metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[tris­­(2,2′-bi-1H-benzimidazole)nickel(II)] bis­­(phosphate) sulfate

aInstitute of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: yanlin_online@163.com

(Received 28 September 2008; accepted 8 October 2008; online 15 October 2008)

The title compound, [Ni(C14H10N4)3]4(PO4)2(SO4), consists of [Ni(C14H10N4)3]2+ complex cations (.3. symmetry) and disordered anions ([{\overline 4}] symmetry) with occupancy factors of two-thirds for PO43− and one-third for SO42−. The Ni2+ centre is chelated by three bidentate 2,2′-bi-1H-benzimidazole mol­ecules in a distorted octa­hedral coordination. N—H⋯O hydrogen bonds consolidate the building units into a framework structure.

Related literature

For the potential applications of metal–organic coordination compounds in gas absorption and separation, catalysis, non-linear optics, luminescence and magnetism, see: Kitagawa & Matsuda (2007[Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490-2509.]); Maspoch et al. (2007[Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770-818.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H10N4)3]4(PO4)2(SO4)

  • Mr = 3331.96

  • Cubic, [I \overline 43d ]

  • a = 24.964 (7) Å

  • V = 15558 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 (2) K

  • 0.32 × 0.27 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.834, Tmax = 0.876

  • 20222 measured reflections

  • 2551 independent reflections

  • 1782 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.01

  • 2551 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1182 Friedel pairs

  • Flack parameter: −0.02 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1i 0.86 1.96 2.766 (4) 156
N2—H2B⋯O1ii 0.86 1.82 2.675 (4) 170
Symmetry codes: (i) [x-{\script{1\over 4}}, -z+{\script{5\over 4}}, -y+{\script{3\over 4}}]; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

More attentions have been paid to metal-organic coordination compounds (MOCCs) because of their potential applications in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism (Kitagawa & Matsuda 2007, Maspoch et al. 2007). In the field of coordination chemistry, the N,N-bidentate ligands, such as 2,2'-bipyridine, 1,10-phenanthroline and their derivatives act as versatile ligands owing to the stable coordination configuration in the bidentate N-donors chelating manner. Herein, we report the title compound (I).

The title compound (I) consists of four [Ni(C14H10N4)3]2+ complex cations, one [SO4]2- and two [PO4]3- anions. In the mlecular structure, the Ni2+ centre is coordinated by six N atoms from three bidentate 1H,1'H-2,2'-bi-1H-benzimidazole molecules (Fig.1). The 1H,1'H-2,2'-bi-1H-benzimidazole ligand was prepared in situ and coordinated to the Ni2+ cations in hydrothermal reaction. Additionally, the [SO4]2- and [PO4]3- anions statistically distribute in one position with 1/3 probability for S and 2/3 probability for P atoms. The environment of the Ni2+ caion is in a distorted octahedral geometry with the Ni—N distances ranging from 2.088 (3) to 2.122 (3) Å (Table 1).

In addition, the [Ni(C14H10N4)3]2+ complex cations, [SO4]2- and [PO4]3- anions in the complexes are linked together via many N—H···O hydrogen bonds resulting in a three-dimensional structural frameworks (Fig.2 and Table 2).

Related literature top

For the potential applications of metal–organic coordination compounds in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism, see: Kitagawa & Matsuda (2007); Maspoch et al. (2007).

Experimental top

All reagents were commercially available and of analytical grade. The mixture of NiSO4.6H2O, H3PO4, oxalic acid, and 1,2-diaminobenzene in the mole ratio of 1: 1.5: 6: 6 was dissolved in 25 ml H2O, which was heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 393 K for five days. After cooling the autoclave to room temperature, green block crystals of (I) were obtained.

Refinement top

H atoms were treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å, and were refined as riding with Uiso(H) = 1.2Ueq(N and C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
[Figure 2] Fig. 2. Three-dimensional structure of (I). Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms not involved in hydrogen bonds are omitted.
Tetrakis[tris(2,2'-bi-1H-benzimidazole)nickel(II)] bis(phosphate) sulfate top
Crystal data top
[Ni(C14H10N4)3]4(PO4)2(SO4)Dx = 1.423 Mg m3
Mr = 3331.96Mo Kα radiation, λ = 0.71073 Å
Cubic, I43dCell parameters from 3375 reflections
Hall symbol: I -4bd 2c 3θ = 2.3–19.2°
a = 24.964 (7) ŵ = 0.59 mm1
V = 15558 (8) Å3T = 296 K
Z = 4Block, green
F(000) = 68720.32 × 0.27 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 3011
Tmin = 0.834, Tmax = 0.876k = 3029
20222 measured reflectionsl = 2120
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0528P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2551 reflectionsΔρmax = 0.61 e Å3
177 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983), 1182 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[Ni(C14H10N4)3]4(PO4)2(SO4)Z = 4
Mr = 3331.96Mo Kα radiation
Cubic, I43dµ = 0.59 mm1
a = 24.964 (7) ÅT = 296 K
V = 15558 (8) Å30.32 × 0.27 × 0.23 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1782 reflections with I > 2σ(I)
Tmin = 0.834, Tmax = 0.876Rint = 0.066
20222 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098Δρmax = 0.61 e Å3
S = 1.01Δρmin = 0.20 e Å3
2551 reflectionsAbsolute structure: Flack (1983), 1182 Friedel pairs
177 parametersAbsolute structure parameter: 0.02 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.564621 (16)0.435379 (16)0.064621 (16)0.0428 (2)
P10.75000.62501.00000.0427 (4)0.67
S10.75000.62501.00000.0427 (4)0.33
N10.64773 (10)0.44469 (11)0.06574 (11)0.0443 (6)
N20.71668 (10)0.50117 (12)0.06248 (11)0.0498 (7)
H2B0.73400.53090.06040.060*
N30.56297 (10)0.42828 (11)0.02009 (10)0.0444 (6)
N40.55652 (11)0.37290 (12)0.08942 (11)0.0502 (7)
H4B0.55380.34350.10720.060*
C10.69498 (13)0.41559 (13)0.06917 (13)0.0462 (8)
C20.70405 (15)0.36114 (16)0.07434 (15)0.0594 (9)
H20.67580.33700.07630.071*
C30.75637 (17)0.34409 (18)0.07642 (16)0.0744 (13)
H30.76380.30770.07970.089*
C40.79858 (16)0.3808 (2)0.07359 (16)0.0707 (12)
H40.83350.36790.07500.085*
C50.79104 (13)0.43383 (18)0.06895 (15)0.0627 (10)
H50.81970.45760.06700.075*
C60.73810 (12)0.45147 (14)0.06724 (14)0.0473 (8)
C70.66286 (13)0.49523 (14)0.06164 (13)0.0443 (8)
C80.56226 (15)0.45873 (13)0.06673 (14)0.0487 (9)
C90.56566 (17)0.51278 (15)0.07424 (15)0.0645 (11)
H90.56810.53630.04550.077*
C100.5653 (2)0.53090 (18)0.12671 (19)0.0848 (13)
H100.56720.56750.13330.102*
C110.5623 (2)0.49628 (19)0.16920 (17)0.0863 (14)
H110.56270.51020.20370.104*
C120.55859 (18)0.44183 (18)0.16272 (14)0.0698 (11)
H120.55620.41860.19170.084*
C130.55865 (13)0.42369 (14)0.11042 (13)0.0489 (8)
C140.55946 (13)0.37792 (14)0.03571 (13)0.0443 (8)
O10.77314 (11)0.59036 (9)0.95604 (10)0.0629 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0428 (2)0.0428 (2)0.0428 (2)0.00140 (19)0.00140 (19)0.00140 (19)
P10.0469 (6)0.0341 (9)0.0469 (6)0.0000.0000.000
S10.0469 (6)0.0341 (9)0.0469 (6)0.0000.0000.000
N10.0386 (14)0.0485 (17)0.0458 (16)0.0000 (13)0.0006 (13)0.0019 (15)
N20.0447 (17)0.0543 (18)0.0503 (17)0.0083 (14)0.0009 (14)0.0019 (15)
N30.0432 (16)0.0445 (16)0.0456 (15)0.0006 (15)0.0046 (13)0.0007 (13)
N40.0552 (19)0.0518 (18)0.0436 (17)0.0046 (14)0.0034 (14)0.0093 (14)
C10.049 (2)0.0486 (19)0.0411 (18)0.0030 (16)0.0031 (17)0.0036 (15)
C20.054 (2)0.060 (2)0.065 (2)0.0073 (18)0.0023 (19)0.0042 (19)
C30.064 (3)0.076 (3)0.084 (3)0.024 (2)0.003 (2)0.009 (2)
C40.045 (2)0.097 (4)0.070 (3)0.021 (2)0.002 (2)0.014 (2)
C50.0439 (19)0.083 (3)0.061 (3)0.000 (2)0.0050 (18)0.016 (3)
C60.0417 (19)0.064 (2)0.0366 (18)0.0018 (16)0.0048 (16)0.0077 (17)
C70.044 (2)0.048 (2)0.0410 (19)0.0065 (15)0.0027 (15)0.0012 (16)
C80.049 (2)0.052 (2)0.0449 (19)0.0051 (16)0.0042 (18)0.0057 (16)
C90.092 (3)0.050 (2)0.051 (2)0.002 (2)0.009 (2)0.0036 (17)
C100.124 (4)0.065 (3)0.066 (3)0.006 (3)0.010 (3)0.013 (2)
C110.133 (4)0.077 (3)0.049 (3)0.001 (3)0.013 (3)0.017 (2)
C120.093 (3)0.074 (3)0.042 (2)0.006 (3)0.005 (2)0.001 (2)
C130.050 (2)0.055 (2)0.0423 (19)0.0009 (18)0.0050 (16)0.0006 (16)
C140.0315 (18)0.053 (2)0.049 (2)0.0032 (16)0.0021 (15)0.0045 (17)
O10.0818 (18)0.0455 (15)0.0616 (17)0.0077 (13)0.0150 (14)0.0033 (12)
Geometric parameters (Å, º) top
Ni1—N12.088 (3)C1—C61.401 (5)
Ni1—N1i2.088 (3)C2—C31.375 (5)
Ni1—N1ii2.088 (3)C2—H20.9300
Ni1—N3ii2.122 (3)C3—C41.398 (6)
Ni1—N32.122 (3)C3—H30.9300
Ni1—N3i2.122 (3)C4—C51.342 (6)
P1—O1iii1.512 (3)C4—H40.9300
P1—O1iv1.512 (3)C5—C61.394 (4)
P1—O11.512 (3)C5—H50.9300
P1—O1v1.512 (3)C7—C14ii1.435 (5)
N1—C71.321 (4)C8—C91.365 (5)
N1—C11.388 (4)C8—C131.401 (5)
N2—C71.352 (4)C9—C101.386 (6)
N2—C61.356 (4)C9—H90.9300
N2—H2B0.8600C10—C111.370 (6)
N3—C141.319 (4)C10—H100.9300
N3—C81.391 (4)C11—C121.372 (6)
N4—C141.349 (4)C11—H110.9300
N4—C131.373 (4)C12—C131.382 (5)
N4—H4B0.8600C12—H120.9300
C1—C21.384 (5)C14—C7i1.435 (5)
N1—Ni1—N1i95.67 (10)C1—C2—H2121.2
N1—Ni1—N1ii95.67 (10)C2—C3—C4120.7 (4)
N1i—Ni1—N1ii95.67 (10)C2—C3—H3119.6
N1—Ni1—N3ii78.84 (10)C4—C3—H3119.6
N1i—Ni1—N3ii170.67 (9)C5—C4—C3123.0 (4)
N1ii—Ni1—N3ii92.40 (9)C5—C4—H4118.5
N1—Ni1—N392.40 (9)C3—C4—H4118.5
N1i—Ni1—N378.84 (10)C4—C5—C6116.6 (4)
N1ii—Ni1—N3170.67 (9)C4—C5—H5121.7
N3ii—Ni1—N393.75 (9)C6—C5—H5121.7
N1—Ni1—N3i170.67 (9)N2—C6—C5131.7 (3)
N1i—Ni1—N3i92.40 (9)N2—C6—C1106.6 (3)
N1ii—Ni1—N3i78.84 (10)C5—C6—C1121.7 (3)
N3ii—Ni1—N3i93.75 (9)N1—C7—N2112.8 (3)
N3—Ni1—N3i93.75 (9)N1—C7—C14ii118.2 (3)
O1iii—P1—O1iv110.22 (17)N2—C7—C14ii128.9 (3)
O1iii—P1—O1109.10 (9)C9—C8—N3130.9 (3)
O1iv—P1—O1109.10 (9)C9—C8—C13121.0 (3)
O1iii—P1—O1v109.10 (9)N3—C8—C13108.1 (3)
O1iv—P1—O1v109.10 (9)C8—C9—C10116.9 (4)
O1—P1—O1v110.22 (17)C8—C9—H9121.6
C7—N1—C1105.2 (3)C10—C9—H9121.6
C7—N1—Ni1112.9 (2)C11—C10—C9121.7 (4)
C1—N1—Ni1141.9 (2)C11—C10—H10119.1
C7—N2—C6107.0 (3)C9—C10—H10119.1
C7—N2—H2B126.5C10—C11—C12122.5 (4)
C6—N2—H2B126.5C10—C11—H11118.7
C14—N3—C8105.8 (3)C12—C11—H11118.7
C14—N3—Ni1112.0 (2)C11—C12—C13115.8 (4)
C8—N3—Ni1142.1 (2)C11—C12—H12122.1
C14—N4—C13107.0 (3)C13—C12—H12122.1
C14—N4—H4B126.5N4—C13—C12131.5 (3)
C13—N4—H4B126.5N4—C13—C8106.4 (3)
C2—C1—N1131.2 (3)C12—C13—C8122.1 (3)
C2—C1—C6120.4 (3)N3—C14—N4112.7 (3)
N1—C1—C6108.4 (3)N3—C14—C7i117.7 (3)
C3—C2—C1117.6 (4)N4—C14—C7i129.5 (3)
C3—C2—H2121.2
N1i—Ni1—N1—C7168.5 (2)C2—C1—C6—N2179.6 (3)
N1ii—Ni1—N1—C795.2 (3)N1—C1—C6—N20.3 (4)
N3ii—Ni1—N1—C73.9 (2)C2—C1—C6—C51.8 (5)
N3—Ni1—N1—C789.5 (3)N1—C1—C6—C5178.9 (3)
N3i—Ni1—N1—C741.7 (7)C1—N1—C7—N20.4 (4)
N1i—Ni1—N1—C111.1 (4)Ni1—N1—C7—N2179.9 (2)
N1ii—Ni1—N1—C185.2 (3)C1—N1—C7—C14ii177.6 (3)
N3ii—Ni1—N1—C1176.5 (4)Ni1—N1—C7—C14ii2.6 (4)
N3—Ni1—N1—C190.1 (4)C6—N2—C7—N10.2 (4)
N3i—Ni1—N1—C1138.6 (6)C6—N2—C7—C14ii177.1 (3)
N1—Ni1—N3—C14100.0 (2)C14—N3—C8—C9178.8 (4)
N1i—Ni1—N3—C144.7 (2)Ni1—N3—C8—C94.5 (7)
N1ii—Ni1—N3—C1449.9 (7)C14—N3—C8—C130.5 (4)
N3ii—Ni1—N3—C14178.9 (2)Ni1—N3—C8—C13177.2 (3)
N3i—Ni1—N3—C1487.1 (3)N3—C8—C9—C10178.2 (4)
N1—Ni1—N3—C883.5 (4)C13—C8—C9—C100.0 (6)
N1i—Ni1—N3—C8178.8 (4)C8—C9—C10—C110.7 (7)
N1ii—Ni1—N3—C8126.7 (6)C9—C10—C11—C121.0 (8)
N3ii—Ni1—N3—C84.5 (4)C10—C11—C12—C130.6 (8)
N3i—Ni1—N3—C889.5 (3)C14—N4—C13—C12178.1 (4)
C7—N1—C1—C2179.6 (4)C14—N4—C13—C80.8 (4)
Ni1—N1—C1—C20.7 (7)C11—C12—C13—N4178.7 (4)
C7—N1—C1—C60.4 (4)C11—C12—C13—C80.0 (6)
Ni1—N1—C1—C6180.0 (3)C9—C8—C13—N4179.3 (3)
N1—C1—C2—C3179.6 (3)N3—C8—C13—N40.8 (4)
C6—C1—C2—C31.2 (5)C9—C8—C13—C120.3 (6)
C1—C2—C3—C40.3 (6)N3—C8—C13—C12178.2 (4)
C2—C3—C4—C50.2 (6)C8—N3—C14—N40.0 (4)
C3—C4—C5—C60.3 (6)Ni1—N3—C14—N4177.9 (2)
C7—N2—C6—C5178.5 (4)C8—N3—C14—C7i177.4 (3)
C7—N2—C6—C10.0 (4)Ni1—N3—C14—C7i4.8 (3)
C4—C5—C6—N2179.5 (4)C13—N4—C14—N30.5 (4)
C4—C5—C6—C11.3 (6)C13—N4—C14—C7i176.5 (3)
Symmetry codes: (i) z+1/2, x+1, y1/2; (ii) y+1, z+1/2, x+1/2; (iii) z+7/4, y+5/4, x+1/4; (iv) z1/4, y+5/4, x+7/4; (v) x+3/2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1vi0.861.962.766 (4)156
N2—H2B···O1vii0.861.822.675 (4)170
Symmetry codes: (vi) x1/4, z+5/4, y+3/4; (vii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C14H10N4)3]4(PO4)2(SO4)
Mr3331.96
Crystal system, space groupCubic, I43d
Temperature (K)296
a (Å)24.964 (7)
V3)15558 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.32 × 0.27 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.834, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
20222, 2551, 1782
Rint0.066
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.01
No. of reflections2551
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.20
Absolute structureFlack (1983), 1182 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4B···O1i0.861.962.766 (4)156.1
N2—H2B···O1ii0.861.822.675 (4)170.0
Symmetry codes: (i) x1/4, z+5/4, y+3/4; (ii) x, y, z1.
 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev. 251, 2490–2509.  Web of Science CrossRef CAS Google Scholar
First citationMaspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev. 36, 770–818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds