organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Ethyl 2-cyano-2-(thia­zolidin-2-yl­­idene)acetate

aMicroscale Science Institute, Biology Department, Weifang University, Weifang 261061, People's Republic of China, and bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 8 October 2008; accepted 12 October 2008; online 18 October 2008)

The title compound, C8H10N2O2S, was prepared by the reaction of 2-cyano-3,3-bis­(methyl­sulfan­yl)acrylate and 2-amino­ethanethiol at 350 K. The mol­ecular structure and packing are stabilized by N—H⋯O hydrogen-bond inter­actions. All the non-H atoms are nearly in the same plane with the maximum deviation being 0.08 Å.

Related literature

For biological properties of compounds containing thia­zolidine groups, see: Huang & Shi (1990[Huang, Z. T. & Shi, X. (1990). Synthesis, pp. 162-167.]); Iwata et al. (1988[Iwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katstrada, M. & Imanishi, T. (1988). Synthesis, pp. 261-262.]). For related compounds, see: Schroth et al. (1997[Schroth, W., Hintzsche, E., Jordan, H., Jende, T., Spitzner, R. & Thondorf, I. (1997). Tetrahedron, 53, 7509-7528.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10N2O2S

  • Mr = 198.24

  • Monoclinic, P 21 /c

  • a = 4.0676 (8) Å

  • b = 15.460 (3) Å

  • c = 14.581 (3) Å

  • β = 90.03 (3)°

  • V = 916.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 (2) K

  • 0.20 × 0.12 × 0.09 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 6717 measured reflections

  • 1577 independent reflections

  • 1484 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.112

  • S = 1.24

  • 1577 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.33 2.955 (3) 129
N1—H1A⋯O1 0.86 2.12 2.723 (3) 127
Symmetry code: (i) -x, -y+2, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiazolidine is an important kind of group in organic chemistry. Many compounds containing thiazolidine groups possess a broad spectrum of biological activities (Iwata et al., 1988; Huang & Shi, 1990). Here, we report the crystal structure of the title compound (I).

In the crystal structure of (I) (Fig. 1), the torsion angle formed by the N1, C3, S1 and C1 is 4.5 (3)°. All the non-H atoms are nearly the same plane with the maximum deviation of atoms being 0.08 Å. The C—S bond lengths of 1.745 (3) and 1.806 (3) Å are in agreement with those observed before (Schroth et al., 1997). In the crystal structure, there are N—H···O hydrogen-bond interactions to stabilize the crystal structure (Table 12).

Related literature top

For biological properties of compounds containing thiazolidine groups, see: Huang & Shi (1990); Iwata et al. (1988). For related compounds, see: Schroth et al. (1997). [Please check amended text]

Experimental top

A mixture of ethyl 2-cyano-3,3-bis(methylthio)acrylate 4 mmol (0.87 g) and 2-amino-ethanethiol (0.32 g, 4.1 mmol) is refluxed in absolute EtOH (25 ml) for 4 h. On cooling, the product crystallized and is filtered, and recrystallized from absolute EtOH [yield 0.67 g (85%)]. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.96 Å, respectively, and with Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(E)-Ethyl 2-cyano-2-(thiazolidin-2-ylidene)acetate top
Crystal data top
C8H10N2O2SF(000) = 416
Mr = 198.24Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2422 reflections
a = 4.0676 (8) Åθ = 2.3–25.1°
b = 15.460 (3) ŵ = 0.32 mm1
c = 14.581 (3) ÅT = 293 K
β = 90.03 (3)°Needle, colourless
V = 916.9 (3) Å30.20 × 0.12 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1484 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.0°, θmin = 3.1°
ϕ and ω scansh = 44
6717 measured reflectionsk = 1818
1577 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + 2.059P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
1577 reflectionsΔρmax = 0.26 e Å3
119 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (3)
Crystal data top
C8H10N2O2SV = 916.9 (3) Å3
Mr = 198.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.0676 (8) ŵ = 0.32 mm1
b = 15.460 (3) ÅT = 293 K
c = 14.581 (3) Å0.20 × 0.12 × 0.09 mm
β = 90.03 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1484 reflections with I > 2σ(I)
6717 measured reflectionsRint = 0.025
1577 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.24Δρmax = 0.26 e Å3
1577 reflectionsΔρmin = 0.33 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2265 (2)0.70109 (5)0.01523 (5)0.0285 (3)
O20.2856 (6)0.91026 (13)0.24156 (14)0.0250 (5)
O10.1022 (6)0.97114 (14)0.11080 (15)0.0325 (6)
N20.1952 (7)0.68892 (17)0.23236 (18)0.0304 (7)
N10.1928 (7)0.86360 (17)0.01208 (17)0.0279 (7)
H1A0.14400.91710.00370.034*
C30.1091 (7)0.80489 (19)0.0489 (2)0.0209 (6)
C60.1433 (8)0.9071 (2)0.1582 (2)0.0226 (7)
C70.3933 (9)0.9959 (2)0.2710 (2)0.0270 (7)
H7A0.55821.01820.22910.032*
H7B0.20881.03560.27170.032*
C10.3729 (10)0.7390 (2)0.0946 (2)0.0337 (8)
H1B0.59460.71820.10530.040*
H1C0.23240.71740.14330.040*
C40.0547 (8)0.82003 (19)0.13177 (19)0.0213 (7)
C50.1330 (7)0.7482 (2)0.18828 (19)0.0220 (7)
C20.3686 (8)0.8366 (2)0.0937 (2)0.0263 (7)
H2A0.59140.85900.09260.032*
H2B0.25930.85840.14810.032*
C80.5358 (9)0.9868 (2)0.3661 (2)0.0330 (8)
H8A0.60971.04230.38730.049*
H8B0.37030.96500.40690.049*
H8C0.71800.94740.36450.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0436 (5)0.0177 (4)0.0241 (4)0.0040 (4)0.0121 (3)0.0002 (3)
O20.0389 (13)0.0167 (10)0.0192 (10)0.0020 (9)0.0100 (9)0.0013 (8)
O10.0527 (15)0.0197 (11)0.0251 (12)0.0021 (11)0.0141 (11)0.0033 (9)
N20.0444 (17)0.0255 (14)0.0215 (14)0.0008 (13)0.0075 (12)0.0017 (12)
N10.0421 (17)0.0182 (13)0.0234 (14)0.0058 (12)0.0128 (12)0.0028 (10)
C30.0237 (15)0.0194 (14)0.0197 (15)0.0003 (13)0.0012 (12)0.0001 (12)
C60.0272 (17)0.0223 (16)0.0183 (14)0.0010 (13)0.0039 (12)0.0021 (12)
C70.0385 (19)0.0182 (15)0.0244 (16)0.0012 (14)0.0057 (14)0.0035 (12)
C10.051 (2)0.0258 (17)0.0245 (17)0.0088 (16)0.0135 (15)0.0034 (13)
C40.0274 (16)0.0180 (15)0.0183 (14)0.0005 (13)0.0030 (12)0.0010 (11)
C50.0254 (16)0.0240 (16)0.0166 (14)0.0029 (13)0.0033 (12)0.0030 (12)
C20.0312 (17)0.0266 (17)0.0212 (15)0.0000 (14)0.0076 (13)0.0001 (13)
C80.045 (2)0.0264 (17)0.0275 (17)0.0059 (16)0.0109 (15)0.0042 (13)
Geometric parameters (Å, º) top
S1—C31.745 (3)C7—C81.510 (4)
S1—C11.806 (3)C7—H7A0.9700
O2—C61.348 (3)C7—H7B0.9700
O2—C71.459 (4)C1—C21.510 (4)
O1—C61.218 (4)C1—H1B0.9700
N2—C51.147 (4)C1—H1C0.9700
N1—C31.315 (4)C4—C51.420 (4)
N1—C21.450 (4)C2—H2A0.9700
N1—H1A0.8600C2—H2B0.9700
C3—C41.400 (4)C8—H8A0.9600
C6—O11.218 (4)C8—H8B0.9600
C6—C41.446 (4)C8—H8C0.9600
C3—S1—C192.39 (14)S1—C1—H1B110.1
C6—O2—C7115.3 (2)C2—C1—H1C110.1
C3—N1—C2119.0 (3)S1—C1—H1C110.1
C3—N1—H1A120.5H1B—C1—H1C108.4
C2—N1—H1A120.5C3—C4—C5118.5 (3)
N1—C3—C4126.3 (3)C3—C4—C6120.3 (3)
N1—C3—S1111.9 (2)C5—C4—C6121.2 (3)
C4—C3—S1121.8 (2)N2—C5—C4178.5 (3)
O1—C6—O2122.8 (3)N1—C2—C1107.5 (2)
O1—C6—O2122.8 (3)N1—C2—H2A110.2
O1—C6—C4124.8 (3)C1—C2—H2A110.2
O1—C6—C4124.8 (3)N1—C2—H2B110.2
O2—C6—C4112.4 (3)C1—C2—H2B110.2
O2—C7—C8107.5 (2)H2A—C2—H2B108.5
O2—C7—H7A110.2C7—C8—H8A109.5
C8—C7—H7A110.2C7—C8—H8B109.5
O2—C7—H7B110.2H8A—C8—H8B109.5
C8—C7—H7B110.2C7—C8—H8C109.5
H7A—C7—H7B108.5H8A—C8—H8C109.5
C2—C1—S1108.2 (2)H8B—C8—H8C109.5
C2—C1—H1B110.1
C2—N1—C3—C4178.7 (3)S1—C3—C4—C51.6 (4)
C2—N1—C3—S11.4 (4)N1—C3—C4—C61.1 (5)
C1—S1—C3—N14.5 (3)S1—C3—C4—C6178.9 (2)
C1—S1—C3—C4175.4 (3)O1—C6—C4—C34.2 (5)
O1—O1—C6—O20.0 (3)O1—C6—C4—C34.2 (5)
O1—O1—C6—C40.0 (3)O2—C6—C4—C3177.2 (3)
C7—O2—C6—O11.0 (4)O1—C6—C4—C5175.3 (3)
C7—O2—C6—O11.0 (4)O1—C6—C4—C5175.3 (3)
C7—O2—C6—C4177.6 (3)O2—C6—C4—C53.3 (4)
C6—O2—C7—C8178.4 (3)C3—N1—C2—C18.0 (4)
C3—S1—C1—C28.7 (3)S1—C1—C2—N110.3 (4)
N1—C3—C4—C5178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.332.955 (3)129
N1—H1A···O10.862.122.723 (3)127
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC8H10N2O2S
Mr198.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.0676 (8), 15.460 (3), 14.581 (3)
β (°) 90.03 (3)
V3)916.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.12 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6717, 1577, 1484
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.112, 1.24
No. of reflections1577
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.332.955 (3)129.3
N1—H1A···O10.862.122.723 (3)126.9
Symmetry code: (i) x, y+2, z.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, Z. T. & Shi, X. (1990). Synthesis, pp. 162–167.  CrossRef Google Scholar
First citationIwata, C., Watanabe, M., Okamoto, S., Fujimoto, M., Sakae, M., Katstrada, M. & Imanishi, T. (1988). Synthesis, pp. 261–262.  Google Scholar
First citationSchroth, W., Hintzsche, E., Jordan, H., Jende, T., Spitzner, R. & Thondorf, I. (1997). Tetrahedron, 53, 7509–7528.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds