metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[{2-meth­­oxy-6-[(4-methyl­phen­yl)imino­meth­yl]phenolato}­cad­mium(II)]-di-μ2-chlorido-[di­methanol­cadmium(II)]-di-μ2-chlorido-[{2-meth­­oxy-6-[(4-methyl­phen­yl)imino­meth­yl]­phenolato}cadmium(II)]-di-μ2-chlorido]

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 6 October 2008; accepted 15 October 2008; online 18 October 2008)

The structure of the title compound, [Cd3Cl6(C15H15NO2)2(CH4O)2]n, is based on a layered zigzag polymeric chain along the c axis. The CdII ions are linked by double chlorine bridges alternating between one CdCl4(CH3OH)2 and two CdCl4(C15H15NO2) octa­hedral coordination units. Additional intrachain N—H⋯O and O—H⋯Cl hydrogen-bond interactions stabilize this arrangement.

Related literature

For related literature, see: Henkel & Krebs (2004[Henkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801-824.]); Suen & Wang (2007[Suen, M. C. & Wang, J. C. (2007). J. Coord. Chem. 60, 2197-2205.]); Wang et al. (2005[Wang, X. L., Qin, C., Wang, E. B. & Xu, L. (2005). J. Mol. Struct. 749, 45-50.]); Zhang & Bu (2008[Zhang, J. & Bu, X. H. (2008). Chem. Commun. pp. 444-446.]); De Girolamo et al. (2007[De Girolamo, J., Reiss, P. & Pron, A. (2007). J. Phys. Chem. C, 111, 14681-14688.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd3Cl6(C15H15NO2)2(CH4O)2]

  • Mr = 1096.57

  • Monoclinic, C 2/c

  • a = 19.7697 (5) Å

  • b = 13.9554 (3) Å

  • c = 15.1449 (4) Å

  • β = 110.4230 (10)°

  • V = 3915.74 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 296 (2) K

  • 0.15 × 0.13 × 0.05 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.736, Tmax = 0.898

  • 13592 measured reflections

  • 3350 independent reflections

  • 2773 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.060

  • S = 1.05

  • 3350 reflections

  • 226 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O1 0.86 1.88 2.574 (3) 137
O3—H3C⋯Cl3 0.838 (19) 2.38 (2) 3.213 (3) 170 (5)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

There has been an increasing interest in the coordination chemistry of cadmium in recent years due to the increased recognition of its role in biological organisms (Henkel & Krebs, 2004), as well as in molecular-based materials (De Girolamo et al., 2007). In the quest for molecular-based materials with interesting properties, much attention has been given to one-, two- and three-dimensional extended solids which involve cadmium (Suen & Wang, 2007; Wang et al., 2005; Zhang & Bu, 2008). Complexes of the type CdX2 (X = CI or Br) with organic bases typically form one- or two-dimensional halogen-bridged chain compounds with six-coordination octahedral cadmium(II). Here, we describe the synthesis and crystal structure of the cadmium(II) chloride complex with 2-[(4-methylphenylimino)methyl]-6-methoxyphenol.

The crystal structure of the title compound (I) has features of the monoclinic space group C2/c. As illustrated in Fig. 1, the structure comprises an alternating polymeric chain layer along the c axis. The CdII ions are linked into an infinite chain by double chlorine bridges, The Cd(1)···Cd(2) and Cd(1)···Cd(1A) distances in the molecule are 3.7087 (3) and 3.8756 (4) Å, respectively.

Related literature top

For related literature, see: Henkel & Krebs (2004); Suen & Wang (2007); Wang et al. (2005); Zhang & Bu (2008); De Girolamo et al. (2007). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see··· For related structures, see···; etc. Please revise this section as indicated.

Experimental top

A solution of CdCl2 (2 mmol) in methanol (20 ml) was added to a methanol solution (20 ml) of the Schiff base ligand (2 mmol, 0.48 g). Red crystals of (I) were isolated after two weeks.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H 0.93 Å, methylic C—H = 0.96 Å and N—H = 0.86 Å, Uiso(H) = 1.2 or 1.5Ueq(C, N)]. The H atoms bonded to O atoms were located in a difference Fourier maps and refined with O—H distance restraints of 0.85 (2) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
catena-Poly[[{2-methoxy-6-[(4-methylphenyl)iminomethyl]phenolato}cadmium(II)]- di-µ2-chlorido-[dimethanolcadmium(II)]-di-µ2-chlorido-[{2-methoxy-6- [(4-methylphenyl)iminomethyl]phenolato}cadmium(II)]-di-µ2-chlorido] top
Crystal data top
[Cd3Cl6(C15H15NO2)2(CH4O)2]F(000) = 2152
Mr = 1096.57Dx = 1.860 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3942 reflections
a = 19.7697 (5) Åθ = 1.8–25.0°
b = 13.9554 (3) ŵ = 2.07 mm1
c = 15.1449 (4) ÅT = 296 K
β = 110.423 (1)°Block, red
V = 3915.74 (17) Å30.15 × 0.13 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
3350 independent reflections
Radiation source: fine-focus sealed tube2773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2323
Tmin = 0.736, Tmax = 0.898k = 1616
13592 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0247P)2 + 2.9063P]
where P = (Fo2 + 2Fc2)/3
3350 reflections(Δ/σ)max = 0.002
226 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[Cd3Cl6(C15H15NO2)2(CH4O)2]V = 3915.74 (17) Å3
Mr = 1096.57Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.7697 (5) ŵ = 2.07 mm1
b = 13.9554 (3) ÅT = 296 K
c = 15.1449 (4) Å0.15 × 0.13 × 0.05 mm
β = 110.423 (1)°
Data collection top
Bruker APEXII
diffractometer
3350 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2773 reflections with I > 2σ(I)
Tmin = 0.736, Tmax = 0.898Rint = 0.033
13592 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0261 restraint
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
3350 reflectionsΔρmin = 0.34 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.542829 (14)1.284415 (15)0.113758 (18)0.04061 (9)
Cd20.50001.50000.00000.04260 (11)
N10.46501 (15)0.97593 (18)0.16754 (19)0.0373 (6)
H1D0.47101.03670.17040.045*
O10.53998 (12)1.12806 (14)0.10453 (16)0.0440 (6)
O20.65586 (13)1.21264 (15)0.01463 (18)0.0502 (6)
O30.41084 (17)1.48567 (18)0.1495 (2)0.0734 (9)
H3C0.406 (3)1.431 (2)0.174 (3)0.110*
Cl10.59671 (6)1.44929 (6)0.07253 (8)0.0632 (3)
Cl20.48990 (5)1.31686 (6)0.02126 (6)0.0447 (2)
Cl30.41178 (5)1.27831 (6)0.24124 (6)0.0449 (2)
C10.2053 (2)0.8336 (3)0.4388 (3)0.0702 (12)
H1A0.20540.76480.43960.105*
H1B0.19950.85740.50050.105*
H1C0.16610.85580.42060.105*
C20.27528 (19)0.8692 (2)0.3696 (3)0.0470 (9)
C30.3294 (2)0.8076 (2)0.3173 (3)0.0534 (10)
H3A0.32280.74200.32720.064*
C40.3923 (2)0.8400 (2)0.2515 (3)0.0487 (9)
H4A0.42780.79680.21770.058*
C50.40256 (18)0.9373 (2)0.2360 (2)0.0361 (8)
C60.3509 (2)1.0007 (2)0.2894 (3)0.0433 (8)
H6A0.35861.06640.28140.052*
C70.28796 (19)0.9666 (2)0.3544 (3)0.0469 (9)
H7A0.25301.00980.38910.056*
C80.51477 (18)0.9305 (2)0.1005 (2)0.0373 (8)
H8A0.50950.86480.09470.045*
C90.57599 (18)0.9754 (2)0.0364 (2)0.0356 (8)
C100.6274 (2)0.9190 (2)0.0325 (3)0.0498 (9)
H10A0.61960.85370.03650.060*
C110.6876 (2)0.9600 (3)0.0925 (3)0.0557 (10)
H11A0.72180.92220.13670.067*
C120.6997 (2)1.0591 (3)0.0893 (3)0.0510 (9)
H12A0.74141.08630.13150.061*
C130.65035 (18)1.1156 (2)0.0245 (2)0.0398 (8)
C140.58669 (17)1.0755 (2)0.0415 (2)0.0344 (7)
C150.7108 (2)1.2622 (3)0.0885 (3)0.0693 (12)
H15A0.74601.21700.12520.104*
H15B0.68931.29420.12820.104*
H15C0.73381.30840.06140.104*
C160.3865 (3)1.5562 (4)0.2154 (3)0.110 (2)
H16A0.34951.53090.27010.165*
H16B0.42571.57960.23290.165*
H16C0.36701.60780.18970.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04572 (18)0.02655 (13)0.04443 (16)0.00188 (10)0.00927 (13)0.00170 (10)
Cd20.0499 (3)0.02725 (18)0.0422 (2)0.00221 (15)0.00547 (19)0.00150 (14)
N10.0407 (18)0.0263 (13)0.0430 (17)0.0029 (12)0.0120 (15)0.0001 (12)
O10.0432 (15)0.0273 (11)0.0472 (14)0.0025 (10)0.0022 (12)0.0032 (10)
O20.0454 (16)0.0383 (13)0.0571 (16)0.0100 (11)0.0055 (13)0.0043 (11)
O30.086 (2)0.0433 (16)0.0607 (19)0.0093 (15)0.0132 (17)0.0099 (14)
Cl10.0737 (7)0.0389 (5)0.0889 (8)0.0198 (5)0.0433 (6)0.0183 (5)
Cl20.0541 (6)0.0300 (4)0.0472 (5)0.0023 (4)0.0141 (5)0.0016 (4)
Cl30.0422 (5)0.0437 (5)0.0436 (5)0.0017 (4)0.0085 (4)0.0031 (4)
C10.044 (3)0.060 (3)0.087 (3)0.001 (2)0.002 (2)0.008 (2)
C20.039 (2)0.045 (2)0.053 (2)0.0029 (17)0.0115 (19)0.0053 (17)
C30.054 (3)0.0310 (18)0.065 (3)0.0059 (17)0.009 (2)0.0031 (17)
C40.047 (2)0.0344 (19)0.052 (2)0.0025 (16)0.002 (2)0.0024 (16)
C50.036 (2)0.0332 (17)0.0384 (19)0.0032 (14)0.0118 (17)0.0014 (14)
C60.048 (2)0.0312 (17)0.048 (2)0.0007 (16)0.0138 (19)0.0014 (15)
C70.038 (2)0.0418 (19)0.052 (2)0.0071 (16)0.005 (2)0.0014 (17)
C80.043 (2)0.0285 (16)0.039 (2)0.0009 (15)0.0134 (18)0.0027 (14)
C90.038 (2)0.0323 (16)0.0347 (19)0.0039 (14)0.0108 (17)0.0013 (14)
C100.059 (3)0.0365 (19)0.047 (2)0.0086 (18)0.009 (2)0.0056 (16)
C110.055 (3)0.048 (2)0.048 (2)0.0139 (19)0.002 (2)0.0068 (18)
C120.040 (2)0.058 (2)0.044 (2)0.0038 (18)0.0008 (19)0.0074 (18)
C130.040 (2)0.0357 (18)0.040 (2)0.0002 (15)0.0102 (18)0.0027 (15)
C140.037 (2)0.0319 (17)0.0341 (18)0.0030 (14)0.0121 (17)0.0015 (14)
C150.069 (3)0.059 (2)0.066 (3)0.026 (2)0.005 (2)0.016 (2)
C160.148 (6)0.076 (3)0.062 (3)0.018 (3)0.018 (3)0.001 (3)
Geometric parameters (Å, º) top
Cd1—O12.188 (2)C2—C71.387 (5)
Cd1—Cl12.5208 (9)C3—C41.371 (5)
Cd1—O22.597 (2)C3—H3A0.9300
Cd1—Cl32.6374 (9)C4—C51.382 (4)
Cd1—Cl22.6410 (9)C4—H4A0.9300
Cd1—Cl3i2.6476 (9)C5—C61.380 (4)
Cd2—O3ii2.343 (3)C6—C71.375 (5)
Cd2—O32.343 (3)C6—H6A0.9300
Cd2—Cl22.5924 (8)C7—H7A0.9300
Cd2—Cl2ii2.5924 (8)C8—C91.407 (4)
Cd2—Cl12.6133 (10)C8—H8A0.9300
Cd2—Cl1ii2.6133 (10)C9—C101.414 (4)
N1—C81.306 (4)C9—C141.418 (4)
N1—C51.413 (4)C10—C111.348 (5)
N1—H1D0.8600C10—H10A0.9300
O1—C141.299 (4)C11—C121.408 (5)
O2—C131.372 (4)C11—H11A0.9300
O2—C151.435 (4)C12—C131.366 (5)
O3—C161.365 (5)C12—H12A0.9300
O3—H3C0.838 (19)C13—C141.421 (4)
Cl3—Cd1i2.6476 (9)C15—H15A0.9600
C1—C21.499 (5)C15—H15B0.9600
C1—H1A0.9600C15—H15C0.9600
C1—H1B0.9600C16—H16A0.9600
C1—H1C0.9600C16—H16B0.9600
C2—C31.385 (5)C16—H16C0.9600
O1—Cd1—Cl1155.83 (6)C3—C2—C1122.3 (3)
O1—Cd1—O266.56 (7)C7—C2—C1120.7 (3)
Cl1—Cd1—O289.30 (5)C4—C3—C2122.4 (3)
O1—Cd1—Cl388.51 (6)C4—C3—H3A118.8
Cl1—Cd1—Cl3115.66 (3)C2—C3—H3A118.8
O2—Cd1—Cl3154.74 (5)C3—C4—C5119.3 (3)
O1—Cd1—Cl295.48 (6)C3—C4—H4A120.3
Cl1—Cd1—Cl284.21 (3)C5—C4—H4A120.3
O2—Cd1—Cl287.50 (6)C6—C5—C4119.7 (3)
Cl3—Cd1—Cl291.09 (3)C6—C5—N1117.7 (3)
O1—Cd1—Cl3i92.56 (6)C4—C5—N1122.6 (3)
Cl1—Cd1—Cl3i89.92 (3)C7—C6—C5119.8 (3)
O2—Cd1—Cl3i99.00 (6)C7—C6—H6A120.1
Cl3—Cd1—Cl3i85.55 (3)C5—C6—H6A120.1
Cl2—Cd1—Cl3i171.21 (3)C6—C7—C2121.7 (3)
O3ii—Cd2—O3180.00 (12)C6—C7—H7A119.2
O3ii—Cd2—Cl291.64 (7)C2—C7—H7A119.2
O3—Cd2—Cl288.36 (7)N1—C8—C9123.6 (3)
O3ii—Cd2—Cl2ii88.36 (7)N1—C8—H8A118.2
O3—Cd2—Cl2ii91.64 (7)C9—C8—H8A118.2
Cl2—Cd2—Cl2ii180.000 (1)C8—C9—C10119.0 (3)
O3ii—Cd2—Cl190.88 (9)C8—C9—C14120.7 (3)
O3—Cd2—Cl189.12 (9)C10—C9—C14120.4 (3)
Cl2—Cd2—Cl183.37 (3)C11—C10—C9120.0 (3)
Cl2ii—Cd2—Cl196.63 (3)C11—C10—H10A120.0
O3ii—Cd2—Cl1ii89.12 (9)C9—C10—H10A120.0
O3—Cd2—Cl1ii90.88 (9)C10—C11—C12120.9 (3)
Cl2—Cd2—Cl1ii96.63 (3)C10—C11—H11A119.5
Cl2ii—Cd2—Cl1ii83.37 (3)C12—C11—H11A119.5
Cl1—Cd2—Cl1ii180.000 (1)C13—C12—C11120.3 (3)
C8—N1—C5127.9 (3)C13—C12—H12A119.9
C8—N1—H1D116.1C11—C12—H12A119.9
C5—N1—H1D116.1C12—C13—O2125.7 (3)
C14—O1—Cd1125.63 (19)C12—C13—C14120.9 (3)
C13—O2—C15117.3 (3)O2—C13—C14113.4 (3)
C13—O2—Cd1112.48 (19)O1—C14—C9121.0 (3)
C15—O2—Cd1128.1 (2)O1—C14—C13121.5 (3)
C16—O3—Cd2126.9 (3)C9—C14—C13117.5 (3)
C16—O3—H3C112 (4)O2—C15—H15A109.5
Cd2—O3—H3C116 (4)O2—C15—H15B109.5
Cd1—Cl1—Cd292.48 (3)H15A—C15—H15B109.5
Cd2—Cl2—Cd190.25 (3)O2—C15—H15C109.5
Cd1—Cl3—Cd1i94.33 (3)H15A—C15—H15C109.5
C2—C1—H1A109.5H15B—C15—H15C109.5
C2—C1—H1B109.5O3—C16—H16A109.5
H1A—C1—H1B109.5O3—C16—H16B109.5
C2—C1—H1C109.5H16A—C16—H16B109.5
H1A—C1—H1C109.5O3—C16—H16C109.5
H1B—C1—H1C109.5H16A—C16—H16C109.5
C3—C2—C7117.0 (3)H16B—C16—H16C109.5
Cl1—Cd1—O1—C149.2 (3)Cl2—Cd1—Cl3—Cd1i168.17 (2)
O2—Cd1—O1—C146.0 (2)Cl3i—Cd1—Cl3—Cd1i3.70 (4)
Cl3—Cd1—O1—C14169.9 (2)C7—C2—C3—C41.6 (6)
Cl2—Cd1—O1—C1478.9 (2)C1—C2—C3—C4177.5 (4)
Cl3i—Cd1—O1—C14104.7 (2)C2—C3—C4—C50.3 (6)
O1—Cd1—O2—C135.0 (2)C3—C4—C5—C62.7 (5)
Cl1—Cd1—O2—C13176.3 (2)C3—C4—C5—N1178.1 (3)
Cl3—Cd1—O2—C134.8 (3)C8—N1—C5—C6168.6 (3)
Cl2—Cd1—O2—C1392.1 (2)C8—N1—C5—C412.3 (5)
Cl3i—Cd1—O2—C1393.9 (2)C4—C5—C6—C73.3 (5)
O1—Cd1—O2—C15167.6 (3)N1—C5—C6—C7177.6 (3)
Cl1—Cd1—O2—C1513.8 (3)C5—C6—C7—C21.4 (5)
Cl3—Cd1—O2—C15157.7 (3)C3—C2—C7—C61.0 (5)
Cl2—Cd1—O2—C1570.5 (3)C1—C2—C7—C6178.1 (4)
Cl3i—Cd1—O2—C15103.6 (3)C5—N1—C8—C9178.9 (3)
Cl2—Cd2—O3—C16174.9 (4)N1—C8—C9—C10178.8 (3)
Cl2ii—Cd2—O3—C165.1 (4)N1—C8—C9—C140.3 (5)
Cl1—Cd2—O3—C1691.5 (4)C8—C9—C10—C11177.7 (3)
Cl1ii—Cd2—O3—C1688.5 (4)C14—C9—C10—C111.4 (5)
O1—Cd1—Cl1—Cd2113.74 (16)C9—C10—C11—C121.6 (6)
O2—Cd1—Cl1—Cd2110.81 (6)C10—C11—C12—C130.4 (6)
Cl3—Cd1—Cl1—Cd265.17 (4)C11—C12—C13—O2179.8 (3)
Cl2—Cd1—Cl1—Cd223.25 (3)C11—C12—C13—C140.9 (5)
Cl3i—Cd1—Cl1—Cd2150.19 (3)C15—O2—C13—C1212.1 (5)
O3ii—Cd2—Cl1—Cd1115.31 (7)Cd1—O2—C13—C12176.7 (3)
O3—Cd2—Cl1—Cd164.69 (7)C15—O2—C13—C14168.6 (3)
Cl2—Cd2—Cl1—Cd123.75 (3)Cd1—O2—C13—C144.0 (3)
Cl2ii—Cd2—Cl1—Cd1156.25 (3)Cd1—O1—C14—C9173.8 (2)
O3ii—Cd2—Cl2—Cd1113.28 (9)Cd1—O1—C14—C136.4 (4)
O3—Cd2—Cl2—Cd166.72 (9)C8—C9—C14—O10.8 (5)
Cl1—Cd2—Cl2—Cd122.59 (3)C10—C9—C14—O1179.9 (3)
Cl1ii—Cd2—Cl2—Cd1157.41 (3)C8—C9—C14—C13178.9 (3)
O1—Cd1—Cl2—Cd2179.14 (6)C10—C9—C14—C130.1 (5)
Cl1—Cd1—Cl2—Cd223.43 (3)C12—C13—C14—O1178.8 (3)
O2—Cd1—Cl2—Cd2112.98 (5)O2—C13—C14—O10.6 (4)
O1—Cd1—Cl3—Cd1i96.38 (6)C12—C13—C14—C91.0 (5)
Cl1—Cd1—Cl3—Cd1i84.07 (3)O2—C13—C14—C9179.6 (3)
O2—Cd1—Cl3—Cd1i105.40 (14)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+1, y+3, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.861.882.574 (3)137
O3—H3C···Cl30.84 (2)2.38 (2)3.213 (3)170 (5)

Experimental details

Crystal data
Chemical formula[Cd3Cl6(C15H15NO2)2(CH4O)2]
Mr1096.57
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.7697 (5), 13.9554 (3), 15.1449 (4)
β (°) 110.423 (1)
V3)3915.74 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.15 × 0.13 × 0.05
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.736, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
13592, 3350, 2773
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.060, 1.05
No. of reflections3350
No. of parameters226
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.34

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1D···O10.861.882.574 (3)136.8
O3—H3C···Cl30.838 (19)2.38 (2)3.213 (3)170 (5)
 

References

First citationBruker (2006). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Girolamo, J., Reiss, P. & Pron, A. (2007). J. Phys. Chem. C, 111, 14681–14688.  Web of Science CrossRef CAS Google Scholar
First citationHenkel, G. & Krebs, B. (2004). Chem. Rev. 104, 801–824.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuen, M. C. & Wang, J. C. (2007). J. Coord. Chem. 60, 2197–2205.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, X. L., Qin, C., Wang, E. B. & Xu, L. (2005). J. Mol. Struct. 749, 45–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J. & Bu, X. H. (2008). Chem. Commun. pp. 444–446.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds