metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N,N′-Bis[1-(2-pyrid­yl)ethyl­­idene]ethane-1,2-di­amine-κ4N,N′,N′′,N′′′}bis­­(tri­fluoro­methane­sulfanato-κO)copper(II)

aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England, and bDepartment of Chemistry, Faculty of Arts and Sciences, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey
*Correspondence e-mail: s.j.coles@soton.ac.uk

(Received 12 August 2008; accepted 13 October 2008; online 18 October 2008)

A discrete neutral CuII complex, [Cu(CF3SO3)2(C16H18N4)], has been derived from the symmetrical tetra­dentate Schiff base, N,N′-bis­[1-(pyridin-2-yl)ethyl­idene]ethane-1,2-diamine. The copper centre assumes a tetra­gonally distorted pseudo-octa­hedral geometry with the O atoms of two trifluoro­methane­sulfonate anions coordinated weakly in the axial positions. The Cu—N distances lie in the range 1.941 (3)–2.011 (3) Å and the Cu—O distances are 2.474 (3) and 2.564 (3) Å.

Related literature

For general background, see: Gourbatsis et al. (1999[Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369-2375.]); Hamblin et al. (2002[Hamblin, J., Jackson, A., Alcock, N. W. & Hannon, M. J. (2002). Dalton Trans. pp. 1635-1641.]); Menteş et al. (2007[Menteş, A., Sezek, S., Hanhan, M. E. & Büyükgüngör, O. (2007). Turk. J. Chem. 31, 667-676.]); Szklarzewicz & Samotus (2002[Szklarzewicz, J. & Samotus, A. (2002). Transition Met. Chem. 27, 769-775.]). For related synthesis, see: Hanack et al. (1988[Hanack, M., Deger, S. & Lange, A. (1988). Coord. Chem. Rev. 83, 115-136.]); Luo et al. (1993[Luo, Q., Lu, Q., Dai, A. & Huang, L. (1993). Inorg. Biochem. 51, 655-662.]); Marks (1990[Marks, T. J. (1990). Angew. Chem. Int. Ed. Engl. 29, 857-879.]). For related structural characteristics, see: Bowyer et al. (1998[Bowyer, B. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). J. Chem. Soc. Chem. Commun. 10, 1153-1154.]); Gourbatsis et al. (1998[Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599-604.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Fielden et al. (2006[Fielden, J., Long, D.-L., Evans, C. & Cronin, L. (2006). Eur. J. Inorg. Chem. 2006, 3930-3935.]); Haynes et al. (1988[Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). Inorg. Chem. 27, 1237-1241.]); Şengül & Büyükgüngör (2005[Şengül, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m119-m121.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(CF3SO3)2(C16H18N4)]

  • Mr = 628.02

  • Monoclinic, P 21 /c

  • a = 9.2228 (4) Å

  • b = 25.5574 (13) Å

  • c = 9.8189 (5) Å

  • β = 94.961 (3)°

  • V = 2305.75 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 120 (2) K

  • 0.35 × 0.2 × 0.06 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.78, Tmax = 0.93

  • 18769 measured reflections

  • 5052 independent reflections

  • 4062 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.09

  • 5052 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Recently, the coordination chemistry of di-Schiff bases derived from 2-pyridyl ketones or aldehydes has generated a great deal of interest (Hamblin et al., 2002; Gourbatsis et al., 1998; Szklarzewicz & Samotus, 2002; Mentes et al., 2007). These studies have been mostly stimulated by an interest in modelling the enzyme, copper-zinc superoxide dismutase (SOD) (Luo et al., 1993) and also for the synthesis of metal containing polymers with interesting optical, magnetic and electrical properties (Hanack et al., 1988; Marks, 1990). It has also been found that such tetradentate Schiff base ligands may form complexes with different nuclearity according to the coordination preferences of the metal centre (Fielden et al., 2006).

Our interest in the ligand, L, (Scheme 2) was stimulated by the analogy between its donor set and that of the pyridylmethylketazine (L1) and 2-pyridinealdazine (L2) system which form triple-stranded helical complexes with the formula [M2(L)3]4+ (M = Co, Fe and Ni). The helical complexes were shown to undergo exchange reactions on standing to form mono-nuclear complexes [M(L)2]2+ in which the ligand twists to coordinate as tridentate with non-coordinated imine residue (Hamblin et al., 2002). Mononuclear species are favoured by coordination to octahedral metal centres whose equatorial sites are occupied by N4 donor set of the bis(axial) ligand, and their axial sites being occuppied by solvent molecules or counterions. In addition, dinuclear metal complexes are favoured by the four-coordinate tetrahedral metal centres whose ca 90° twist angle provides good geometric match for the bis(equatorial) ligand (Fielden et al., 2006).

Recently, the single-crystal X-ray analysis of L was reported (Mentes et al., 2007). The molecule adopts a centrosymmetric trans geometry and forms a dinuclear complex by reacting with Mo(CO)6. The reaction of L with ZnX2 (X = Cl or Br) in tetrahydrofuran yielded an octahedral complex [ZnX2(L)] (Gourbatsis et al., 1999), whereas by reacting with a silver(I) cation the double-stranded helical complex [Ag2(L)2][BF4]2 (Bowyer et al., 1998) is formed. The synthesis of copper(II) complex by using Cu(NO3)2.3H2O resulted in the tetragonally distorted octahedral complex, [Cu(L)(ONO2)(OH2)][NO3] (Gourbatsis et al., 1998).

Herein we present the synthesis and structure of the complex [Cu(L)(OTf)2], (where OTf = trifluoromethanesulfonate) with a molecular structure as illustrated in Scheme 1 and Figure 1. The crystal structure is composed of discrete neutral [Cu(L)(OTf)2] units. The copper ion exhibits an elongated tetragonal octahedral CuN4O2 cromophore with four nitrogen atoms from the ligand occupying the equatorial plane and two axial oxygen atoms from the trans-coordinated unidentate trifluoromethanesulfonate anions. The four equatorial Cu–N distances [Cu1–N1 2.008 (3) Å, Cu1–N4 2.011 (3) Å, Cu1–N2 1.950 (2) Å, and Cu1–N3 1.944 (2) Å] are normal for this class of compounds and also very similar to those of Cu1–Npyridine 2.002 (4) and 2.022 (4) Å, and Cu1–Nimine 1.943 (4) and 1.938 (4) Å as found in [Cu(L)(ONO2)(OH2)][NO3] (Gourbatsis et al., 1998). The bond lengths to the imine N atoms are slightly shorter than those to the pyridine N atoms (Table 1), which is presumably a consequence of the more effective σ donation or π back donation (Hamblin et al., 2002). The coordination is of the 4 + 2 type and thus belongs to the myriad of examples of such Jahn-Teller elongated pseudo-octahedral structures (Şengül & Büyükgüngör, 2005).

The structure contains unidentate trifluoromethanesulfonate anions which are semi-coordinated to the copper ion [Cu1–O2 2.568 (3) Å and Cu1–O4 2.476 (4) Å] in the axial positions with the angle of O2–Cu1–O4 177.9 (4)°. The bonding parameters for the trifluoromethanesulfonate anions are similar to those found for [Cu(pyridine)4(CF3SO3)2] (Haynes et al., 1988). For example, the trifluoromethanesulfonate anions adopt a staggered-ethane configuration about the S–C bond and the O–S–O angles [O3–S1–O1 116.01 (15)°, O3–S1–O2 113.97 (14)°, O1–S1–O2 114.93 (15)°] are greater than the C–S–O angles [C17–S1–O3 103.25 (15)°, C17–S1–O1 103.00 (15)°, and C17–S1–O2 103.25 (15)°]. The S–O bond lengths are also very similar to those found in [Cu(pyridine)4(CF3SO3)2], the S1–O2 1.450 (2) and S2–O4 1.446 (2) Å bonds involving the O atoms bound to copper being longer than those involving the terminally bound oxygen atoms [S1–O1 1.442 (2), S1–O3 1.440 (2) Å and S2–O5 1.441 (2), S2–O6 1.440 (2) Å].

The bite angles around the copper ion [N2–Cu1–N3 83.2 (2), N1–Cu1–N2 81.9 (7), N3–Cu1–N4 81.6 (7)°] are very similar to those found in [Cu(L)(ONO2)(OH2)][NO3] with the corresponding angles of 83.2 (2), 80.6 (2) and 81.4 (2)°, respectively.

In the free ligand the pyridylimine units adopt a transoid configuration to minimize unfavourable electronic interactions between the lone pairs of pyridine nitrogen and imine nitrogen atoms. However, in the presence of a metal ion, the pyridine rings rotate by 180° with respect to the Aryl–C bond, positioning the two nitrogen atoms of each pyridylimine moiety on the same side of the ligand. Otherwise the geometric parameters in the free ligand are very similar to those of the coordinated moiety.

The pyridylimine units are not ideally planar due to a combined effect of the ring to the metal centre and a twist induced by the ethylene bridge [Cu1, N1, N2, C1>C6 and Cu1, N3, N4, C10, C12>C16 have devaitions from the mean plane of 0.088 (6) Å and 0.106 (6) Å for N2 and N3 respectively]. From puckering analysis (Cremer & Pople, 1975) the ring formed by the metal centre, the imine N atoms and the ethylene bridge has a Q value of 0.283 (3) Å and forms a twisted envelope conformation about the C8—C9 bond. This effect has the result of pushing the methyl groups out of the ring unit plane, with C7 deviating by 0.149 (5) Å and C11 by 0.167 (6) Å and accordingly the pyridylimine units are not coplanar, with the angle formed between these planes being 12.98 (9)°.

The crystal structure does not exhibit any classical hydrogen bonds and is primarily comprised of stacked undulating sheets formed by close packing and C—H···O interactions between the SO3 group and pyridylimine ring H atoms.

Related literature top

Gourbatsis et al. (1998); Gourbatsis et al. (1999); Hamblin et al. (2002); Hanack et al. (1988); Luo et al. (1993); Mentes et al. (2007); Szklarzewicz & Samotus (2002). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that it said, for example, "For general background, see···. For related structures, see···; etc. Please revise this section as indicated.

For related literature, see: Bowyer et al. (1998); Cremer & Pople (1975); Fielden et al. (2006); Haynes et al. (1988); Marks (1990); Şengül & Büyükgüngör (2005).

Experimental top

The ligand, N,N'-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L) (0.213 g; 0.8 mmol) and Cu(CF3SO3)2 (0.297 g; 0.8 mmol) were dissolved in a minimum amount of methanol. The solution was stirred at room temperature for half an hour and filtered. The navy blue solution was poured into sample tubes and left for crystallization to yield very dark navy blue block crystals suitable for X-ray diffraction analysis. Anal. Calc.: C, 34.42; H, 2.89; N, 8.92. Found: C, 34.64; H, 3.07; N, 9.06%. ESI-MS (m/z) = 478.0 [Cu(L)(OTf)]+.

Refinement top

All non H atoms were refined anisotropically. All hydrogen atoms were fixed in idealized positions [0.98 Å (CH3), 0.99 Å (CH2) & 0.95 Å (CH)] and refined using the riding model with Uiso(H) set to 1.2 or 1.5Ueq(carrier) for CH or CH2 and CH3 respectively. When including H atoms, methyl groups were allowed to rotate to enable matching with electron density maxima.

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (50% probability displacement ellipsoids).
{N,N'-Bis[1-(2-pyridyl)ethylidene]ethane-1,2-diamine- κ4N,N',N'',N'''}bis(trifluoromethanesulfanato- κO)copper(II) top
Crystal data top
[Cu(CF3SO3)2(C16H18N4)]F(000) = 1268
Mr = 628.02Dx = 1.809 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 26348 reflections
a = 9.2228 (4) Åθ = 2.9–27.5°
b = 25.5574 (13) ŵ = 1.22 mm1
c = 9.8189 (5) ÅT = 120 K
β = 94.961 (3)°Block, blue
V = 2305.75 (19) Å30.35 × 0.2 × 0.06 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
4062 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
θmax = 27.5°, θmin = 3.0°
Tmin = 0.78, Tmax = 0.93h = 1111
18769 measured reflectionsk = 3033
5052 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0383P)2 + 4.934P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.43 e Å3
5052 reflectionsΔρmin = 0.64 e Å3
334 parameters
Crystal data top
[Cu(CF3SO3)2(C16H18N4)]V = 2305.75 (19) Å3
Mr = 628.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2228 (4) ŵ = 1.22 mm1
b = 25.5574 (13) ÅT = 120 K
c = 9.8189 (5) Å0.35 × 0.2 × 0.06 mm
β = 94.961 (3)°
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
5052 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
4062 reflections with I > 2σ(I)
Tmin = 0.78, Tmax = 0.93Rint = 0.043
18769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
5052 reflectionsΔρmin = 0.64 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.36217 (4)0.096617 (15)0.13089 (4)0.01732 (17)
S10.61344 (9)0.13260 (3)0.13780 (9)0.0201 (2)
S20.11834 (9)0.11566 (4)0.40390 (9)0.0216 (2)
F10.6938 (2)0.20219 (8)0.0510 (2)0.0335 (5)
F20.8673 (2)0.15164 (8)0.0042 (2)0.0339 (6)
F30.7879 (2)0.21298 (8)0.1408 (3)0.0395 (6)
F40.1392 (2)0.14451 (8)0.2941 (2)0.0329 (5)
F50.0500 (3)0.19350 (10)0.4589 (3)0.0529 (8)
F60.0325 (2)0.19887 (9)0.2612 (3)0.0451 (7)
O10.5026 (3)0.16759 (10)0.1968 (3)0.0294 (6)
O20.5698 (3)0.10044 (9)0.0264 (3)0.0246 (6)
O30.6956 (3)0.10514 (10)0.2337 (3)0.0293 (6)
O40.1560 (3)0.09377 (9)0.2761 (3)0.0260 (6)
O50.0389 (3)0.08055 (11)0.4852 (3)0.0321 (6)
O60.2334 (3)0.14490 (11)0.4778 (3)0.0349 (7)
N10.2386 (3)0.05333 (10)0.0051 (3)0.0169 (6)
N20.2689 (3)0.15379 (10)0.0252 (3)0.0188 (6)
N30.4497 (3)0.15332 (10)0.2410 (3)0.0177 (6)
N40.4951 (3)0.05365 (10)0.2608 (3)0.0164 (6)
C10.2187 (4)0.00137 (13)0.0122 (4)0.0214 (7)
H10.26880.01980.05310.026*
C20.1266 (4)0.02194 (14)0.1130 (4)0.0252 (8)
H20.11490.05810.11550.030*
C30.0525 (4)0.00934 (14)0.2097 (4)0.0278 (8)
H30.00910.00550.27910.033*
C40.0702 (4)0.06320 (14)0.2027 (4)0.0251 (8)
H40.01870.08480.26590.030*
C50.1647 (4)0.08421 (14)0.1013 (4)0.0184 (7)
C60.1917 (4)0.14160 (13)0.0857 (4)0.0192 (7)
C70.1385 (4)0.17828 (14)0.1956 (4)0.0261 (8)
H7A0.14950.21360.16300.039*
H7B0.03760.17140.22190.039*
H7C0.19390.17360.27310.039*
C80.3222 (4)0.20639 (12)0.0623 (4)0.0214 (7)
H8A0.24280.23140.05140.026*
H8B0.39610.21690.00320.026*
C90.3872 (4)0.20533 (12)0.2131 (4)0.0212 (7)
H9A0.46190.23190.22810.025*
H9B0.31170.21230.27360.025*
C100.5278 (4)0.14069 (13)0.3512 (4)0.0197 (7)
C110.5756 (4)0.17735 (13)0.4637 (4)0.0258 (8)
H11A0.56620.21270.43110.039*
H11B0.67550.17050.49440.039*
H11C0.51610.17250.53820.039*
C120.5645 (3)0.08382 (13)0.3585 (3)0.0177 (7)
C130.6640 (4)0.06293 (14)0.4569 (4)0.0231 (8)
H130.71150.08430.52330.028*
C140.6917 (4)0.00970 (14)0.4551 (4)0.0240 (8)
H140.75860.00500.52050.029*
C150.6207 (3)0.02138 (14)0.3572 (4)0.0228 (8)
H150.63780.05720.35500.027*
C160.5222 (3)0.00235 (13)0.2610 (3)0.0192 (7)
H160.47330.01840.19400.023*
C170.7467 (4)0.17719 (14)0.0524 (4)0.0258 (8)
C180.0166 (4)0.16582 (14)0.3522 (4)0.0298 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0212 (17)0.0175 (14)0.0241 (18)0.0001 (12)0.0006 (13)0.0005 (12)
C20.0260 (18)0.0214 (16)0.0240 (19)0.0052 (13)0.0029 (15)0.0050 (13)
C30.0282 (19)0.0299 (18)0.0200 (18)0.0050 (14)0.0055 (15)0.0042 (14)
C40.0235 (17)0.0281 (17)0.0171 (17)0.0001 (13)0.0009 (13)0.0007 (13)
C50.0176 (15)0.0211 (15)0.0154 (16)0.0013 (12)0.0071 (12)0.0016 (12)
C60.0156 (15)0.0198 (14)0.0195 (17)0.0030 (11)0.0057 (13)0.0021 (12)
C70.0258 (18)0.0248 (16)0.0249 (19)0.0026 (13)0.0012 (14)0.0059 (14)
C80.0268 (17)0.0133 (14)0.0228 (18)0.0011 (12)0.0066 (14)0.0020 (12)
C90.0260 (17)0.0154 (14)0.0215 (17)0.0012 (12)0.0065 (14)0.0028 (12)
C100.0176 (15)0.0203 (15)0.0183 (17)0.0041 (12)0.0056 (13)0.0032 (12)
C110.0283 (18)0.0226 (16)0.0243 (18)0.0036 (13)0.0018 (15)0.0098 (13)
C120.0154 (15)0.0214 (15)0.0152 (16)0.0029 (11)0.0043 (12)0.0026 (12)
C130.0182 (16)0.0294 (17)0.0184 (17)0.0028 (13)0.0014 (13)0.0028 (13)
C140.0168 (16)0.0322 (18)0.0208 (18)0.0048 (13)0.0013 (13)0.0027 (14)
C150.0178 (16)0.0239 (16)0.0255 (19)0.0032 (12)0.0050 (14)0.0031 (13)
C160.0187 (16)0.0192 (14)0.0197 (17)0.0005 (12)0.0022 (13)0.0009 (12)
C170.0249 (18)0.0209 (15)0.0288 (19)0.0019 (13)0.0041 (15)0.0001 (13)
C180.0267 (19)0.0265 (17)0.032 (2)0.0015 (14)0.0002 (16)0.0033 (15)
N10.0178 (13)0.0165 (12)0.0148 (13)0.0004 (10)0.0011 (10)0.0012 (10)
N20.0195 (13)0.0152 (12)0.0180 (14)0.0027 (10)0.0041 (11)0.0002 (10)
N30.0171 (13)0.0151 (12)0.0186 (14)0.0015 (10)0.0032 (11)0.0033 (10)
N40.0165 (13)0.0174 (12)0.0150 (13)0.0008 (9)0.0025 (10)0.0004 (10)
O10.0240 (13)0.0339 (13)0.0252 (14)0.0048 (10)0.0015 (10)0.0036 (10)
O20.0260 (13)0.0203 (11)0.0262 (13)0.0004 (9)0.0064 (10)0.0032 (9)
O30.0348 (14)0.0297 (13)0.0232 (13)0.0033 (10)0.0076 (11)0.0051 (10)
O40.0273 (13)0.0284 (12)0.0222 (13)0.0030 (10)0.0085 (10)0.0059 (10)
O50.0302 (14)0.0403 (14)0.0255 (14)0.0047 (11)0.0092 (11)0.0109 (11)
O60.0221 (13)0.0544 (17)0.0248 (14)0.0007 (12)0.0011 (11)0.0122 (12)
Cu10.0197 (2)0.01299 (18)0.0159 (2)0.00029 (14)0.00132 (15)0.00080 (14)
S10.0213 (4)0.0193 (4)0.0172 (4)0.0013 (3)0.0030 (3)0.0007 (3)
S20.0184 (4)0.0262 (4)0.0175 (4)0.0022 (3)0.0029 (3)0.0002 (3)
F10.0366 (12)0.0300 (11)0.0326 (12)0.0027 (9)0.0002 (10)0.0123 (9)
F20.0227 (11)0.0352 (11)0.0414 (13)0.0044 (8)0.0026 (10)0.0015 (10)
F30.0382 (13)0.0278 (11)0.0511 (15)0.0085 (9)0.0084 (11)0.0106 (10)
F40.0203 (10)0.0385 (12)0.0369 (13)0.0027 (8)0.0053 (9)0.0064 (9)
F50.0430 (14)0.0500 (14)0.0597 (17)0.0172 (11)0.0004 (13)0.0275 (13)
F60.0374 (13)0.0294 (11)0.0646 (17)0.0069 (10)0.0061 (12)0.0200 (11)
Geometric parameters (Å, º) top
Cu1—N31.941 (3)C2—C31.376 (5)
Cu1—N21.949 (3)C2—H20.9300
Cu1—N12.011 (3)C3—C41.387 (5)
Cu1—N42.016 (3)C3—H30.9300
Cu1—O42.474 (3)C4—C51.375 (5)
Cu1—O22.564 (3)C4—H40.9300
S1—O31.442 (3)C5—C61.494 (5)
S1—O11.442 (3)C6—C71.481 (5)
S1—O21.453 (3)C7—H7A0.9603
S1—C171.826 (4)C7—H7B0.9603
S2—O61.441 (3)C7—H7C0.9603
S2—O51.442 (3)C8—C91.549 (5)
S2—O41.444 (3)C8—H8A0.9700
S2—C181.828 (4)C8—H8B0.9700
F1—C171.328 (4)C9—H9A0.9700
F2—C171.340 (4)C9—H9B0.9700
F3—C171.339 (4)C10—C121.492 (4)
F4—C181.337 (4)C10—C111.486 (5)
F5—C181.322 (4)C11—H11A0.9608
F6—C181.337 (4)C11—H11B0.9608
N1—C11.342 (4)C11—H11C0.9608
N1—C51.367 (4)C12—C131.381 (5)
N2—C61.287 (4)C13—C141.385 (5)
N2—C81.466 (4)C13—H130.9300
N3—C101.288 (4)C14—C151.369 (5)
N3—C91.465 (4)C14—H140.9300
N4—C161.335 (4)C15—C161.392 (5)
N4—C121.349 (4)C15—H150.9300
C1—C21.383 (5)C16—H160.9300
C1—H10.9300
N3—Cu1—N283.11 (12)N2—C6—C5113.5 (3)
N3—Cu1—N1164.79 (11)C7—C6—C5120.4 (3)
N2—Cu1—N181.96 (11)C6—C7—H7A109.5
N3—Cu1—N481.59 (11)C6—C7—H7B109.5
N2—Cu1—N4164.06 (11)H7A—C7—H7B109.4
N1—Cu1—N4113.52 (12)C6—C7—H7C109.5
N3—Cu1—O490.25 (10)H7A—C7—H7C109.4
N2—Cu1—O490.19 (10)H7B—C7—H7C109.4
N1—Cu1—O486.96 (10)N2—C8—C9108.4 (2)
N4—Cu1—O494.30 (10)N2—C8—H8A110.1
N3—Cu1—O290.61 (10)C9—C8—H8A110.0
N2—Cu1—O288.21 (10)N2—C8—H8B110.0
N1—Cu1—O291.76 (10)C9—C8—H8B110.0
N4—Cu1—O287.53 (9)H8A—C8—H8B108.4
O4—Cu1—O2178.07 (8)N3—C9—C8107.9 (2)
O3—S1—O1115.72 (17)N3—C9—H9A110.1
O3—S1—O2114.34 (16)C8—C9—H9A110.1
O1—S1—O2114.89 (15)N3—C9—H9B110.2
O3—S1—C17103.46 (16)C8—C9—H9B110.1
O1—S1—C17102.90 (17)H9A—C9—H9B108.4
O2—S1—C17103.10 (17)N3—C10—C12113.1 (3)
O6—S2—O5115.54 (17)N3—C10—C11125.1 (3)
O6—S2—O4114.61 (15)C12—C10—C11121.8 (3)
O5—S2—O4114.34 (16)C10—C11—H11A109.6
O6—S2—C18103.29 (17)C10—C11—H11B109.5
O5—S2—C18102.91 (16)H11A—C11—H11B109.4
O4—S2—C18103.87 (17)C10—C11—H11C109.5
S1—O2—Cu1138.17 (14)H11A—C11—H11C109.4
S2—O4—Cu1138.10 (15)H11B—C11—H11C109.4
C1—N1—C5118.5 (3)N4—C12—C13121.5 (3)
C1—N1—Cu1130.3 (2)N4—C12—C10115.5 (3)
C5—N1—Cu1111.2 (2)C13—C12—C10123.0 (3)
C6—N2—C8125.5 (3)C12—C13—C14118.9 (3)
C6—N2—Cu1117.1 (2)C12—C13—H13120.6
C8—N2—Cu1115.6 (2)C14—C13—H13120.6
C10—N3—C9124.5 (3)C15—C14—C13120.1 (3)
C10—N3—Cu1117.1 (2)C15—C14—H14119.9
C9—N3—Cu1115.8 (2)C13—C14—H14120.0
C16—N4—C12118.9 (3)C14—C15—C16117.9 (3)
C16—N4—Cu1129.8 (2)C14—C15—H15121.1
C12—N4—Cu1111.3 (2)C16—C15—H15121.0
N1—C1—C2122.4 (3)N4—C16—C15122.7 (3)
N1—C1—H1118.8N4—C16—H16118.7
C2—C1—H1118.8C15—C16—H16118.6
C3—C2—C1118.8 (3)F1—C17—F2108.2 (3)
C3—C2—H2120.7F1—C17—F3108.1 (3)
C1—C2—H2120.6F2—C17—F3106.8 (3)
C2—C3—C4119.5 (3)F1—C17—S1112.0 (2)
C2—C3—H3120.3F2—C17—S1111.3 (2)
C4—C3—H3120.2F3—C17—S1110.2 (3)
C5—C4—C3119.2 (3)F5—C18—F4108.1 (3)
C5—C4—H4120.4F5—C18—F6107.9 (3)
C3—C4—H4120.5F4—C18—F6107.1 (3)
N1—C5—C4121.5 (3)F5—C18—S2110.8 (3)
N1—C5—C6115.3 (3)F4—C18—S2111.3 (2)
C4—C5—C6123.2 (3)F6—C18—S2111.5 (3)
N2—C6—C7126.0 (3)
O3—S1—O2—Cu1150.8 (2)C2—C3—C4—C51.7 (6)
O1—S1—O2—Cu113.5 (3)C1—N1—C5—C40.8 (5)
C17—S1—O2—Cu197.6 (2)Cu1—N1—C5—C4178.2 (3)
N3—Cu1—O2—S177.9 (2)C1—N1—C5—C6179.5 (3)
N2—Cu1—O2—S15.2 (2)Cu1—N1—C5—C60.5 (3)
N1—Cu1—O2—S187.1 (2)C3—C4—C5—N11.7 (5)
N4—Cu1—O2—S1159.4 (2)C3—C4—C5—C6179.7 (3)
O6—S2—O4—Cu15.8 (3)C8—N2—C6—C71.7 (6)
O5—S2—O4—Cu1142.5 (2)Cu1—N2—C6—C7165.8 (3)
C18—S2—O4—Cu1106.1 (2)C8—N2—C6—C5174.8 (3)
N3—Cu1—O4—S210.5 (2)Cu1—N2—C6—C510.7 (4)
N2—Cu1—O4—S293.6 (2)N1—C5—C6—N27.2 (4)
N1—Cu1—O4—S2175.5 (2)C4—C5—C6—N2171.5 (3)
N4—Cu1—O4—S271.1 (2)N1—C5—C6—C7169.5 (3)
N3—Cu1—N1—C1164.2 (4)C4—C5—C6—C711.8 (5)
N2—Cu1—N1—C1175.1 (3)C6—N2—C8—C9170.5 (3)
N4—Cu1—N1—C18.9 (3)Cu1—N2—C8—C925.1 (3)
O4—Cu1—N1—C184.5 (3)C10—N3—C9—C8171.4 (3)
O2—Cu1—N1—C197.0 (3)Cu1—N3—C9—C827.3 (3)
N3—Cu1—N1—C514.7 (6)N2—C8—C9—N332.2 (4)
N2—Cu1—N1—C53.8 (2)C9—N3—C10—C12174.1 (3)
N4—Cu1—N1—C5172.2 (2)Cu1—N3—C10—C1213.1 (4)
O4—Cu1—N1—C594.4 (2)C9—N3—C10—C114.3 (5)
O2—Cu1—N1—C584.2 (2)Cu1—N3—C10—C11165.4 (3)
N3—Cu1—N2—C6174.5 (3)C16—N4—C12—C131.0 (5)
N1—Cu1—N2—C68.4 (3)Cu1—N4—C12—C13178.4 (2)
N4—Cu1—N2—C6158.2 (4)C16—N4—C12—C10179.9 (3)
O4—Cu1—N2—C695.3 (3)Cu1—N4—C12—C100.8 (3)
O2—Cu1—N2—C683.6 (3)N3—C10—C12—N48.9 (4)
N3—Cu1—N2—C88.7 (2)C11—C10—C12—N4169.6 (3)
N1—Cu1—N2—C8174.2 (2)N3—C10—C12—C13170.2 (3)
N4—Cu1—N2—C87.6 (6)C11—C10—C12—C1311.2 (5)
O4—Cu1—N2—C898.9 (2)N4—C12—C13—C140.5 (5)
O2—Cu1—N2—C882.1 (2)C10—C12—C13—C14179.6 (3)
N2—Cu1—N3—C10174.2 (3)C12—C13—C14—C150.2 (5)
N1—Cu1—N3—C10163.4 (4)C13—C14—C15—C160.4 (5)
N4—Cu1—N3—C1010.2 (3)C12—N4—C16—C150.8 (5)
O4—Cu1—N3—C1084.1 (3)Cu1—N4—C16—C15178.4 (2)
O2—Cu1—N3—C1097.6 (3)C14—C15—C16—N40.1 (5)
N2—Cu1—N3—C911.5 (2)O3—S1—C17—F1173.3 (2)
N1—Cu1—N3—C90.6 (6)O1—S1—C17—F165.9 (3)
N4—Cu1—N3—C9173.0 (2)O2—S1—C17—F153.9 (3)
O4—Cu1—N3—C978.6 (2)O3—S1—C17—F252.0 (3)
O2—Cu1—N3—C999.6 (2)O1—S1—C17—F2172.8 (3)
N3—Cu1—N4—C16174.7 (3)O2—S1—C17—F267.4 (3)
N2—Cu1—N4—C16158.3 (4)O3—S1—C17—F366.3 (3)
N1—Cu1—N4—C167.1 (3)O1—S1—C17—F354.5 (3)
O4—Cu1—N4—C1695.7 (3)O2—S1—C17—F3174.3 (2)
O2—Cu1—N4—C1683.7 (3)O6—S2—C18—F553.1 (3)
N3—Cu1—N4—C124.5 (2)O5—S2—C18—F567.5 (3)
N2—Cu1—N4—C1220.9 (5)O4—S2—C18—F5173.1 (3)
N1—Cu1—N4—C12173.6 (2)O6—S2—C18—F4173.4 (3)
O4—Cu1—N4—C1285.1 (2)O5—S2—C18—F452.8 (3)
O2—Cu1—N4—C1295.5 (2)O4—S2—C18—F466.7 (3)
C5—N1—C1—C20.1 (5)O6—S2—C18—F667.1 (3)
Cu1—N1—C1—C2178.9 (2)O5—S2—C18—F6172.4 (3)
N1—C1—C2—C30.0 (5)O4—S2—C18—F652.9 (3)
C1—C2—C3—C40.9 (5)

Experimental details

Crystal data
Chemical formula[Cu(CF3SO3)2(C16H18N4)]
Mr628.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.2228 (4), 25.5574 (13), 9.8189 (5)
β (°) 94.961 (3)
V3)2305.75 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.35 × 0.2 × 0.06
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.78, 0.93
No. of measured, independent and
observed [I > 2σ(I)] reflections
18769, 5052, 4062
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.09
No. of reflections5052
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.64

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), publCIF (Westrip, 2008).

 

Footnotes

Corresponding author for synthesis; e-mail: abdurrahmans2002@yahoo.co.uk.

Acknowledgements

This work was supported by the reserach project fund of Zonguldak Karaelmas University (grant Nos. 2007/2-13-02-12 and 2007/2-13-02-10) and the UK Engineering and Physical Sciences Research Council.

References

First citationBowyer, B. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). J. Chem. Soc. Chem. Commun. 10, 1153–1154.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFielden, J., Long, D.-L., Evans, C. & Cronin, L. (2006). Eur. J. Inorg. Chem. 2006, 3930–3935.  Web of Science CSD CrossRef Google Scholar
First citationGourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem. 23, 599–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationGourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375.  Web of Science CSD CrossRef CAS Google Scholar
First citationHamblin, J., Jackson, A., Alcock, N. W. & Hannon, M. J. (2002). Dalton Trans. pp. 1635–1641.  CrossRef Google Scholar
First citationHanack, M., Deger, S. & Lange, A. (1988). Coord. Chem. Rev. 83, 115–136.  CrossRef CAS Web of Science Google Scholar
First citationHaynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). Inorg. Chem. 27, 1237–1241.  CSD CrossRef CAS Web of Science Google Scholar
First citationLuo, Q., Lu, Q., Dai, A. & Huang, L. (1993). Inorg. Biochem. 51, 655–662.  CrossRef CAS Web of Science Google Scholar
First citationMarks, T. J. (1990). Angew. Chem. Int. Ed. Engl. 29, 857–879.  CrossRef Web of Science Google Scholar
First citationMenteş, A., Sezek, S., Hanhan, M. E. & Büyükgüngör, O. (2007). Turk. J. Chem. 31, 667–676.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationŞengül, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m119–m121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzklarzewicz, J. & Samotus, A. (2002). Transition Met. Chem. 27, 769–775.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds