metal-organic compounds
[2,6-Bis(di-tert-butylphosphinomethyl)phenyl-κ3P,C1,P′](nitrato-κO)nickel(II)
aDepartment of Chemistry and Chemical Biology, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131, USA, bDepartment of Chemistry, University of Washington, Seattle, WA 98195, USA, and cAdvanced Materials Laboratory, Sandia National Laboratories, 1001 University Boulevard SE, Albuquerque, NM 87106, USA
*Correspondence e-mail: rakemp@unm.edu
The NiII atom in the title compound, [Ni(C24H43P2)(NO3)], adopts a distorted square-planar geometry with the P atoms in a trans arrangement. The compound contains a twofold rotational axis with the nitrate group offset from this axis, except for an O atom of the nitrate group, generating two positions of 50% occupancy for the other atoms of the nitrate group.
Related literature
The synthetic preparation was adopted from that employed to prepare the Pd analogue (Cámpora et al., 2004). For the crystallographic characterization of the Pd analogue, see: Olsson et al. (2007). For the crystallographic characterization of the starting {2,6-bis[(di-tert-butylphosphino)methyl]phenyl}chloridonickel complex, see: Boro et al. (2008). For related literature, see: Denney et al. (2006); Johansson et al. (2007); Keith et al. (2006).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808032376/at2643sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808032376/at2643Isup2.hkl
{2,6-Bis[(di-tert-butylphosphino)methyl]phenyl}chloronickel(II) (0.135 g, 0.28 mmol) and AgNO3 (0.05 g, 0.29 mmol) were combined with THF (20 ml) and the solution was stirred at room temperature for 48 h. The THF was then removed under vacuum and the product was extracted into diethyl ether (15 ml). After filtering, the solution was layered with hexanes and placed in a 238 K freezer. The product crystallized as orange-brown prisms.
Yield 0.118 g, 82%. 1H NMR (250 MHz, C6D6): 6.93 (d, JHH = 7.5 Hz, 1H, Ar-Hpara), 6.68 (t, JHH = 7.5 Hz, 2H, Ar-Hmeta), 2.80 (virtual t, 4H, JHP = 7.15 Hz,CH2), 1.25 (virtual t, 36H, J = 13.1 Hz C(CH3)3) p.p.m.. 13C{1H} (63 MHz, C6D6): 152.8 (t, 2JPC = 11.6 Hz, Ar-Cipso), 147.1 (virtual t, JCP= 32.3 Hz, Ar-Cortho), 125.8 (s, Ar-Cpara), 122.1 (virtual t, JCP = 15.8 Hz, Ar-Cpara), 34.5 (virtual t, JCP = 13.2 Hz, PCH2), 32.7 (virtual t, JCP = 24.6 Hz, PC(CH3)3), 29.6 (s, CH3) p.p.m.. 31P{1H} (101 MHz, C6D6): 69.5 (s) p.p.m..
Hydrogen atoms were included at geometrically idealized positions with C—H distances at the range of 0.93 - 0.98 Å and were treated as riding on their respective heavy atoms. The isotropic thermal parameters of the hydrogen atoms were fixed at 1.2 or 1.5 Ueq of the parent atom.
Data collection: APEX2 (Bruker, 2007); cell
APEX2 (Bruker, 2007); data reduction: APEX2 (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2008).[Ni(C24H43P2)(NO3)] | F(000) = 2208 |
Mr = 514.24 | Dx = 1.276 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 9535 reflections |
a = 24.0023 (14) Å | θ = 2.2–30.3° |
b = 12.6350 (6) Å | µ = 0.87 mm−1 |
c = 17.6528 (6) Å | T = 225 K |
V = 5353.5 (4) Å3 | Cut-prism, orange–brown |
Z = 8 | 0.50 × 0.40 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 4078 independent reflections |
Radiation source: fine-focus sealed tube | 3703 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 30.5°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −34→34 |
Tmin = 0.671, Tmax = 0.846 | k = −18→18 |
33484 measured reflections | l = −25→25 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.25P] where P = (Fo2 + 2Fc2)/3 |
S = 0.81 | (Δ/σ)max = 0.001 |
4078 reflections | Δρmax = 0.38 e Å−3 |
156 parameters | Δρmin = −0.38 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1976 Freidel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.012 (10) |
[Ni(C24H43P2)(NO3)] | V = 5353.5 (4) Å3 |
Mr = 514.24 | Z = 8 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 24.0023 (14) Å | µ = 0.87 mm−1 |
b = 12.6350 (6) Å | T = 225 K |
c = 17.6528 (6) Å | 0.50 × 0.40 × 0.20 mm |
Bruker SMART CCD area-detector diffractometer | 4078 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 3703 reflections with I > 2σ(I) |
Tmin = 0.671, Tmax = 0.846 | Rint = 0.037 |
33484 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.099 | Δρmax = 0.38 e Å−3 |
S = 0.81 | Δρmin = −0.38 e Å−3 |
4078 reflections | Absolute structure: Flack (1983), 1976 Freidel pairs |
156 parameters | Absolute structure parameter: 0.012 (10) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.2500 | 0.2500 | 0.594610 (14) | 0.02536 (9) | |
P1 | 0.232841 (19) | 0.07823 (3) | 0.58242 (3) | 0.02639 (10) | |
C1 | 0.2500 | 0.2500 | 0.48634 (16) | 0.0263 (5) | |
C2 | 0.22870 (9) | 0.16438 (14) | 0.44415 (10) | 0.0293 (3) | |
C3 | 0.22918 (11) | 0.16401 (17) | 0.36544 (11) | 0.0381 (4) | |
H3 | 0.2153 | 0.1051 | 0.3390 | 0.046* | |
C4 | 0.2500 | 0.2500 | 0.32575 (19) | 0.0443 (8) | |
H4 | 0.2500 | 0.2500 | 0.2725 | 0.053* | |
C5 | 0.20438 (10) | 0.07210 (16) | 0.48626 (12) | 0.0357 (4) | |
H5A | 0.2149 | 0.0054 | 0.4618 | 0.043* | |
H5B | 0.1636 | 0.0770 | 0.4875 | 0.043* | |
C6 | 0.17578 (10) | 0.02125 (17) | 0.64252 (13) | 0.0356 (4) | |
C7 | 0.15103 (12) | −0.08133 (18) | 0.60934 (17) | 0.0492 (6) | |
H7A | 0.1803 | −0.1337 | 0.6038 | 0.074* | |
H7B | 0.1348 | −0.0665 | 0.5602 | 0.074* | |
H7C | 0.1225 | −0.1082 | 0.6431 | 0.074* | |
C8 | 0.13040 (11) | 0.1061 (2) | 0.64349 (17) | 0.0490 (5) | |
H8A | 0.1001 | 0.0833 | 0.6759 | 0.073* | |
H8B | 0.1166 | 0.1170 | 0.5925 | 0.073* | |
H8C | 0.1458 | 0.1718 | 0.6627 | 0.073* | |
C9 | 0.19464 (14) | 0.00157 (19) | 0.72359 (15) | 0.0484 (6) | |
H9A | 0.1623 | −0.0057 | 0.7561 | 0.073* | |
H9B | 0.2171 | 0.0607 | 0.7408 | 0.073* | |
H9C | 0.2166 | −0.0628 | 0.7256 | 0.073* | |
C10 | 0.29710 (10) | −0.00713 (16) | 0.58017 (16) | 0.0434 (5) | |
C11 | 0.33545 (12) | 0.0368 (3) | 0.5189 (2) | 0.0635 (9) | |
H11A | 0.3615 | −0.0176 | 0.5032 | 0.095* | |
H11B | 0.3558 | 0.0970 | 0.5388 | 0.095* | |
H11C | 0.3134 | 0.0590 | 0.4757 | 0.095* | |
C12 | 0.32896 (19) | 0.0019 (4) | 0.6540 (3) | 0.100 (2) | |
H12A | 0.3293 | −0.0663 | 0.6793 | 0.150* | |
H12B | 0.3110 | 0.0538 | 0.6864 | 0.150* | |
H12C | 0.3669 | 0.0240 | 0.6437 | 0.150* | |
C13 | 0.28517 (17) | −0.1214 (3) | 0.5629 (4) | 0.106 (2) | |
H13A | 0.2705 | −0.1274 | 0.5118 | 0.159* | |
H13B | 0.2580 | −0.1484 | 0.5986 | 0.159* | |
H13C | 0.3193 | −0.1621 | 0.5670 | 0.159* | |
N1 | 0.2619 (2) | 0.2312 (5) | 0.7546 (2) | 0.0478 (13) | 0.50 |
O1 | 0.22947 (16) | 0.2640 (3) | 0.70255 (19) | 0.0394 (7) | 0.50 |
O2 | 0.3061 (2) | 0.1884 (5) | 0.7355 (3) | 0.0732 (13) | 0.50 |
O3 | 0.2500 | 0.2500 | 0.8206 (2) | 0.0869 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.03377 (16) | 0.01934 (13) | 0.02296 (14) | −0.00129 (11) | 0.000 | 0.000 |
P1 | 0.0305 (2) | 0.01967 (19) | 0.0290 (2) | 0.00015 (15) | 0.00072 (17) | 0.00082 (15) |
C1 | 0.0312 (13) | 0.0241 (12) | 0.0238 (11) | 0.0033 (8) | 0.000 | 0.000 |
C2 | 0.0344 (8) | 0.0280 (8) | 0.0256 (8) | 0.0006 (7) | −0.0019 (7) | −0.0025 (6) |
C3 | 0.0478 (11) | 0.0397 (11) | 0.0267 (9) | −0.0013 (8) | −0.0025 (8) | −0.0070 (7) |
C4 | 0.059 (2) | 0.0497 (19) | 0.0237 (12) | 0.0046 (13) | 0.000 | 0.000 |
C5 | 0.0468 (11) | 0.0289 (9) | 0.0314 (9) | −0.0077 (8) | −0.0027 (8) | −0.0030 (7) |
C6 | 0.0378 (10) | 0.0323 (8) | 0.0368 (10) | −0.0059 (8) | 0.0047 (8) | 0.0017 (7) |
C7 | 0.0514 (13) | 0.0399 (11) | 0.0564 (14) | −0.0172 (10) | 0.0099 (11) | −0.0066 (9) |
C8 | 0.0387 (11) | 0.0530 (13) | 0.0552 (14) | 0.0026 (10) | 0.0096 (10) | −0.0039 (11) |
C9 | 0.0621 (16) | 0.0468 (14) | 0.0364 (11) | −0.0120 (11) | 0.0025 (10) | 0.0099 (9) |
C10 | 0.0380 (10) | 0.0317 (10) | 0.0606 (15) | 0.0095 (7) | 0.0119 (10) | 0.0072 (9) |
C11 | 0.0397 (12) | 0.0590 (16) | 0.092 (2) | 0.0147 (12) | 0.0217 (15) | 0.0184 (17) |
C12 | 0.061 (2) | 0.168 (6) | 0.070 (3) | 0.056 (3) | −0.0012 (18) | 0.028 (2) |
C13 | 0.069 (2) | 0.0339 (14) | 0.215 (7) | 0.0129 (13) | 0.034 (3) | −0.011 (2) |
N1 | 0.057 (4) | 0.052 (4) | 0.0350 (19) | −0.016 (2) | −0.0114 (18) | 0.0079 (18) |
O1 | 0.0488 (17) | 0.0462 (17) | 0.0233 (14) | −0.0022 (15) | 0.0012 (13) | −0.0048 (12) |
O2 | 0.054 (2) | 0.104 (4) | 0.062 (3) | 0.012 (3) | −0.011 (2) | 0.019 (3) |
O3 | 0.098 (3) | 0.137 (4) | 0.0265 (13) | −0.012 (2) | 0.000 | 0.000 |
Ni1—C1 | 1.911 (3) | C7—H7C | 0.9700 |
Ni1—O1i | 1.976 (3) | C8—H8A | 0.9700 |
Ni1—O1 | 1.976 (3) | C8—H8B | 0.9700 |
Ni1—P1i | 2.2195 (4) | C8—H8C | 0.9700 |
Ni1—P1 | 2.2195 (4) | C9—H9A | 0.9700 |
P1—C5 | 1.831 (2) | C9—H9B | 0.9700 |
P1—C6 | 1.876 (2) | C9—H9C | 0.9700 |
P1—C10 | 1.882 (2) | C10—C13 | 1.503 (4) |
C1—C2i | 1.409 (2) | C10—C12 | 1.516 (6) |
C1—C2 | 1.409 (2) | C10—C11 | 1.525 (4) |
C2—C3 | 1.389 (3) | C11—H11A | 0.9700 |
C2—C5 | 1.501 (3) | C11—H11B | 0.9700 |
C3—C4 | 1.386 (3) | C11—H11C | 0.9700 |
C3—H3 | 0.9400 | C12—H12A | 0.9700 |
C4—C3i | 1.386 (3) | C12—H12B | 0.9700 |
C4—H4 | 0.9400 | C12—H12C | 0.9700 |
C5—H5A | 0.9800 | C13—H13A | 0.9700 |
C5—H5B | 0.9800 | C13—H13B | 0.9700 |
C6—C9 | 1.521 (3) | C13—H13C | 0.9700 |
C6—C8 | 1.528 (4) | N1—O3 | 1.223 (5) |
C6—C7 | 1.541 (3) | N1—O2 | 1.239 (7) |
C7—H7A | 0.9700 | N1—O1 | 1.273 (5) |
C7—H7B | 0.9700 | O3—N1i | 1.223 (5) |
C1—Ni1—O1i | 164.64 (11) | C6—C8—H8B | 109.5 |
C1—Ni1—O1 | 164.64 (11) | H8A—C8—H8B | 109.5 |
C1—Ni1—P1i | 84.437 (14) | C6—C8—H8C | 109.5 |
O1i—Ni1—P1i | 97.74 (10) | H8A—C8—H8C | 109.5 |
O1—Ni1—P1i | 93.00 (10) | H8B—C8—H8C | 109.5 |
C1—Ni1—P1 | 84.435 (14) | C6—C9—H9A | 109.5 |
O1i—Ni1—P1 | 93.00 (10) | C6—C9—H9B | 109.5 |
O1—Ni1—P1 | 97.74 (10) | H9A—C9—H9B | 109.5 |
P1i—Ni1—P1 | 168.87 (3) | C6—C9—H9C | 109.5 |
C5—P1—C6 | 103.63 (10) | H9A—C9—H9C | 109.5 |
C5—P1—C10 | 105.18 (12) | H9B—C9—H9C | 109.5 |
C6—P1—C10 | 112.97 (10) | C13—C10—C12 | 110.1 (3) |
C5—P1—Ni1 | 101.56 (7) | C13—C10—C11 | 108.7 (3) |
C6—P1—Ni1 | 117.12 (7) | C12—C10—C11 | 106.1 (3) |
C10—P1—Ni1 | 114.22 (8) | C13—C10—P1 | 113.5 (2) |
C2i—C1—C2 | 116.2 (3) | C12—C10—P1 | 110.6 (2) |
C2i—C1—Ni1 | 121.90 (13) | C11—C10—P1 | 107.52 (16) |
C2—C1—Ni1 | 121.90 (13) | C10—C11—H11A | 109.5 |
C3—C2—C1 | 121.9 (2) | C10—C11—H11B | 109.5 |
C3—C2—C5 | 119.73 (18) | H11A—C11—H11B | 109.5 |
C1—C2—C5 | 118.39 (19) | C10—C11—H11C | 109.5 |
C4—C3—C2 | 120.4 (2) | H11A—C11—H11C | 109.5 |
C4—C3—H3 | 119.8 | H11B—C11—H11C | 109.5 |
C2—C3—H3 | 119.8 | C10—C12—H12A | 109.5 |
C3i—C4—C3 | 119.3 (3) | C10—C12—H12B | 109.5 |
C3i—C4—H4 | 120.4 | H12A—C12—H12B | 109.5 |
C3—C4—H4 | 120.4 | C10—C12—H12C | 109.5 |
C2—C5—P1 | 106.33 (13) | H12A—C12—H12C | 109.5 |
C2—C5—H5A | 110.5 | H12B—C12—H12C | 109.5 |
P1—C5—H5A | 110.5 | C10—C13—H13A | 109.5 |
C2—C5—H5B | 110.5 | C10—C13—H13B | 109.5 |
P1—C5—H5B | 110.5 | H13A—C13—H13B | 109.5 |
H5A—C5—H5B | 108.7 | C10—C13—H13C | 109.5 |
C9—C6—C8 | 108.4 (2) | H13A—C13—H13C | 109.5 |
C9—C6—C7 | 109.6 (2) | H13B—C13—H13C | 109.5 |
C8—C6—C7 | 108.6 (2) | O1i—N1—O3 | 165.1 (6) |
C9—C6—P1 | 112.18 (18) | O1i—N1—O2 | 64.8 (4) |
C8—C6—P1 | 104.93 (15) | O3—N1—O2 | 123.0 (4) |
C7—C6—P1 | 112.90 (16) | O3—N1—O1 | 118.8 (4) |
C6—C7—H7A | 109.5 | O2—N1—O1 | 117.9 (5) |
C6—C7—H7B | 109.5 | N1i—O1—O2i | 69.6 (4) |
H7A—C7—H7B | 109.5 | O2i—O1—N1 | 104.4 (4) |
C6—C7—H7C | 109.5 | N1i—O1—Ni1 | 152.8 (5) |
H7A—C7—H7C | 109.5 | O2i—O1—Ni1 | 133.8 (4) |
H7B—C7—H7C | 109.5 | N1—O1—Ni1 | 121.0 (3) |
C6—C8—H8A | 109.5 |
Symmetry code: (i) −x+1/2, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C24H43P2)(NO3)] |
Mr | 514.24 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 225 |
a, b, c (Å) | 24.0023 (14), 12.6350 (6), 17.6528 (6) |
V (Å3) | 5353.5 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.87 |
Crystal size (mm) | 0.50 × 0.40 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.671, 0.846 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 33484, 4078, 3703 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.099, 0.81 |
No. of reflections | 4078 |
No. of parameters | 156 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.38 |
Absolute structure | Flack (1983), 1976 Freidel pairs |
Absolute structure parameter | 0.012 (10) |
Computer programs: APEX2 (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2008).
Acknowledgements
Funding was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC PDF to DAD) and the Department of Energy (DE-FG02-06ER15765). The diffractometer was purchased via a National Science Foundation CRIF:MU award to the University of New Mexico (CHE-0443580). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract No. DE-AC04-94AL85000.
References
Boro, B. J., Dickie, D. A., Goldberg, K. I. & Kemp, R. A. (2008). Acta Cryst. E64, m1304. Web of Science CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cámpora, J., Palma, P., del Rio, D. & Álvarez, E. (2004). Organometallics, 23, 1652–1655. Google Scholar
Denney, M. C., Smythe, N. A., Cetto, K. L., Kemp, R. A. & Goldberg, K. I. (2006). J. Am. Chem. Soc. 128, 2508–2509. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Johansson, R., Öhrström, L. & Wendt, O. F. (2007). Cryst. Growth Des. 7, 1974–1979. Web of Science CSD CrossRef CAS Google Scholar
Keith, J. M., Muller, R. P., Kemp, R. A., Goldberg, K. I., Goddard, W. A. III & Oxgaard, J. (2006). Inorg. Chem. 45, 9631–9633. Web of Science CrossRef PubMed CAS Google Scholar
Olsson, D., Janse van Rensburg, J. M. & Wendt, O. F. (2007). Acta Cryst. E63, m1969. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I) (Fig. 1), was prepared from {2,6-bis[(di-tert-butylphosphino)methyl]phenyl}chloridonickel(II) (Boro et al., 2008) via a synthesis adopted from the preparation of the Pd analogue (Cámpora et al., 2004). Our research has been directed towards the activation of molecular oxygen using pincer complexes of the late transition metals (Denney et al., 2006; Keith et al., 2006). Compound (I) was prepared as a precursor along the path of the attempted synthesis of a NiII-hydroperoxide.
The compound is bisected by a twofold rotational axis running through C4, C1, Ni1, and O3. The nitrate group is offset from this axis with a C1—Ni1—O1 angle of 164.64 (11)°. As a result of this symmetry induced disorder the nitrate group occupies two positions each with 50% occupancy. The Ni1—O1 bond length 1.976 (3) Å is significantly shorter than the corresponding Pd—O bond length 2.164 (2) Å in the Pd analogue (Johansson et al. 2007). This not surprising, given the smaller size of the Ni atom. The M—C and M—P bonds were also shorter in the Ni compound compared to the Pd. The P—M—P angle, however was closer to the ideal linear geometry with Ni (168.87 (3)°) than Pd (163.41 (3)°).
In their report on the Pd analogue of (I), Johansson et al. (2007) observed non-traditional hydrogen bonding between one of the nitrato O atoms and a hydrogen from the methylene arm of the pincer ligand to form a zigzag chain. The C—H···O interaction measured 3.263 (4) Å (C···O) with an angle of 137°. The same pattern is observed in I (Fig. 2) between C5—H5b···O2, with corresponding measurements of 3.5616 (54) Å and 171.81 (18)°.