metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1482-m1483

Bis{6-meth­­oxy-2-[(4-methyl­phen­yl)­iminio­meth­yl]phenolato-κ2O,O′}bis­­(nitrato-κ2O,O′)cadmium(II)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 27 September 2008; accepted 15 October 2008; online 31 October 2008)

The Schiff base 6-meth­oxy-2-[(4-methyl­phen­yl)imino­meth­yl]­phenol (HL) forms a neutral complex with cadmium(II) nitrate, [Cd(NO3)2(C15H15NO2)2], in which the four O atoms of the two independent ligands are coordinated to the metal center and the protonated imine N atoms are involved in a hydrogen bond with the phenoxide group. Intra­molecular N—H⋯O hydrogen-bonding inter­actions stabilize the structure. Each organic ligand assumes a zwitterionic form, chelating to the metal atom through the two O atoms, while the two nitrate groups also exhibit chelating behavior, leading to a distorted octahedral coordination of the Cd atom.

Related literature

For related literature, see: Dominiak et al. (2003[Dominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Woźniak, K. (2003). Chem. Eur. J. 9, 963-970.]); Elmali et al. (2003[Elmali, A., Elerman, Y., Zeyrek, C. T. & Svobod, I. (2003). Z. Naturforsch. Teil B, 58, 433-437.]); Filarowski et al. (1998[Filarowski, A., Koll, A., Glowiak, T., Majewski, E. & Dziembowska, T. (1998). Ber. Bunsenges. Phys. Chem. 102, 393-402.]); Müller et al. (2001[Müller, R. M., Robson, R. & Separovic, S. (2001). Angew. Chem. Int. Ed. 40, 4385-4386.]); Novitchi et al. (2008[Novitchi, G., Costes, J. P., Tuchagues, J. P., Vendierb, L. & Wernsdorfer, W. (2008). New J. Chem. 32, 197-200.]); Schiff (1864[Schiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118-119.]); West (1960[West, B. O. (1960). J. Chem. Soc. pp. 4944-4947.]); Woźniak et al. (1995[Woźniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 77-85.]); Yu et al. (2007[Yu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395-1402.]); Zhao et al. (2007[Zhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267-m268.]); Zhou et al. (2007[Zhou, M. D., Zhao, J., Li, J., Yue, S., Bao, C. N., Mink, J., Zang, S. L. & Kühn, F. E. (2007). Chem. Eur. J. 13, 158-166.]); Zhou & Zhao (2007[Zhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43-m44.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)2(C15H15NO2)2]

  • Mr = 718.99

  • Monoclinic, P 21 /c

  • a = 10.8009 (4) Å

  • b = 27.3377 (10) Å

  • c = 10.5878 (4) Å

  • β = 90.208 (2)°

  • V = 3126.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 296 (2) K

  • 0.35 × 0.30 × 0.11 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.765, Tmax = 0.923

  • 31192 measured reflections

  • 5498 independent reflections

  • 3112 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.178

  • S = 0.98

  • 5498 reflections

  • 389 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O2 0.86 1.94 2.616 (6) 135
N2—H2A⋯O4 0.86 1.90 2.577 (7) 135

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since the Schiff bases, the products of condensation of carbonyl compounds with primary amines, were discovered in 1864 by Hugo Schiff (Schiff, 1864), the studies on this kind of compounds containing imine group were carried out widely in different application fields. And recently, the metal complexes with the Schiff base ligands derived from substituted salicylaldehyde and aniline, have received attention due to their applications in catalysis, nuclear medicine (Zhou et al., 2007), magnetism (Elmali et al., 2003) and novel structural features (Müller et al., 2001; Novitchi et al., 2008). They include complexes with a methoxy group in the ortho position (West, 1960) which can bind to the metal too. Zhao and co-workers had reported complexes of this series with several transitional and rare earth metals (Zhou & Zhao, 2007; Yu et al., 2007; Zhao et al., 2007). Here we decribe the synthesis and crystal structure of a new cadmium(II) complex (Fig. 1), Cd(HL)2(NO3)2, involving the Schiff base HL.

The most interesting feature of the complex is the two N—H···O intramolecular hydrogen bonds. In fact, there is a proton-transfer equilibrium between the OH and NH tautomers (Dominiak et al., 2003). And it is reported that the products of condensation of salicylaldehydes with anilines show intermolecular proton-transfer equilibrium and double fluorescence (Filarowski et al., 1998; Woźniak et al., 1995). In addition, the title complex has the Cd atom in a geometry that can be better described as a bicapped trigonal antiprism (Fig. 2).

Related literature top

For related literature, see: Dominiak et al. (2003); Elmali et al. (2003); Filarowski et al. (1998); Müller et al. (2001); Novitchi et al. (2008); Schiff (1864); West (1960); Woźniak et al. (1995); Yu et al. (2007); Zhao et al. (2007); Zhou et al. (2007); Zhou & Zhao (2007).

Experimental top

First, the ligand was prepared by the direct solid-phase reaction of o-vanillin (10 mmol, 1.5251 g) and p-toluidine (10 mmol, 1.0700 g). The reactants were ground in an agate mortar. The colour of the mixture changed from light yellow to orange. Then, for the preparation of the complex, the solution of Cd(NO3)2.4H2O (1 mmol, 0.3091 g) in methanol (10 ml) was added to a methanol (30 ml) solution of the Schiff base ligand (2 mmol, 0.4812 g). Red crystals were obtained after two weeks.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, methylic C—H = 0.96 Å, N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Eight-coordinate geometry of Cd.
Bis{6-methoxy-2-[(4-methylphenyl)iminiomethyl]phenolato- κ2O,O'}bis(nitrato-κ2O,O')cadmium(II) top
Crystal data top
[Cd(NO3)2(C15H15NO2)2]F(000) = 1464
Mr = 718.99Dx = 1.528 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8740 reflections
a = 10.8009 (4) Åθ = 1.9–25.0°
b = 27.3377 (10) ŵ = 0.76 mm1
c = 10.5878 (4) ÅT = 296 K
β = 90.208 (2)°Block, red
V = 3126.3 (2) Å30.35 × 0.30 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
5498 independent reflections
Radiation source: fine-focus sealed tube3112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.765, Tmax = 0.923k = 3232
31192 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.003
5498 reflectionsΔρmax = 0.92 e Å3
389 parametersΔρmin = 0.75 e Å3
3 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (4)
Crystal data top
[Cd(NO3)2(C15H15NO2)2]V = 3126.3 (2) Å3
Mr = 718.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.8009 (4) ŵ = 0.76 mm1
b = 27.3377 (10) ÅT = 296 K
c = 10.5878 (4) Å0.35 × 0.30 × 0.11 mm
β = 90.208 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
5498 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3112 reflections with I > 2σ(I)
Tmin = 0.765, Tmax = 0.923Rint = 0.090
31192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0593 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.98Δρmax = 0.92 e Å3
5498 reflectionsΔρmin = 0.75 e Å3
389 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.52395 (5)0.120056 (16)0.72358 (4)0.0622 (2)
N10.6050 (5)0.0522 (2)0.3386 (4)0.0599 (14)
H1D0.61110.06350.41410.072*
O10.2880 (4)0.08774 (19)0.6790 (4)0.0758 (14)
C11.0356 (10)0.0759 (4)0.0381 (11)0.177 (6)
H1A1.10440.08610.08930.265*
H1B1.01610.10110.02200.265*
H1C1.05670.04640.00600.265*
O20.4950 (4)0.07844 (15)0.5476 (3)0.0573 (11)
N20.2895 (5)0.2425 (2)0.5429 (5)0.0717 (16)
H2A0.32090.21450.56120.086*
C20.9263 (10)0.0668 (4)0.1200 (10)0.110 (3)
O30.6180 (5)0.18717 (18)0.8523 (4)0.0833 (16)
N30.4284 (6)0.0859 (3)0.9582 (6)0.0827 (19)
C30.9270 (9)0.0774 (3)0.2471 (10)0.110 (3)
H3A0.99960.08810.28570.132*
O40.4455 (4)0.19201 (16)0.6736 (4)0.0681 (12)
N40.7851 (7)0.1171 (3)0.6646 (8)0.088 (2)
C40.8199 (8)0.0723 (3)0.3176 (7)0.090 (2)
H4A0.82090.08000.40320.108*
O50.4001 (6)0.1286 (2)0.9256 (5)0.0974 (18)
C50.7126 (7)0.0561 (2)0.2624 (6)0.0632 (17)
O60.4965 (5)0.06211 (19)0.8850 (5)0.0908 (16)
C60.7084 (7)0.0448 (3)0.1345 (6)0.085 (2)
H6A0.63710.03260.09630.102*
O70.3892 (6)0.0678 (2)1.0554 (5)0.118 (2)
C70.8180 (10)0.0526 (4)0.0660 (8)0.107 (3)
H7A0.81610.04780.02090.129*
C80.4994 (7)0.0337 (2)0.3078 (6)0.0651 (19)
H8A0.49350.01780.23030.078*
O80.8962 (7)0.1137 (3)0.6465 (8)0.148 (3)
O90.7315 (5)0.0961 (2)0.7569 (5)0.0932 (15)
C90.3925 (7)0.0357 (2)0.3828 (6)0.0635 (18)
O100.7174 (5)0.1395 (2)0.5923 (5)0.0983 (17)
C100.2830 (8)0.0150 (3)0.3372 (7)0.082 (2)
H10A0.28320.00150.26040.098*
C110.1761 (9)0.0187 (3)0.4042 (8)0.103 (3)
H11A0.10390.00460.37300.124*
C120.1741 (8)0.0431 (3)0.5180 (7)0.089 (2)
H12A0.09990.04590.56170.107*
C130.2790 (6)0.0631 (2)0.5672 (6)0.0599 (17)
C140.3929 (6)0.0600 (2)0.5020 (5)0.0560 (16)
C150.1807 (7)0.0849 (3)0.7610 (7)0.098 (3)
H15B0.16490.05140.78210.147*
H15C0.11000.09840.71830.147*
H30A0.19650.10320.83690.147*
C160.1017 (8)0.2383 (4)0.1810 (8)0.135 (4)
H16A0.11120.27010.14410.203*
H16B0.17760.22880.22100.203*
H16C0.08170.21510.11610.203*
C170.0001 (9)0.2395 (3)0.2769 (9)0.1052 (15)
C180.0332 (8)0.2003 (3)0.3448 (8)0.1052 (15)
H18A0.01000.17140.33200.126*
C190.1278 (9)0.2004 (3)0.4330 (8)0.1052 (15)
H19A0.14520.17250.47990.126*
C200.1959 (9)0.2424 (3)0.4501 (9)0.1052 (15)
C210.1634 (8)0.2822 (3)0.3850 (8)0.105 (3)
H21A0.20630.31140.39670.126*
C220.0648 (8)0.2800 (3)0.2990 (8)0.105 (3)
H22A0.04340.30830.25530.126*
C230.3343 (7)0.2797 (3)0.6043 (6)0.0704 (19)
H23A0.30310.31050.58460.084*
C240.4257 (7)0.2769 (2)0.6977 (6)0.0648 (18)
C250.4601 (8)0.3203 (3)0.7604 (7)0.091 (3)
H25A0.42520.35000.73690.109*
C260.5450 (8)0.3182 (3)0.8558 (7)0.092 (3)
H26A0.56590.34670.89880.111*
C270.6008 (8)0.2744 (3)0.8898 (6)0.081 (2)
H27A0.65980.27370.95400.097*
C280.5685 (7)0.2320 (3)0.8280 (6)0.0646 (18)
C290.4791 (6)0.2322 (2)0.7297 (6)0.0576 (16)
C300.6976 (8)0.1818 (3)0.9596 (7)0.105 (3)
H30B0.72010.21360.99100.158*
H30C0.77090.16440.93550.158*
H30D0.65510.16401.02440.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0739 (4)0.0603 (4)0.0524 (3)0.0070 (3)0.0105 (2)0.0061 (2)
N10.074 (4)0.060 (3)0.047 (3)0.005 (3)0.000 (3)0.003 (2)
O10.057 (3)0.108 (4)0.062 (3)0.009 (3)0.013 (2)0.016 (3)
C10.154 (11)0.172 (12)0.206 (12)0.010 (9)0.122 (10)0.007 (10)
O20.057 (3)0.067 (3)0.048 (2)0.005 (2)0.003 (2)0.012 (2)
N20.087 (4)0.056 (4)0.072 (4)0.002 (3)0.016 (3)0.000 (3)
C20.114 (8)0.111 (8)0.106 (8)0.015 (6)0.059 (7)0.008 (6)
O30.099 (4)0.074 (4)0.076 (3)0.013 (3)0.043 (3)0.019 (3)
N30.093 (5)0.099 (6)0.055 (4)0.011 (4)0.013 (3)0.002 (4)
C30.101 (7)0.096 (7)0.134 (8)0.018 (5)0.038 (6)0.008 (6)
O40.080 (3)0.056 (3)0.069 (3)0.002 (2)0.022 (2)0.009 (2)
N40.075 (5)0.099 (6)0.090 (5)0.002 (4)0.001 (4)0.023 (4)
C40.099 (7)0.096 (6)0.075 (5)0.008 (5)0.026 (5)0.006 (4)
O50.128 (5)0.097 (5)0.068 (3)0.024 (4)0.014 (2)0.012 (3)
C50.073 (5)0.060 (4)0.056 (4)0.014 (4)0.019 (3)0.004 (3)
O60.126 (5)0.078 (3)0.069 (3)0.021 (3)0.010 (3)0.0088 (19)
C60.091 (6)0.108 (6)0.054 (4)0.028 (5)0.008 (4)0.001 (4)
O70.120 (5)0.160 (6)0.074 (4)0.002 (4)0.021 (3)0.033 (4)
C70.138 (9)0.119 (8)0.065 (5)0.046 (7)0.041 (6)0.012 (5)
C80.102 (6)0.053 (4)0.041 (3)0.000 (4)0.003 (4)0.004 (3)
O80.069 (5)0.185 (8)0.190 (8)0.017 (4)0.015 (5)0.039 (5)
O90.086 (2)0.099 (4)0.095 (4)0.027 (3)0.017 (3)0.006 (3)
C90.088 (5)0.053 (4)0.049 (4)0.006 (4)0.002 (3)0.004 (3)
O100.074 (4)0.129 (5)0.092 (4)0.000 (4)0.020 (3)0.018 (4)
C100.097 (7)0.078 (5)0.070 (5)0.020 (5)0.010 (4)0.020 (4)
C110.092 (7)0.118 (8)0.100 (7)0.039 (6)0.005 (5)0.007 (6)
C120.079 (6)0.103 (7)0.084 (5)0.025 (5)0.003 (4)0.001 (5)
C130.055 (4)0.067 (5)0.058 (4)0.004 (3)0.005 (3)0.002 (3)
C140.076 (5)0.047 (4)0.045 (3)0.003 (3)0.004 (3)0.001 (3)
C150.076 (6)0.126 (8)0.091 (6)0.003 (5)0.028 (4)0.021 (5)
C160.098 (8)0.212 (13)0.097 (7)0.001 (7)0.038 (6)0.023 (7)
C170.121 (4)0.090 (4)0.104 (3)0.013 (3)0.045 (3)0.003 (3)
C180.121 (4)0.090 (4)0.104 (3)0.013 (3)0.045 (3)0.003 (3)
C190.121 (4)0.090 (4)0.104 (3)0.013 (3)0.045 (3)0.003 (3)
C200.121 (4)0.090 (4)0.104 (3)0.013 (3)0.045 (3)0.003 (3)
C210.113 (7)0.086 (6)0.116 (7)0.010 (5)0.053 (6)0.017 (5)
C220.098 (7)0.109 (8)0.108 (7)0.006 (5)0.041 (5)0.019 (5)
C230.078 (5)0.057 (5)0.076 (5)0.012 (4)0.006 (4)0.001 (4)
C240.082 (5)0.060 (4)0.053 (4)0.001 (4)0.015 (4)0.000 (3)
C250.131 (8)0.058 (5)0.083 (5)0.003 (4)0.031 (5)0.005 (4)
C260.122 (8)0.066 (5)0.089 (6)0.011 (5)0.020 (5)0.018 (4)
C270.107 (7)0.079 (6)0.056 (4)0.015 (5)0.021 (4)0.012 (4)
C280.069 (5)0.074 (5)0.051 (4)0.001 (4)0.004 (3)0.008 (3)
C290.060 (4)0.057 (4)0.056 (4)0.001 (3)0.003 (3)0.006 (3)
C300.125 (8)0.107 (7)0.083 (5)0.019 (6)0.048 (5)0.013 (5)
Geometric parameters (Å, º) top
Cd1—O22.204 (4)C9—C101.397 (9)
Cd1—O42.205 (4)C9—C141.426 (8)
Cd1—O62.350 (5)C10—C111.361 (11)
Cd1—O92.361 (5)C10—H10A0.9300
Cd1—O32.500 (5)C11—C121.377 (11)
Cd1—O52.538 (5)C11—H11A0.9300
Cd1—O102.569 (6)C12—C131.360 (9)
N1—C81.288 (8)C12—H12A0.9300
N1—C51.421 (8)C13—C141.416 (9)
N1—H1D0.8600C15—H15B0.9600
O1—C131.366 (7)C15—H15C0.9600
O1—C151.452 (7)C15—H30A0.9600
C1—C21.488 (11)C16—C171.495 (11)
C1—H1A0.9600C16—H16A0.9600
C1—H1B0.9600C16—H16B0.9600
C1—H1C0.9600C16—H16C0.9600
O2—C141.304 (7)C17—C221.330 (11)
N2—C231.299 (8)C17—C181.337 (12)
N2—C201.407 (9)C18—C191.381 (11)
N2—H2A0.8600C18—H18A0.9300
C2—C71.356 (12)C19—C201.376 (12)
C2—C31.376 (12)C19—H19A0.9300
O3—C281.361 (8)C20—C211.334 (11)
O3—C301.429 (8)C21—C221.400 (10)
N3—O71.220 (7)C21—H21A0.9300
N3—O61.253 (7)C22—H22A0.9300
N3—O51.254 (8)C23—C241.397 (9)
C3—C41.386 (10)C23—H23A0.9300
C3—H3A0.9300C24—C291.394 (9)
O4—C291.299 (7)C24—C251.407 (9)
N4—O81.219 (9)C25—C261.362 (10)
N4—O101.222 (9)C25—H25A0.9300
N4—O91.274 (8)C26—C271.390 (10)
C4—C51.371 (10)C26—H26A0.9300
C4—H4A0.9300C27—C281.374 (9)
C5—C61.389 (9)C27—H27A0.9300
C6—C71.407 (11)C28—C291.418 (9)
C6—H6A0.9300C30—H30B0.9600
C7—H7A0.9300C30—H30C0.9600
C8—C91.404 (9)C30—H30D0.9600
C8—H8A0.9300
O2—Cd1—O4101.81 (15)C11—C10—C9120.6 (7)
O2—Cd1—O6104.42 (17)C11—C10—H10A119.7
O4—Cd1—O6136.58 (18)C9—C10—H10A119.7
O2—Cd1—O996.59 (17)C10—C11—C12120.6 (8)
O4—Cd1—O9130.3 (2)C10—C11—H11A119.7
O6—Cd1—O980.0 (2)C12—C11—H11A119.7
O2—Cd1—O3153.63 (17)C13—C12—C11120.9 (8)
O4—Cd1—O368.35 (15)C13—C12—H12A119.5
O6—Cd1—O398.63 (18)C11—C12—H12A119.5
O9—Cd1—O374.81 (18)C12—C13—O1126.0 (6)
O2—Cd1—O5133.35 (18)C12—C13—C14120.9 (6)
O4—Cd1—O585.23 (18)O1—C13—C14113.1 (5)
O6—Cd1—O551.73 (17)O2—C14—C13122.1 (5)
O9—Cd1—O5113.7 (2)O2—C14—C9120.5 (6)
O3—Cd1—O571.77 (19)C13—C14—C9117.3 (6)
O2—Cd1—O1076.28 (18)O1—C15—H15B109.5
O4—Cd1—O1089.88 (18)O1—C15—H15C109.5
O6—Cd1—O10129.65 (19)H15B—C15—H15C109.5
O9—Cd1—O1050.56 (19)O1—C15—H30A109.5
O3—Cd1—O1079.22 (19)H15B—C15—H30A109.5
O5—Cd1—O10150.3 (2)H15C—C15—H30A109.5
C8—N1—C5127.6 (6)C17—C16—H16A109.5
C8—N1—H1D116.2C17—C16—H16B109.5
C5—N1—H1D116.2H16A—C16—H16B109.5
C13—O1—C15116.0 (5)C17—C16—H16C109.5
C2—C1—H1A109.5H16A—C16—H16C109.5
C2—C1—H1B109.5H16B—C16—H16C109.5
H1A—C1—H1B109.5C22—C17—C18115.6 (8)
C2—C1—H1C109.5C22—C17—C16121.5 (9)
H1A—C1—H1C109.5C18—C17—C16122.9 (9)
H1B—C1—H1C109.5C17—C18—C19123.9 (9)
C14—O2—Cd1129.0 (4)C17—C18—H18A118.0
C23—N2—C20128.0 (7)C19—C18—H18A118.0
C23—N2—H2A116.0C20—C19—C18118.9 (9)
C20—N2—H2A116.0C20—C19—H19A120.5
C7—C2—C3118.3 (8)C18—C19—H19A120.5
C7—C2—C1119.1 (10)C21—C20—C19118.2 (9)
C3—C2—C1122.2 (11)C21—C20—N2123.2 (8)
C28—O3—C30118.5 (6)C19—C20—N2118.4 (8)
C28—O3—Cd1113.5 (4)C20—C21—C22120.0 (9)
C30—O3—Cd1126.9 (5)C20—C21—H21A120.0
O7—N3—O6121.2 (8)C22—C21—H21A120.0
O7—N3—O5121.6 (7)C17—C22—C21123.2 (9)
O6—N3—O5117.2 (6)C17—C22—H22A118.4
C2—C3—C4120.3 (9)C21—C22—H22A118.4
C2—C3—H3A119.9N2—C23—C24125.0 (7)
C4—C3—H3A119.9N2—C23—H23A117.5
C29—O4—Cd1122.5 (4)C24—C23—H23A117.5
O8—N4—O10121.9 (8)C29—C24—C23120.6 (6)
O8—N4—O9122.4 (9)C29—C24—C25121.1 (6)
O10—N4—O9115.7 (7)C23—C24—C25118.3 (7)
C5—C4—C3120.6 (8)C26—C25—C24119.4 (7)
C5—C4—H4A119.7C26—C25—H25A120.3
C3—C4—H4A119.7C24—C25—H25A120.3
N3—O5—Cd191.0 (4)C25—C26—C27121.2 (7)
C4—C5—C6120.8 (7)C25—C26—H26A119.4
C4—C5—N1118.3 (6)C27—C26—H26A119.4
C6—C5—N1120.9 (7)C28—C27—C26119.7 (7)
N3—O6—Cd1100.1 (4)C28—C27—H27A120.2
C5—C6—C7116.4 (8)C26—C27—H27A120.2
C5—C6—H6A121.8O3—C28—C27124.7 (7)
C7—C6—H6A121.8O3—C28—C29114.1 (6)
C2—C7—C6123.5 (8)C27—C28—C29121.2 (7)
C2—C7—H7A118.3O4—C29—C24121.1 (6)
C6—C7—H7A118.3O4—C29—C28121.4 (6)
N1—C8—C9124.7 (6)C24—C29—C28117.5 (6)
N1—C8—H8A117.6O3—C30—H30B109.5
C9—C8—H8A117.6O3—C30—H30C109.5
N4—O9—Cd1101.2 (5)H30B—C30—H30C109.5
C10—C9—C8119.0 (6)O3—C30—H30D109.5
C10—C9—C14119.7 (7)H30B—C30—H30D109.5
C8—C9—C14121.3 (6)H30C—C30—H30D109.5
N4—O10—Cd192.5 (5)
O4—Cd1—O2—C1475.0 (5)N1—C8—C9—C140.9 (11)
O6—Cd1—O2—C1470.1 (5)O8—N4—O10—Cd1179.5 (7)
O9—Cd1—O2—C14151.4 (5)O9—N4—O10—Cd12.0 (7)
O3—Cd1—O2—C14139.7 (5)O2—Cd1—O10—N4112.0 (5)
O5—Cd1—O2—C1419.6 (6)O4—Cd1—O10—N4145.9 (5)
O10—Cd1—O2—C14161.9 (5)O6—Cd1—O10—N414.4 (6)
O2—Cd1—O3—C2874.8 (6)O9—Cd1—O10—N41.2 (4)
O4—Cd1—O3—C282.5 (4)O3—Cd1—O10—N477.9 (5)
O6—Cd1—O3—C28134.4 (5)O5—Cd1—O10—N465.7 (7)
O9—Cd1—O3—C28148.5 (5)C8—C9—C10—C11176.4 (7)
O5—Cd1—O3—C2889.6 (5)C14—C9—C10—C111.5 (11)
O10—Cd1—O3—C2896.7 (5)C9—C10—C11—C120.2 (14)
O2—Cd1—O3—C30117.5 (6)C10—C11—C12—C131.5 (14)
O4—Cd1—O3—C30170.3 (7)C11—C12—C13—O1179.6 (7)
O6—Cd1—O3—C3033.4 (6)C11—C12—C13—C141.0 (12)
O9—Cd1—O3—C3043.7 (6)C15—O1—C13—C1211.0 (10)
O5—Cd1—O3—C3078.2 (6)C15—O1—C13—C14169.6 (6)
O10—Cd1—O3—C3095.5 (6)Cd1—O2—C14—C132.6 (8)
C7—C2—C3—C41.7 (15)Cd1—O2—C14—C9177.4 (4)
C1—C2—C3—C4174.4 (9)C12—C13—C14—O2179.3 (6)
O2—Cd1—O4—C29155.5 (5)O1—C13—C14—O21.2 (9)
O6—Cd1—O4—C2978.3 (5)C12—C13—C14—C90.7 (10)
O9—Cd1—O4—C2946.1 (6)O1—C13—C14—C9178.7 (5)
O3—Cd1—O4—C291.1 (5)C10—C9—C14—O2178.1 (6)
O5—Cd1—O4—C2971.2 (5)C8—C9—C14—O24.1 (9)
O10—Cd1—O4—C2979.5 (5)C10—C9—C14—C131.9 (9)
C2—C3—C4—C50.9 (14)C8—C9—C14—C13175.9 (6)
O7—N3—O5—Cd1178.1 (7)C22—C17—C18—C190.1 (17)
O6—N3—O5—Cd10.2 (7)C16—C17—C18—C19179.2 (9)
O2—Cd1—O5—N371.9 (5)C17—C18—C19—C202.3 (17)
O4—Cd1—O5—N3173.6 (5)C18—C19—C20—C213.3 (16)
O6—Cd1—O5—N30.2 (4)C18—C19—C20—N2178.1 (9)
O9—Cd1—O5—N354.1 (5)C23—N2—C20—C2120.2 (15)
O3—Cd1—O5—N3117.6 (5)C23—N2—C20—C19154.3 (9)
O10—Cd1—O5—N3105.0 (5)C19—C20—C21—C221.9 (16)
C3—C4—C5—C60.5 (12)N2—C20—C21—C22176.5 (9)
C3—C4—C5—N1179.1 (7)C18—C17—C22—C211.5 (17)
C8—N1—C5—C4173.1 (7)C16—C17—C22—C21177.8 (9)
C8—N1—C5—C68.2 (10)C20—C21—C22—C170.5 (17)
O7—N3—O6—Cd1178.0 (6)C20—N2—C23—C24178.5 (8)
O5—N3—O6—Cd10.3 (8)N2—C23—C24—C291.8 (12)
O2—Cd1—O6—N3134.3 (4)N2—C23—C24—C25176.7 (7)
O4—Cd1—O6—N38.9 (6)C29—C24—C25—C261.5 (12)
O9—Cd1—O6—N3131.4 (5)C23—C24—C25—C26177.1 (8)
O3—Cd1—O6—N358.6 (5)C24—C25—C26—C271.9 (14)
O5—Cd1—O6—N30.2 (4)C25—C26—C27—C281.2 (13)
O10—Cd1—O6—N3141.8 (4)C30—O3—C28—C278.4 (11)
C4—C5—C6—C72.2 (11)Cd1—O3—C28—C27177.3 (6)
N1—C5—C6—C7176.4 (6)C30—O3—C28—C29172.4 (6)
C3—C2—C7—C64.7 (16)Cd1—O3—C28—C293.6 (7)
C1—C2—C7—C6177.7 (8)C26—C27—C28—O3179.2 (7)
C5—C6—C7—C25.0 (13)C26—C27—C28—C290.1 (11)
C5—N1—C8—C9172.6 (6)Cd1—O4—C29—C24178.6 (5)
O8—N4—O9—Cd1179.7 (7)Cd1—O4—C29—C280.5 (8)
O10—N4—O9—Cd12.2 (8)C23—C24—C29—O40.1 (10)
O2—Cd1—O9—N467.4 (4)C25—C24—C29—O4178.6 (7)
O4—Cd1—O9—N444.2 (5)C23—C24—C29—C28178.1 (6)
O6—Cd1—O9—N4170.9 (5)C25—C24—C29—C280.4 (10)
O3—Cd1—O9—N487.2 (4)O3—C28—C29—O42.9 (9)
O5—Cd1—O9—N4148.9 (4)C27—C28—C29—O4177.9 (6)
O10—Cd1—O9—N41.2 (4)O3—C28—C29—C24178.9 (6)
N1—C8—C9—C10178.8 (6)C27—C28—C29—C240.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O20.861.942.616 (6)135
N2—H2A···O40.861.902.577 (7)135

Experimental details

Crystal data
Chemical formula[Cd(NO3)2(C15H15NO2)2]
Mr718.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.8009 (4), 27.3377 (10), 10.5878 (4)
β (°) 90.208 (2)
V3)3126.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.35 × 0.30 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.765, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
31192, 5498, 3112
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.178, 0.98
No. of reflections5498
No. of parameters389
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.75

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O20.861.942.616 (6)135
N2—H2A···O40.861.902.577 (7)135
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDominiak, P. M., Grech, E., Barr, G., Teat, S., Mallinson, P. & Woźniak, K. (2003). Chem. Eur. J. 9, 963–970.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationElmali, A., Elerman, Y., Zeyrek, C. T. & Svobod, I. (2003). Z. Naturforsch. Teil B, 58, 433–437.  CAS Google Scholar
First citationFilarowski, A., Koll, A., Glowiak, T., Majewski, E. & Dziembowska, T. (1998). Ber. Bunsenges. Phys. Chem. 102, 393–402.  CrossRef CAS Google Scholar
First citationMüller, R. M., Robson, R. & Separovic, S. (2001). Angew. Chem. Int. Ed. 40, 4385–4386.  Google Scholar
First citationNovitchi, G., Costes, J. P., Tuchagues, J. P., Vendierb, L. & Wernsdorfer, W. (2008). New J. Chem. 32, 197–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchiff, H. (1864). Justus Liebigs Ann. Chem. 131, 118–119.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWest, B. O. (1960). J. Chem. Soc. pp. 4944–4947.  CrossRef Web of Science Google Scholar
First citationWoźniak, K., He, H., Klinowski, J., Jones, W., Dziembowska, T. & Grech, E. (1995). J. Chem. Soc. Faraday Trans. 91, 77–85.  Google Scholar
First citationYu, Y. Y., Zhao, G. L. & Wen, Y. H. (2007). Chin. J. Struct. Chem. 26, 1395–1402.  CAS Google Scholar
First citationZhao, G.-L., Shi, X. & Ng, S. W. (2007). Acta Cryst. E63, m267–m268.  CSD CrossRef IUCr Journals Google Scholar
First citationZhou, Y.-H. & Zhao, G.-L. (2007). Acta Cryst. E63, m43–m44.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, M. D., Zhao, J., Li, J., Yue, S., Bao, C. N., Mink, J., Zang, S. L. & Kühn, F. E. (2007). Chem. Eur. J. 13, 158–166.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 11| November 2008| Pages m1482-m1483
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds