organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(3,5-di­chloro­benzyl­­idene)­ethane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 6 September 2008; accepted 15 October 2008; online 18 October 2008)

The mol­ecule of the title Schiff base compound, C16H12Cl4N2, lies across an inversion centre and adopts an E configuration with respect to the azomethine C=N bond. The imine groups are coplanar with the aromatic rings. Within the mol­ecule, the planar units are parallel but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, mol­ecules are linked together by inter­molecular C—H⋯Cl hydrogen bonds along the a axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see, for example: Fun & Kia (2008a[Fun, H.-K. & Kia, R. (2008a). Acta Cryst. E64. Submitted],b[Fun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, o1722-o1723.],c[Fun, H.-K. & Kia, R. (2008c). Acta Cryst. E64, o1916.]); Fun, Kargar & Kia (2008[Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.]); Fun, Kia & Kargar (2008[Fun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.]). For information on Schiff base complexes and their applications, see, for example: Pal et al. (2005[Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880-3889.]); Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]); Hou et al. (2001[Hou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042-7048.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl4N2

  • Mr = 374.08

  • Monoclinic, P 21 /c

  • a = 8.0539 (3) Å

  • b = 14.0170 (4) Å

  • c = 7.5015 (3) Å

  • β = 110.612 (1)°

  • V = 792.64 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100.0 (1) K

  • 0.52 × 0.25 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.699, Tmax = 0.908

  • 34536 measured reflections

  • 4162 independent reflections

  • 3485 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.06

  • 4162 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl2i 0.962 (14) 2.830 (16) 3.6479 (9) 143.5 (13)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are among the most prevalent mixed-donor ligands in the field of coordination chemistry in which there has been growing interest, mainly because of their wide applications in areas such as biochemistry, synthesis, and catalysis (Pal et al., 2005; Hou et al., 2001; Ren et al., 2002). Many Schiff base complexes have been structurally characterized, but only a relatively small number of free Schiff bases have had their X-ray structures reported (Calligaris & Randaccio, 1987). As an extension of our work (Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008) on the structural characterization of Schiff base ligands, the title compound (I), is reported here.

The molecule of the title compound (Fig. 1), lies across an inversion centre and adopts an E configuration with respect to the azomethine CN bond. The bond lengths and angles are within normal ranges (Allen et al., 1987) and are comparable with the values found in related structures (Fun & Kia (2008a,b,c); Fun, Kargar & Kia 2008; Fun, Kia & Kargar 2008). The two planar units are parallel but extend in opposite directions from the dimethylene bridge. In the crystal structure, molecules are linked together by intermolecular C—H···Cl hydrogen bonds along the a-axis.

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun & Kia (2008a,b,c); Fun, Kargar & Kia (2008); Fun, Kia & Kargar (2008). For information on Schiff base complexes and their applications, see, for example: Pal et al. (2005); Calligaris & Randaccio, (1987); Hou et al. (2001); Ren et al. (2002).

Experimental top

The synthetic method has been described earlier (Fun, Kargar, & Kia, 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

All of the hydrogen atoms were located from the difference Fourier map and refined freely. The highest peak is located 0.63 Å from C7 and the deepest hole is located 0.55 Å from Cl2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms. The suffix A corresponds to symmetry code (-x + 2, -y, -z + 1).
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the c-axis, showing the linking of the molecules by intermolecular C—H···Cl hydrogen bonds along the a-axis. Intermolecular hydrogen bonds are shown as dashed lines.
N,N'-Bis-(3,5-dichlorobenzylidene)ethane-1,2-diamine top
Crystal data top
C16H12Cl4N2F(000) = 380
Mr = 374.08Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9889 reflections
a = 8.0539 (3) Åθ = 2.7–39.9°
b = 14.0170 (4) ŵ = 0.74 mm1
c = 7.5015 (3) ÅT = 100 K
β = 110.612 (1)°Block, colourless
V = 792.64 (5) Å30.52 × 0.25 × 0.13 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4162 independent reflections
Radiation source: fine-focus sealed tube3485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
CCD rotation images, thin slices scansθmax = 37.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.699, Tmax = 0.908k = 2324
34536 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: refall
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.1408P]
where P = (Fo2 + 2Fc2)/3
4162 reflections(Δ/σ)max = 0.001
124 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H12Cl4N2V = 792.64 (5) Å3
Mr = 374.08Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.0539 (3) ŵ = 0.74 mm1
b = 14.0170 (4) ÅT = 100 K
c = 7.5015 (3) Å0.52 × 0.25 × 0.13 mm
β = 110.612 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3485 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.908Rint = 0.035
34536 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.70 e Å3
4162 reflectionsΔρmin = 0.25 e Å3
124 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.28013 (3)0.291680 (16)0.02974 (3)0.02218 (6)
Cl20.72672 (3)0.547370 (15)0.42924 (4)0.02557 (7)
N10.83741 (10)0.09945 (5)0.45102 (12)0.01963 (14)
C10.58794 (11)0.24294 (6)0.24399 (13)0.01689 (14)
C20.47672 (11)0.31735 (6)0.15494 (13)0.01727 (14)
C30.51579 (12)0.41204 (6)0.20925 (13)0.01900 (15)
C40.67376 (12)0.43026 (6)0.35795 (13)0.01858 (14)
C50.78922 (11)0.35774 (6)0.45130 (13)0.01811 (14)
C60.74533 (11)0.26360 (6)0.39426 (12)0.01621 (13)
C70.86553 (11)0.18627 (6)0.49751 (12)0.01690 (14)
C80.96808 (13)0.03109 (6)0.56502 (14)0.02076 (16)
H10.558 (2)0.1783 (10)0.202 (2)0.025 (4)*
H30.447 (2)0.4639 (12)0.150 (2)0.034 (4)*
H50.8978 (18)0.3723 (10)0.5610 (19)0.019 (3)*
H70.956 (2)0.2083 (11)0.602 (2)0.027 (4)*
H8A0.9095 (19)0.0120 (10)0.641 (2)0.019 (3)*
H8B1.071 (2)0.0617 (11)0.660 (2)0.022 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01762 (9)0.02168 (10)0.02490 (11)0.00313 (6)0.00456 (8)0.00146 (7)
Cl20.02981 (12)0.01319 (9)0.03115 (12)0.00056 (7)0.00756 (9)0.00046 (7)
N10.0189 (3)0.0151 (3)0.0234 (3)0.0039 (2)0.0056 (3)0.0025 (2)
C10.0164 (3)0.0142 (3)0.0213 (3)0.0015 (2)0.0082 (3)0.0015 (2)
C20.0160 (3)0.0164 (3)0.0203 (3)0.0021 (2)0.0075 (3)0.0019 (3)
C30.0200 (3)0.0151 (3)0.0234 (4)0.0038 (3)0.0096 (3)0.0030 (3)
C40.0211 (3)0.0127 (3)0.0234 (4)0.0011 (3)0.0098 (3)0.0010 (3)
C50.0192 (3)0.0148 (3)0.0209 (3)0.0013 (2)0.0078 (3)0.0011 (2)
C60.0167 (3)0.0134 (3)0.0200 (3)0.0021 (2)0.0083 (3)0.0025 (2)
C70.0156 (3)0.0160 (3)0.0193 (3)0.0031 (2)0.0064 (3)0.0018 (2)
C80.0218 (4)0.0162 (3)0.0227 (4)0.0051 (3)0.0058 (3)0.0030 (3)
Geometric parameters (Å, º) top
Cl1—C21.7353 (9)C3—H30.929 (17)
Cl2—C41.7326 (9)C4—C51.3893 (12)
N1—C71.2643 (11)C5—C61.3939 (12)
N1—C81.4571 (11)C5—H50.988 (13)
C1—C21.3839 (11)C6—C71.4778 (11)
C1—C61.3983 (12)C7—H70.916 (16)
C1—H10.962 (14)C8—C8i1.526 (2)
C2—C31.3916 (12)C8—H8A1.050 (15)
C3—C41.3888 (13)C8—H8B0.979 (15)
C7—N1—C8116.67 (8)C4—C5—H5120.5 (8)
C2—C1—C6118.82 (8)C6—C5—H5120.4 (8)
C2—C1—H1120.4 (9)C5—C6—C1120.23 (7)
C6—C1—H1120.8 (9)C5—C6—C7119.01 (7)
C1—C2—C3122.43 (8)C1—C6—C7120.75 (7)
C1—C2—Cl1118.86 (7)N1—C7—C6122.74 (8)
C3—C2—Cl1118.70 (6)N1—C7—H7124.9 (10)
C4—C3—C2117.34 (8)C6—C7—H7112.3 (10)
C4—C3—H3117.8 (11)N1—C8—C8i109.68 (10)
C2—C3—H3124.8 (11)N1—C8—H8A109.1 (8)
C3—C4—C5122.12 (8)C8i—C8—H8A109.6 (8)
C3—C4—Cl2118.59 (6)N1—C8—H8B112.8 (9)
C5—C4—Cl2119.29 (7)C8i—C8—H8B109.2 (9)
C4—C5—C6119.05 (8)H8A—C8—H8B106.4 (12)
C6—C1—C2—C30.08 (14)C4—C5—C6—C10.58 (14)
C6—C1—C2—Cl1179.26 (7)C4—C5—C6—C7178.13 (8)
C1—C2—C3—C40.42 (14)C2—C1—C6—C50.59 (14)
Cl1—C2—C3—C4179.76 (7)C2—C1—C6—C7178.10 (8)
C2—C3—C4—C50.43 (14)C8—N1—C7—C6179.56 (8)
C2—C3—C4—Cl2179.97 (7)C5—C6—C7—N1177.99 (9)
C3—C4—C5—C60.06 (14)C1—C6—C7—N13.30 (14)
Cl2—C4—C5—C6179.54 (7)C7—N1—C8—C8i127.06 (11)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl2ii0.962 (14)2.830 (16)3.6479 (9)143.5 (13)
Symmetry code: (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H12Cl4N2
Mr374.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0539 (3), 14.0170 (4), 7.5015 (3)
β (°) 110.612 (1)
V3)792.64 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.52 × 0.25 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.699, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
34536, 4162, 3485
Rint0.035
(sin θ/λ)max1)0.857
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.06
No. of reflections4162
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.25

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl2i0.962 (14)2.830 (16)3.6479 (9)143.5 (13)
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: zsrkk@yahoo.com.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for the award of a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationFun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst. E64, o1308.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008a). Acta Cryst. E64. Submitted  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008b). Acta Cryst. E64, o1722–o1723.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008c). Acta Cryst. E64, o1916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kia, R. & Kargar, H. (2008). Acta Cryst. E64, o1335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, B., Friedman, N., Ruhman, S., Sheves, M. & Ottolenghi, M. (2001). J. Phys. Chem. B, 105, 7042–7048.  Web of Science CrossRef CAS Google Scholar
First citationPal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). Inorg. Chem. 44, 3880–3889.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds