metal-organic compounds
{N,N′-Bis[1-(2-pyridyl)ethylidene]ethane-1,2-diamine-κ4N,N′,N′′,N′′′}bis(trifluoromethanesulfanato-κO)copper(II)
aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, and bDepartment of Chemistry, Faculty of Arts and Sciences, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey
*Correspondence e-mail: s.j.coles@soton.ac.uk
A discrete neutral CuII complex, [Cu(CF3SO3)2(C16H18N4)], has been derived from the symmetrical tetradentate Schiff base, N,N′-bis[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine. The copper centre assumes a tetragonally distorted pseudo-octahedral geometry with the O atoms of two trifluoromethanesulfonate anions coordinated weakly in the axial positions. The Cu—N distances lie in the range 1.941 (3)–2.011 (3) Å and the Cu—O distances are 2.474 (3) and 2.564 (3) Å.
Related literature
For general background, see: Gourbatsis et al. (1999); Hamblin et al. (2002); Menteş et al. (2007); Szklarzewicz & Samotus (2002). For related synthesis, see: Hanack et al. (1988); Luo et al. (1993); Marks (1990). For related structural characteristics, see: Bowyer et al. (1998); Gourbatsis et al. (1998); Cremer & Pople (1975); Fielden et al. (2006); Haynes et al. (1988); Şengül & Büyükgüngör (2005).
Experimental
Crystal data
|
Data collection: DENZO (Otwinowski & Minor, 1997); cell DENZO and COLLECT (Nonius, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).
Supporting information
10.1107/S1600536808033151/bg2203sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808033151/bg2203Isup2.hkl
The ligand, N,N'-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L) (0.213 g; 0.8 mmol) and Cu(CF3SO3)2 (0.297 g; 0.8 mmol) were dissolved in a minimum amount of methanol. The solution was stirred at room temperature for half an hour and filtered. The navy blue solution was poured into sample tubes and left for crystallization to yield very dark navy blue block crystals suitable for X-ray
Anal. Calc.: C, 34.42; H, 2.89; N, 8.92. Found: C, 34.64; H, 3.07; N, 9.06%. ESI-MS (m/z) = 478.0 [Cu(L)(OTf)]+.All non H atoms were refined anisotropically. All hydrogen atoms were fixed in idealized positions [0.98 Å (CH3), 0.99 Å (CH2) & 0.95 Å (CH)] and refined using the riding model with Uiso(H) set to 1.2 or 1.5Ueq(carrier) for CH or CH2 and CH3 respectively. When including H atoms, methyl groups were allowed to rotate to enable matching with electron density maxima.
Data collection: DENZO (Otwinowski & Minor, 1997); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).Fig. 1. Molecular structure of the title compound (50% probability displacement ellipsoids). |
[Cu(CF3SO3)2(C16H18N4)] | F(000) = 1268 |
Mr = 628.02 | Dx = 1.809 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 26348 reflections |
a = 9.2228 (4) Å | θ = 2.9–27.5° |
b = 25.5574 (13) Å | µ = 1.22 mm−1 |
c = 9.8189 (5) Å | T = 120 K |
β = 94.961 (3)° | Block, blue |
V = 2305.75 (19) Å3 | 0.35 × 0.2 × 0.06 mm |
Z = 4 |
Bruker–Nonius KappaCCD area-detector diffractometer | 4062 reflections with I > 2σ(I) |
ϕ and ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | θmax = 27.5°, θmin = 3.0° |
Tmin = 0.78, Tmax = 0.93 | h = −11→11 |
18769 measured reflections | k = −30→33 |
5052 independent reflections | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0383P)2 + 4.934P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.118 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 0.43 e Å−3 |
5052 reflections | Δρmin = −0.64 e Å−3 |
334 parameters |
[Cu(CF3SO3)2(C16H18N4)] | V = 2305.75 (19) Å3 |
Mr = 628.02 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.2228 (4) Å | µ = 1.22 mm−1 |
b = 25.5574 (13) Å | T = 120 K |
c = 9.8189 (5) Å | 0.35 × 0.2 × 0.06 mm |
β = 94.961 (3)° |
Bruker–Nonius KappaCCD area-detector diffractometer | 5052 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 4062 reflections with I > 2σ(I) |
Tmin = 0.78, Tmax = 0.93 | Rint = 0.043 |
18769 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.43 e Å−3 |
5052 reflections | Δρmin = −0.64 e Å−3 |
334 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.36217 (4) | 0.096617 (15) | 0.13089 (4) | 0.01732 (17) | |
S1 | 0.61344 (9) | 0.13260 (3) | −0.13780 (9) | 0.0201 (2) | |
S2 | 0.11834 (9) | 0.11566 (4) | 0.40390 (9) | 0.0216 (2) | |
F1 | 0.6938 (2) | 0.20219 (8) | 0.0510 (2) | 0.0335 (5) | |
F2 | 0.8673 (2) | 0.15164 (8) | −0.0042 (2) | 0.0339 (6) | |
F3 | 0.7879 (2) | 0.21298 (8) | −0.1408 (3) | 0.0395 (6) | |
F4 | −0.1392 (2) | 0.14451 (8) | 0.2941 (2) | 0.0329 (5) | |
F5 | −0.0500 (3) | 0.19350 (10) | 0.4589 (3) | 0.0529 (8) | |
F6 | 0.0325 (2) | 0.19887 (9) | 0.2612 (3) | 0.0451 (7) | |
O1 | 0.5026 (3) | 0.16759 (10) | −0.1968 (3) | 0.0294 (6) | |
O2 | 0.5698 (3) | 0.10044 (9) | −0.0264 (3) | 0.0246 (6) | |
O3 | 0.6956 (3) | 0.10514 (10) | −0.2337 (3) | 0.0293 (6) | |
O4 | 0.1560 (3) | 0.09377 (9) | 0.2761 (3) | 0.0260 (6) | |
O5 | 0.0389 (3) | 0.08055 (11) | 0.4852 (3) | 0.0321 (6) | |
O6 | 0.2334 (3) | 0.14490 (11) | 0.4778 (3) | 0.0349 (7) | |
N1 | 0.2386 (3) | 0.05333 (10) | −0.0051 (3) | 0.0169 (6) | |
N2 | 0.2689 (3) | 0.15379 (10) | 0.0252 (3) | 0.0188 (6) | |
N3 | 0.4497 (3) | 0.15332 (10) | 0.2410 (3) | 0.0177 (6) | |
N4 | 0.4951 (3) | 0.05365 (10) | 0.2608 (3) | 0.0164 (6) | |
C1 | 0.2187 (4) | 0.00137 (13) | −0.0122 (4) | 0.0214 (7) | |
H1 | 0.2688 | −0.0198 | 0.0531 | 0.026* | |
C2 | 0.1266 (4) | −0.02194 (14) | −0.1130 (4) | 0.0252 (8) | |
H2 | 0.1149 | −0.0581 | −0.1155 | 0.030* | |
C3 | 0.0525 (4) | 0.00934 (14) | −0.2097 (4) | 0.0278 (8) | |
H3 | −0.0091 | −0.0055 | −0.2791 | 0.033* | |
C4 | 0.0702 (4) | 0.06320 (14) | −0.2027 (4) | 0.0251 (8) | |
H4 | 0.0187 | 0.0848 | −0.2659 | 0.030* | |
C5 | 0.1647 (4) | 0.08421 (14) | −0.1013 (4) | 0.0184 (7) | |
C6 | 0.1917 (4) | 0.14160 (13) | −0.0857 (4) | 0.0192 (7) | |
C7 | 0.1385 (4) | 0.17828 (14) | −0.1956 (4) | 0.0261 (8) | |
H7A | 0.1495 | 0.2136 | −0.1630 | 0.039* | |
H7B | 0.0376 | 0.1714 | −0.2219 | 0.039* | |
H7C | 0.1939 | 0.1736 | −0.2731 | 0.039* | |
C8 | 0.3222 (4) | 0.20639 (12) | 0.0623 (4) | 0.0214 (7) | |
H8A | 0.2428 | 0.2314 | 0.0514 | 0.026* | |
H8B | 0.3961 | 0.2169 | 0.0032 | 0.026* | |
C9 | 0.3872 (4) | 0.20533 (12) | 0.2131 (4) | 0.0212 (7) | |
H9A | 0.4619 | 0.2319 | 0.2281 | 0.025* | |
H9B | 0.3117 | 0.2123 | 0.2736 | 0.025* | |
C10 | 0.5278 (4) | 0.14069 (13) | 0.3512 (4) | 0.0197 (7) | |
C11 | 0.5756 (4) | 0.17735 (13) | 0.4637 (4) | 0.0258 (8) | |
H11A | 0.5662 | 0.2127 | 0.4311 | 0.039* | |
H11B | 0.6755 | 0.1705 | 0.4944 | 0.039* | |
H11C | 0.5161 | 0.1725 | 0.5382 | 0.039* | |
C12 | 0.5645 (3) | 0.08382 (13) | 0.3585 (3) | 0.0177 (7) | |
C13 | 0.6640 (4) | 0.06293 (14) | 0.4569 (4) | 0.0231 (8) | |
H13 | 0.7115 | 0.0843 | 0.5233 | 0.028* | |
C14 | 0.6917 (4) | 0.00970 (14) | 0.4551 (4) | 0.0240 (8) | |
H14 | 0.7586 | −0.0050 | 0.5205 | 0.029* | |
C15 | 0.6207 (3) | −0.02138 (14) | 0.3572 (4) | 0.0228 (8) | |
H15 | 0.6378 | −0.0572 | 0.3550 | 0.027* | |
C16 | 0.5222 (3) | 0.00235 (13) | 0.2610 (3) | 0.0192 (7) | |
H16 | 0.4733 | −0.0184 | 0.1940 | 0.023* | |
C17 | 0.7467 (4) | 0.17719 (14) | −0.0524 (4) | 0.0258 (8) | |
C18 | −0.0166 (4) | 0.16582 (14) | 0.3522 (4) | 0.0298 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0212 (17) | 0.0175 (14) | 0.0241 (18) | −0.0001 (12) | 0.0006 (13) | 0.0005 (12) |
C2 | 0.0260 (18) | 0.0214 (16) | 0.0240 (19) | 0.0052 (13) | 0.0029 (15) | 0.0050 (13) |
C3 | 0.0282 (19) | 0.0299 (18) | 0.0200 (18) | 0.0050 (14) | −0.0055 (15) | 0.0042 (14) |
C4 | 0.0235 (17) | 0.0281 (17) | 0.0171 (17) | 0.0001 (13) | 0.0009 (13) | −0.0007 (13) |
C5 | 0.0176 (15) | 0.0211 (15) | 0.0154 (16) | −0.0013 (12) | 0.0071 (12) | −0.0016 (12) |
C6 | 0.0156 (15) | 0.0198 (14) | 0.0195 (17) | −0.0030 (11) | 0.0057 (13) | −0.0021 (12) |
C7 | 0.0258 (18) | 0.0248 (16) | 0.0249 (19) | −0.0026 (13) | −0.0012 (14) | −0.0059 (14) |
C8 | 0.0268 (17) | 0.0133 (14) | 0.0228 (18) | −0.0011 (12) | 0.0066 (14) | −0.0020 (12) |
C9 | 0.0260 (17) | 0.0154 (14) | 0.0215 (17) | 0.0012 (12) | 0.0065 (14) | 0.0028 (12) |
C10 | 0.0176 (15) | 0.0203 (15) | 0.0183 (17) | 0.0041 (12) | 0.0056 (13) | 0.0032 (12) |
C11 | 0.0283 (18) | 0.0226 (16) | 0.0243 (18) | 0.0036 (13) | 0.0018 (15) | 0.0098 (13) |
C12 | 0.0154 (15) | 0.0214 (15) | 0.0152 (16) | 0.0029 (11) | 0.0043 (12) | 0.0026 (12) |
C13 | 0.0182 (16) | 0.0294 (17) | 0.0184 (17) | 0.0028 (13) | 0.0014 (13) | 0.0028 (13) |
C14 | 0.0168 (16) | 0.0322 (18) | 0.0208 (18) | −0.0048 (13) | −0.0013 (13) | −0.0027 (14) |
C15 | 0.0178 (16) | 0.0239 (16) | 0.0255 (19) | −0.0032 (12) | 0.0050 (14) | −0.0031 (13) |
C16 | 0.0187 (16) | 0.0192 (14) | 0.0197 (17) | 0.0005 (12) | 0.0022 (13) | 0.0009 (12) |
C17 | 0.0249 (18) | 0.0209 (15) | 0.0288 (19) | −0.0019 (13) | 0.0041 (15) | 0.0001 (13) |
C18 | 0.0267 (19) | 0.0265 (17) | 0.032 (2) | 0.0015 (14) | 0.0002 (16) | 0.0033 (15) |
N1 | 0.0178 (13) | 0.0165 (12) | 0.0148 (13) | 0.0004 (10) | 0.0011 (10) | 0.0012 (10) |
N2 | 0.0195 (13) | 0.0152 (12) | 0.0180 (14) | −0.0027 (10) | 0.0041 (11) | −0.0002 (10) |
N3 | 0.0171 (13) | 0.0151 (12) | 0.0186 (14) | 0.0015 (10) | 0.0032 (11) | 0.0033 (10) |
N4 | 0.0165 (13) | 0.0174 (12) | 0.0150 (13) | 0.0008 (9) | 0.0025 (10) | 0.0004 (10) |
O1 | 0.0240 (13) | 0.0339 (13) | 0.0252 (14) | −0.0048 (10) | −0.0015 (10) | −0.0036 (10) |
O2 | 0.0260 (13) | 0.0203 (11) | 0.0262 (13) | −0.0004 (9) | 0.0064 (10) | −0.0032 (9) |
O3 | 0.0348 (14) | 0.0297 (13) | 0.0232 (13) | −0.0033 (10) | 0.0076 (11) | 0.0051 (10) |
O4 | 0.0273 (13) | 0.0284 (12) | 0.0222 (13) | 0.0030 (10) | 0.0085 (10) | 0.0059 (10) |
O5 | 0.0302 (14) | 0.0403 (14) | 0.0255 (14) | −0.0047 (11) | 0.0092 (11) | −0.0109 (11) |
O6 | 0.0221 (13) | 0.0544 (17) | 0.0248 (14) | 0.0007 (12) | −0.0011 (11) | 0.0122 (12) |
Cu1 | 0.0197 (2) | 0.01299 (18) | 0.0159 (2) | −0.00029 (14) | −0.00132 (15) | 0.00080 (14) |
S1 | 0.0213 (4) | 0.0193 (4) | 0.0172 (4) | −0.0013 (3) | 0.0030 (3) | 0.0007 (3) |
S2 | 0.0184 (4) | 0.0262 (4) | 0.0175 (4) | −0.0022 (3) | 0.0029 (3) | −0.0002 (3) |
F1 | 0.0366 (12) | 0.0300 (11) | 0.0326 (12) | −0.0027 (9) | 0.0002 (10) | 0.0123 (9) |
F2 | 0.0227 (11) | 0.0352 (11) | 0.0414 (13) | −0.0044 (8) | −0.0026 (10) | 0.0015 (10) |
F3 | 0.0382 (13) | 0.0278 (11) | 0.0511 (15) | 0.0085 (9) | 0.0084 (11) | −0.0106 (10) |
F4 | 0.0203 (10) | 0.0385 (12) | 0.0369 (13) | 0.0027 (8) | −0.0053 (9) | −0.0064 (9) |
F5 | 0.0430 (14) | 0.0500 (14) | 0.0597 (17) | −0.0172 (11) | −0.0004 (13) | 0.0275 (13) |
F6 | 0.0374 (13) | 0.0294 (11) | 0.0646 (17) | 0.0069 (10) | −0.0061 (12) | −0.0200 (11) |
Cu1—N3 | 1.941 (3) | C2—C3 | 1.376 (5) |
Cu1—N2 | 1.949 (3) | C2—H2 | 0.9300 |
Cu1—N1 | 2.011 (3) | C3—C4 | 1.387 (5) |
Cu1—N4 | 2.016 (3) | C3—H3 | 0.9300 |
Cu1—O4 | 2.474 (3) | C4—C5 | 1.375 (5) |
Cu1—O2 | 2.564 (3) | C4—H4 | 0.9300 |
S1—O3 | 1.442 (3) | C5—C6 | 1.494 (5) |
S1—O1 | 1.442 (3) | C6—C7 | 1.481 (5) |
S1—O2 | 1.453 (3) | C7—H7A | 0.9603 |
S1—C17 | 1.826 (4) | C7—H7B | 0.9603 |
S2—O6 | 1.441 (3) | C7—H7C | 0.9603 |
S2—O5 | 1.442 (3) | C8—C9 | 1.549 (5) |
S2—O4 | 1.444 (3) | C8—H8A | 0.9700 |
S2—C18 | 1.828 (4) | C8—H8B | 0.9700 |
F1—C17 | 1.328 (4) | C9—H9A | 0.9700 |
F2—C17 | 1.340 (4) | C9—H9B | 0.9700 |
F3—C17 | 1.339 (4) | C10—C12 | 1.492 (4) |
F4—C18 | 1.337 (4) | C10—C11 | 1.486 (5) |
F5—C18 | 1.322 (4) | C11—H11A | 0.9608 |
F6—C18 | 1.337 (4) | C11—H11B | 0.9608 |
N1—C1 | 1.342 (4) | C11—H11C | 0.9608 |
N1—C5 | 1.367 (4) | C12—C13 | 1.381 (5) |
N2—C6 | 1.287 (4) | C13—C14 | 1.385 (5) |
N2—C8 | 1.466 (4) | C13—H13 | 0.9300 |
N3—C10 | 1.288 (4) | C14—C15 | 1.369 (5) |
N3—C9 | 1.465 (4) | C14—H14 | 0.9300 |
N4—C16 | 1.335 (4) | C15—C16 | 1.392 (5) |
N4—C12 | 1.349 (4) | C15—H15 | 0.9300 |
C1—C2 | 1.383 (5) | C16—H16 | 0.9300 |
C1—H1 | 0.9300 | ||
N3—Cu1—N2 | 83.11 (12) | N2—C6—C5 | 113.5 (3) |
N3—Cu1—N1 | 164.79 (11) | C7—C6—C5 | 120.4 (3) |
N2—Cu1—N1 | 81.96 (11) | C6—C7—H7A | 109.5 |
N3—Cu1—N4 | 81.59 (11) | C6—C7—H7B | 109.5 |
N2—Cu1—N4 | 164.06 (11) | H7A—C7—H7B | 109.4 |
N1—Cu1—N4 | 113.52 (12) | C6—C7—H7C | 109.5 |
N3—Cu1—O4 | 90.25 (10) | H7A—C7—H7C | 109.4 |
N2—Cu1—O4 | 90.19 (10) | H7B—C7—H7C | 109.4 |
N1—Cu1—O4 | 86.96 (10) | N2—C8—C9 | 108.4 (2) |
N4—Cu1—O4 | 94.30 (10) | N2—C8—H8A | 110.1 |
N3—Cu1—O2 | 90.61 (10) | C9—C8—H8A | 110.0 |
N2—Cu1—O2 | 88.21 (10) | N2—C8—H8B | 110.0 |
N1—Cu1—O2 | 91.76 (10) | C9—C8—H8B | 110.0 |
N4—Cu1—O2 | 87.53 (9) | H8A—C8—H8B | 108.4 |
O4—Cu1—O2 | 178.07 (8) | N3—C9—C8 | 107.9 (2) |
O3—S1—O1 | 115.72 (17) | N3—C9—H9A | 110.1 |
O3—S1—O2 | 114.34 (16) | C8—C9—H9A | 110.1 |
O1—S1—O2 | 114.89 (15) | N3—C9—H9B | 110.2 |
O3—S1—C17 | 103.46 (16) | C8—C9—H9B | 110.1 |
O1—S1—C17 | 102.90 (17) | H9A—C9—H9B | 108.4 |
O2—S1—C17 | 103.10 (17) | N3—C10—C12 | 113.1 (3) |
O6—S2—O5 | 115.54 (17) | N3—C10—C11 | 125.1 (3) |
O6—S2—O4 | 114.61 (15) | C12—C10—C11 | 121.8 (3) |
O5—S2—O4 | 114.34 (16) | C10—C11—H11A | 109.6 |
O6—S2—C18 | 103.29 (17) | C10—C11—H11B | 109.5 |
O5—S2—C18 | 102.91 (16) | H11A—C11—H11B | 109.4 |
O4—S2—C18 | 103.87 (17) | C10—C11—H11C | 109.5 |
S1—O2—Cu1 | 138.17 (14) | H11A—C11—H11C | 109.4 |
S2—O4—Cu1 | 138.10 (15) | H11B—C11—H11C | 109.4 |
C1—N1—C5 | 118.5 (3) | N4—C12—C13 | 121.5 (3) |
C1—N1—Cu1 | 130.3 (2) | N4—C12—C10 | 115.5 (3) |
C5—N1—Cu1 | 111.2 (2) | C13—C12—C10 | 123.0 (3) |
C6—N2—C8 | 125.5 (3) | C12—C13—C14 | 118.9 (3) |
C6—N2—Cu1 | 117.1 (2) | C12—C13—H13 | 120.6 |
C8—N2—Cu1 | 115.6 (2) | C14—C13—H13 | 120.6 |
C10—N3—C9 | 124.5 (3) | C15—C14—C13 | 120.1 (3) |
C10—N3—Cu1 | 117.1 (2) | C15—C14—H14 | 119.9 |
C9—N3—Cu1 | 115.8 (2) | C13—C14—H14 | 120.0 |
C16—N4—C12 | 118.9 (3) | C14—C15—C16 | 117.9 (3) |
C16—N4—Cu1 | 129.8 (2) | C14—C15—H15 | 121.1 |
C12—N4—Cu1 | 111.3 (2) | C16—C15—H15 | 121.0 |
N1—C1—C2 | 122.4 (3) | N4—C16—C15 | 122.7 (3) |
N1—C1—H1 | 118.8 | N4—C16—H16 | 118.7 |
C2—C1—H1 | 118.8 | C15—C16—H16 | 118.6 |
C3—C2—C1 | 118.8 (3) | F1—C17—F2 | 108.2 (3) |
C3—C2—H2 | 120.7 | F1—C17—F3 | 108.1 (3) |
C1—C2—H2 | 120.6 | F2—C17—F3 | 106.8 (3) |
C2—C3—C4 | 119.5 (3) | F1—C17—S1 | 112.0 (2) |
C2—C3—H3 | 120.3 | F2—C17—S1 | 111.3 (2) |
C4—C3—H3 | 120.2 | F3—C17—S1 | 110.2 (3) |
C5—C4—C3 | 119.2 (3) | F5—C18—F4 | 108.1 (3) |
C5—C4—H4 | 120.4 | F5—C18—F6 | 107.9 (3) |
C3—C4—H4 | 120.5 | F4—C18—F6 | 107.1 (3) |
N1—C5—C4 | 121.5 (3) | F5—C18—S2 | 110.8 (3) |
N1—C5—C6 | 115.3 (3) | F4—C18—S2 | 111.3 (2) |
C4—C5—C6 | 123.2 (3) | F6—C18—S2 | 111.5 (3) |
N2—C6—C7 | 126.0 (3) | ||
O3—S1—O2—Cu1 | −150.8 (2) | C2—C3—C4—C5 | 1.7 (6) |
O1—S1—O2—Cu1 | −13.5 (3) | C1—N1—C5—C4 | 0.8 (5) |
C17—S1—O2—Cu1 | 97.6 (2) | Cu1—N1—C5—C4 | −178.2 (3) |
N3—Cu1—O2—S1 | −77.9 (2) | C1—N1—C5—C6 | 179.5 (3) |
N2—Cu1—O2—S1 | 5.2 (2) | Cu1—N1—C5—C6 | 0.5 (3) |
N1—Cu1—O2—S1 | 87.1 (2) | C3—C4—C5—N1 | −1.7 (5) |
N4—Cu1—O2—S1 | −159.4 (2) | C3—C4—C5—C6 | 179.7 (3) |
O6—S2—O4—Cu1 | −5.8 (3) | C8—N2—C6—C7 | −1.7 (6) |
O5—S2—O4—Cu1 | −142.5 (2) | Cu1—N2—C6—C7 | −165.8 (3) |
C18—S2—O4—Cu1 | 106.1 (2) | C8—N2—C6—C5 | 174.8 (3) |
N3—Cu1—O4—S2 | −10.5 (2) | Cu1—N2—C6—C5 | 10.7 (4) |
N2—Cu1—O4—S2 | −93.6 (2) | N1—C5—C6—N2 | −7.2 (4) |
N1—Cu1—O4—S2 | −175.5 (2) | C4—C5—C6—N2 | 171.5 (3) |
N4—Cu1—O4—S2 | 71.1 (2) | N1—C5—C6—C7 | 169.5 (3) |
N3—Cu1—N1—C1 | −164.2 (4) | C4—C5—C6—C7 | −11.8 (5) |
N2—Cu1—N1—C1 | −175.1 (3) | C6—N2—C8—C9 | 170.5 (3) |
N4—Cu1—N1—C1 | 8.9 (3) | Cu1—N2—C8—C9 | −25.1 (3) |
O4—Cu1—N1—C1 | −84.5 (3) | C10—N3—C9—C8 | 171.4 (3) |
O2—Cu1—N1—C1 | 97.0 (3) | Cu1—N3—C9—C8 | −27.3 (3) |
N3—Cu1—N1—C5 | 14.7 (6) | N2—C8—C9—N3 | 32.2 (4) |
N2—Cu1—N1—C5 | 3.8 (2) | C9—N3—C10—C12 | 174.1 (3) |
N4—Cu1—N1—C5 | −172.2 (2) | Cu1—N3—C10—C12 | 13.1 (4) |
O4—Cu1—N1—C5 | 94.4 (2) | C9—N3—C10—C11 | −4.3 (5) |
O2—Cu1—N1—C5 | −84.2 (2) | Cu1—N3—C10—C11 | −165.4 (3) |
N3—Cu1—N2—C6 | 174.5 (3) | C16—N4—C12—C13 | 1.0 (5) |
N1—Cu1—N2—C6 | −8.4 (3) | Cu1—N4—C12—C13 | −178.4 (2) |
N4—Cu1—N2—C6 | 158.2 (4) | C16—N4—C12—C10 | −179.9 (3) |
O4—Cu1—N2—C6 | −95.3 (3) | Cu1—N4—C12—C10 | 0.8 (3) |
O2—Cu1—N2—C6 | 83.6 (3) | N3—C10—C12—N4 | −8.9 (4) |
N3—Cu1—N2—C8 | 8.7 (2) | C11—C10—C12—N4 | 169.6 (3) |
N1—Cu1—N2—C8 | −174.2 (2) | N3—C10—C12—C13 | 170.2 (3) |
N4—Cu1—N2—C8 | −7.6 (6) | C11—C10—C12—C13 | −11.2 (5) |
O4—Cu1—N2—C8 | 98.9 (2) | N4—C12—C13—C14 | −0.5 (5) |
O2—Cu1—N2—C8 | −82.1 (2) | C10—C12—C13—C14 | −179.6 (3) |
N2—Cu1—N3—C10 | 174.2 (3) | C12—C13—C14—C15 | −0.2 (5) |
N1—Cu1—N3—C10 | 163.4 (4) | C13—C14—C15—C16 | 0.4 (5) |
N4—Cu1—N3—C10 | −10.2 (3) | C12—N4—C16—C15 | −0.8 (5) |
O4—Cu1—N3—C10 | 84.1 (3) | Cu1—N4—C16—C15 | 178.4 (2) |
O2—Cu1—N3—C10 | −97.6 (3) | C14—C15—C16—N4 | 0.1 (5) |
N2—Cu1—N3—C9 | 11.5 (2) | O3—S1—C17—F1 | −173.3 (2) |
N1—Cu1—N3—C9 | 0.6 (6) | O1—S1—C17—F1 | 65.9 (3) |
N4—Cu1—N3—C9 | −173.0 (2) | O2—S1—C17—F1 | −53.9 (3) |
O4—Cu1—N3—C9 | −78.6 (2) | O3—S1—C17—F2 | −52.0 (3) |
O2—Cu1—N3—C9 | 99.6 (2) | O1—S1—C17—F2 | −172.8 (3) |
N3—Cu1—N4—C16 | −174.7 (3) | O2—S1—C17—F2 | 67.4 (3) |
N2—Cu1—N4—C16 | −158.3 (4) | O3—S1—C17—F3 | 66.3 (3) |
N1—Cu1—N4—C16 | 7.1 (3) | O1—S1—C17—F3 | −54.5 (3) |
O4—Cu1—N4—C16 | 95.7 (3) | O2—S1—C17—F3 | −174.3 (2) |
O2—Cu1—N4—C16 | −83.7 (3) | O6—S2—C18—F5 | −53.1 (3) |
N3—Cu1—N4—C12 | 4.5 (2) | O5—S2—C18—F5 | 67.5 (3) |
N2—Cu1—N4—C12 | 20.9 (5) | O4—S2—C18—F5 | −173.1 (3) |
N1—Cu1—N4—C12 | −173.6 (2) | O6—S2—C18—F4 | −173.4 (3) |
O4—Cu1—N4—C12 | −85.1 (2) | O5—S2—C18—F4 | −52.8 (3) |
O2—Cu1—N4—C12 | 95.5 (2) | O4—S2—C18—F4 | 66.7 (3) |
C5—N1—C1—C2 | 0.1 (5) | O6—S2—C18—F6 | 67.1 (3) |
Cu1—N1—C1—C2 | 178.9 (2) | O5—S2—C18—F6 | −172.4 (3) |
N1—C1—C2—C3 | 0.0 (5) | O4—S2—C18—F6 | −52.9 (3) |
C1—C2—C3—C4 | −0.9 (5) |
Experimental details
Crystal data | |
Chemical formula | [Cu(CF3SO3)2(C16H18N4)] |
Mr | 628.02 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.2228 (4), 25.5574 (13), 9.8189 (5) |
β (°) | 94.961 (3) |
V (Å3) | 2305.75 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.22 |
Crystal size (mm) | 0.35 × 0.2 × 0.06 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.78, 0.93 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18769, 5052, 4062 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.118, 1.09 |
No. of reflections | 5052 |
No. of parameters | 334 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.43, −0.64 |
Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), publCIF (Westrip, 2008).
Footnotes
‡Corresponding author for synthesis; e-mail: abdurrahmans2002@yahoo.co.uk.
Acknowledgements
This work was supported by the reserach project fund of Zonguldak Karaelmas University (grant Nos. 2007/2-13-02-12 and 2007/2-13-02-10) and the UK Engineering and Physical Sciences Research Council.
References
Bowyer, B. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). J. Chem. Soc. Chem. Commun. 10, 1153–1154. CrossRef Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Fielden, J., Long, D.-L., Evans, C. & Cronin, L. (2006). Eur. J. Inorg. Chem. 2006, 3930–3935. Web of Science CSD CrossRef Google Scholar
Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599–604. Web of Science CSD CrossRef CAS Google Scholar
Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375. Web of Science CSD CrossRef CAS Google Scholar
Hamblin, J., Jackson, A., Alcock, N. W. & Hannon, M. J. (2002). Dalton Trans. pp. 1635–1641. CrossRef Google Scholar
Hanack, M., Deger, S. & Lange, A. (1988). Coord. Chem. Rev. 83, 115–136. CrossRef CAS Web of Science Google Scholar
Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). Inorg. Chem. 27, 1237–1241. CSD CrossRef CAS Web of Science Google Scholar
Luo, Q., Lu, Q., Dai, A. & Huang, L. (1993). Inorg. Biochem. 51, 655–662. CrossRef CAS Web of Science Google Scholar
Marks, T. J. (1990). Angew. Chem. Int. Ed. Engl. 29, 857–879. CrossRef Web of Science Google Scholar
Menteş, A., Sezek, S., Hanhan, M. E. & Büyükgüngör, O. (2007). Turk. J. Chem. 31, 667–676. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Şengül, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m119–m121. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Szklarzewicz, J. & Samotus, A. (2002). Transition Met. Chem. 27, 769–775. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2008). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, the coordination chemistry of di-Schiff bases derived from 2-pyridyl ketones or aldehydes has generated a great deal of interest (Hamblin et al., 2002; Gourbatsis et al., 1998; Szklarzewicz & Samotus, 2002; Mentes et al., 2007). These studies have been mostly stimulated by an interest in modelling the enzyme, copper-zinc superoxide dismutase (SOD) (Luo et al., 1993) and also for the synthesis of metal containing polymers with interesting optical, magnetic and electrical properties (Hanack et al., 1988; Marks, 1990). It has also been found that such tetradentate Schiff base ligands may form complexes with different nuclearity according to the coordination preferences of the metal centre (Fielden et al., 2006).
Our interest in the ligand, L, (Scheme 2) was stimulated by the analogy between its donor set and that of the pyridylmethylketazine (L1) and 2-pyridinealdazine (L2) system which form triple-stranded helical complexes with the formula [M2(L)3]4+ (M = Co, Fe and Ni). The helical complexes were shown to undergo exchange reactions on standing to form mono-nuclear complexes [M(L)2]2+ in which the ligand twists to coordinate as tridentate with non-coordinated imine residue (Hamblin et al., 2002). Mononuclear species are favoured by coordination to octahedral metal centres whose equatorial sites are occupied by N4 donor set of the bis(axial) ligand, and their axial sites being occuppied by solvent molecules or counterions. In addition, dinuclear metal complexes are favoured by the four-coordinate tetrahedral metal centres whose ca 90° twist angle provides good geometric match for the bis(equatorial) ligand (Fielden et al., 2006).
Recently, the single-crystal X-ray analysis of L was reported (Mentes et al., 2007). The molecule adopts a centrosymmetric trans geometry and forms a dinuclear complex by reacting with Mo(CO)6. The reaction of L with ZnX2 (X = Cl or Br) in tetrahydrofuran yielded an octahedral complex [ZnX2(L)] (Gourbatsis et al., 1999), whereas by reacting with a silver(I) cation the double-stranded helical complex [Ag2(L)2][BF4]2 (Bowyer et al., 1998) is formed. The synthesis of copper(II) complex by using Cu(NO3)2.3H2O resulted in the tetragonally distorted octahedral complex, [Cu(L)(ONO2)(OH2)][NO3] (Gourbatsis et al., 1998).
Herein we present the synthesis and structure of the complex [Cu(L)(OTf)2], (where OTf = trifluoromethanesulfonate) with a molecular structure as illustrated in Scheme 1 and Figure 1. The crystal structure is composed of discrete neutral [Cu(L)(OTf)2] units. The copper ion exhibits an elongated tetragonal octahedral CuN4O2 cromophore with four nitrogen atoms from the ligand occupying the equatorial plane and two axial oxygen atoms from the trans-coordinated unidentate trifluoromethanesulfonate anions. The four equatorial Cu–N distances [Cu1–N1 2.008 (3) Å, Cu1–N4 2.011 (3) Å, Cu1–N2 1.950 (2) Å, and Cu1–N3 1.944 (2) Å] are normal for this class of compounds and also very similar to those of Cu1–Npyridine 2.002 (4) and 2.022 (4) Å, and Cu1–Nimine 1.943 (4) and 1.938 (4) Å as found in [Cu(L)(ONO2)(OH2)][NO3] (Gourbatsis et al., 1998). The bond lengths to the imine N atoms are slightly shorter than those to the pyridine N atoms (Table 1), which is presumably a consequence of the more effective σ donation or π back donation (Hamblin et al., 2002). The coordination is of the 4 + 2 type and thus belongs to the myriad of examples of such Jahn-Teller elongated pseudo-octahedral structures (Şengül & Büyükgüngör, 2005).
The structure contains unidentate trifluoromethanesulfonate anions which are semi-coordinated to the copper ion [Cu1–O2 2.568 (3) Å and Cu1–O4 2.476 (4) Å] in the axial positions with the angle of O2–Cu1–O4 177.9 (4)°. The bonding parameters for the trifluoromethanesulfonate anions are similar to those found for [Cu(pyridine)4(CF3SO3)2] (Haynes et al., 1988). For example, the trifluoromethanesulfonate anions adopt a staggered-ethane configuration about the S–C bond and the O–S–O angles [O3–S1–O1 116.01 (15)°, O3–S1–O2 113.97 (14)°, O1–S1–O2 114.93 (15)°] are greater than the C–S–O angles [C17–S1–O3 103.25 (15)°, C17–S1–O1 103.00 (15)°, and C17–S1–O2 103.25 (15)°]. The S–O bond lengths are also very similar to those found in [Cu(pyridine)4(CF3SO3)2], the S1–O2 1.450 (2) and S2–O4 1.446 (2) Å bonds involving the O atoms bound to copper being longer than those involving the terminally bound oxygen atoms [S1–O1 1.442 (2), S1–O3 1.440 (2) Å and S2–O5 1.441 (2), S2–O6 1.440 (2) Å].
The bite angles around the copper ion [N2–Cu1–N3 83.2 (2), N1–Cu1–N2 81.9 (7), N3–Cu1–N4 81.6 (7)°] are very similar to those found in [Cu(L)(ONO2)(OH2)][NO3] with the corresponding angles of 83.2 (2), 80.6 (2) and 81.4 (2)°, respectively.
In the free ligand the pyridylimine units adopt a transoid configuration to minimize unfavourable electronic interactions between the lone pairs of pyridine nitrogen and imine nitrogen atoms. However, in the presence of a metal ion, the pyridine rings rotate by 180° with respect to the Aryl–C bond, positioning the two nitrogen atoms of each pyridylimine moiety on the same side of the ligand. Otherwise the geometric parameters in the free ligand are very similar to those of the coordinated moiety.
The pyridylimine units are not ideally planar due to a combined effect of the ring to the metal centre and a twist induced by the ethylene bridge [Cu1, N1, N2, C1>C6 and Cu1, N3, N4, C10, C12>C16 have devaitions from the mean plane of 0.088 (6) Å and 0.106 (6) Å for N2 and N3 respectively]. From puckering analysis (Cremer & Pople, 1975) the ring formed by the metal centre, the imine N atoms and the ethylene bridge has a Q value of 0.283 (3) Å and forms a twisted envelope conformation about the C8—C9 bond. This effect has the result of pushing the methyl groups out of the ring unit plane, with C7 deviating by 0.149 (5) Å and C11 by 0.167 (6) Å and accordingly the pyridylimine units are not coplanar, with the angle formed between these planes being 12.98 (9)°.
The crystal structure does not exhibit any classical hydrogen bonds and is primarily comprised of stacked undulating sheets formed by close packing and C—H···O interactions between the SO3 group and pyridylimine ring H atoms.