C10—O4—C9117.95 (17)
C3—C1—C2—C40.9 (3)C10—C11—C13—C150.0 (3)
N1—C1—C2—C4179.1 (2)C10—C12—C14—C150.6 (3)
C2—C1—C3—C50.4 (4)C11—C13—C15—C140.0 (3)
N1—C1—C3—C5179.5 (2)C11—C13—C15—N2177.85 (19)
C1—C2—C4—C60.6 (3)C12—C14—C15—C130.3 (3)
C1—C3—C5—C60.3 (3)C12—C14—C15—N2178.14 (19)
C2—C4—C6—O3179.49 (19)C3—C1—N1—O2175.7 (2)
C2—C4—C6—C50.1 (3)C2—C1—N1—O24.4 (4)
C3—C5—C6—O3179.1 (2)C3—C1—N1—O14.1 (4)
C3—C5—C6—C40.6 (3)C2—C1—N1—O1175.8 (2)
O3—C7—C8—C9177.80 (17)C4—C6—O3—C73.4 (3)
C7—C8—C9—O4167.07 (17)C5—C6—O3—C7176.24 (18)
O4—C10—C11—C13179.26 (19)C8—C7—O3—C6171.25 (17)
C12—C10—C11—C130.3 (3)C12—C10—O4—C9173.68 (17)
O4—C10—C12—C14179.64 (18)C11—C10—O4—C97.3 (3)
C11—C10—C12—C140.6 (3)C8—C9—O4—C10173.62 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.293.123 (3)164
C3—H3···Cg1ii0.933.073.513 (4)111
C7—H7B···Cg2iii0.972.713.567 (4)148
C13—H13···Cg2iv0.933.013.757 (4)139
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y, z3/2; (iii) x, y1/2, z3/2; (iv) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H16N2O4
Mr288.30
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)10.808 (8), 34.79 (3), 7.596 (6)
V3)2857 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.19 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
17736, 2509, 1554
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.05
No. of reflections2509
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···O1i0.862.293.123 (3)163.6
C3—H3···Cg1ii0.933.073.513 (4)111.3
C7—H7B···Cg2iii0.972.713.567 (4)148.1
C13—H13···Cg2iv0.933.013.757 (4)138.5
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y, z3/2; (iii) x, y1/2, z3/2; (iv) x1/2, y, z1/2.
 

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (No. 20662003) and the Found­ation of the Governor of Guizhou Province, China.

References

First citationBruker, (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDay, A. I. & Arnold, A. P. (2000). World Patent No. WO/2000/068 232.  Google Scholar
First citationDay, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFreeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367–7368.  CSD CrossRef CAS Web of Science Google Scholar
First citationKim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540–541.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds